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Abstract

In this paper, we focus on numerical aspects of structural optimization. 
We combine shape and topological optimization of structure with a 
fictitious domain approach. After recalling some standard results of shape 
and topological optimization, we build an algorithm inspired from the 
extended finite elements method (Xfem) principles and give some 
numerical results. Numerical results confirm that the method is efficient 
and gives better result compared with the classical shape optimization 
techniques.
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1. Introduction 

The goal of this paper is to propose a numerical scheme coupling two recent 
methods in shape and topological optimization of structures. Most of the known 
results concern structural mechanics. Classical topology optimization involves 
relaxed formulation and homogenization. Such methods involve many drawbacks: 
for example, the optimal shape is not a classical design, then some penalization 
method must be applied to retrieve a realistic shape; global optimization technics 
like genetic algorithm have been proposed but with a high computational cost. 

In this paper, we recall classical results of shape and topological optimization 
[5, 11, 12] in order to build a numerical scheme based on the extended finite element 
method (Xfem). 

Shape gradient is used here in order to update the level-set used in the Xfem. 
Shape optimization problem is a minimization problem where the unknown variable 
run over a class of domains; then every shape optimization problem can be written in 
the form 

,:min AAj

where is a class of admissible domains and j is the cost functional. 

Topological optimization aims to write asymptotic expansion of a shape 
functional in the form 

,0 rhohohxGjj  

,0h    and   ,0lim
0

h
p

 

where 0\ x  for ,0 ,0
nx  ,3,2n   is a reference 

domain. The topological sensitivity 0xG  provides an information for creating a 

small holes located at .0x  Hence the function G can be used like a descent direction 

in optimization process. Topological sensitivity analysis is used here in the algorithm 
in order to create new holes in fictitious initial domain. 

The extended finite element method (Xfem) was introduced by Moës in [13, 19] 
and developed in many papers such as [7, 22, 14, 18]. 

In this paper, we propose a method which combines a fictitious domain approach 
for the approximation of the elastic displacement and the use of both shape and 
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topological derivatives. The fictitious domain approach is the one presented in [10] 
which is inspired from Xfem principles [13, 19]. In the following, we describe this 
method adapted to our problem. It is proved in [10] that the approximation of the 
solution is optimal. 

The paper is organized as follows: in Section 2, we introduce the model of 
linear elastic and some objective functionals as the compliance and the least square 
error. In Sections 3 and 4, we recall to classical results and give shape and 
topological gradient associated to our functionals. The main part of this paper is 
Section 5, in which we propose a numerical method for approximation of the elastic 
problem, to end this section, we give some numerical result in order to illustrate the 
efficacy of the proposed algorithm. 

2. Problem Setting 

Let  be an open and bounded set of ,n  2n  or 3. The linearized elastic 

problem is the following [6]: Find u  such that 

.on,
,on,0

,in,div

N

D
gu

u
fu

 (1) 

Here, is the outward normal to the boundary ,DN  D  and N  have 

both nonzero Lebesgue measure in  and .ND  

The linearized strain tensor and the stress tensor are given by 

,2div uuu ijijij  

,2
1

i

j

j
i

ij x
u

x
u    ,,1 nji  

0  and 0  denote the Lamé coefficients of the material, here ij  is the 

Kronecker symbol. 

The weak form of the problem is classically written 

Find vlvuaVu ,:    ,Vv  (2) 

with 

,0:;1
DvHvV n  
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,:, dxvuvua  

N
vdsgvdxfvl .  

We suppose that all required hypotheses for uniqueness and existence of a 

solution are satisfied, in particular we may assume that ,2Lf  ,2
NLg  

 sufficiently regular and D of nonzero measure on .  In such case, it is well 

know that (2) admits a unique solution in V due to Korn inequality. 

A shape optimization problem is a minimization problem where the unknown 
variable run over a class of domains, then every shape optimization problem can be 
written in the form 

,:min adAAF  

where ad is the class of admissible domains and F is the cost function that we 

have to minimize over .ad  More details can be found in [4]. 

 The problem consists in calculating the shape derivative and the topological 
one of a shape functional ,uJ  where u  is the solution of (1) in order to propose 

an implementation. 

We focus on the two following functional, but more general functional can be 
used 

N
udsgudxfuJ ,1  

dxuu :  (3) 

and 

., 2
2 dxuuuJ d  (4) 

It is well known that the maximization of (3) or the minimization of (4) is not well 
posed. In order to obtain the existence of optimal shape, some smoothness, 
geometrical or topological constraints will be prescribed in the class of admissible 
domains .ad  

Let us recall the Lagrangian method [5, 11] in order to compute shape and 
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topological derivatives. The Lagrangian operator is defined by 

.,, uJvlvuavuL

Writing that the variation of the cost functional is equal to the one of the Lagrangian, 
it follows the results which give the topological and the shape gradient. 

3. Shape Derivative 

In order to compute shape derivative, we use the approach of Murat and Simon 
in [15], recalled by Henrot and Pierre in [11] and Allaire et al. in [1]. We consider a 

perturbation of the domain  in the following sense: for ,,,1 nnW  

.Id  It is well known that for sufficiently small Id  is a 

diffeomorphism in .n  

Definition 3.1. The shape derivative of J  at  is defined as the Frechet

derivative in nnW ,,1  at 0 of the application ,IdJ i.e.,

,oJJIdJ  

where J  is a continuous and linear form on .,,1 nnW  

It follows from the definition and some symbolic calculus, the following result 
which is somewhat standards (see [1, 5, 11]). 

Theorem 3.2. Let  be a smooth bounded open set and .,,1 nnW  

We assume that the data f, g and the solution u  of (1) are sufficiently smooth. Then 

the shape derivative of (3) is given by 

dsuuufuHgugJ
N

:21  

D
dsufuu ,:  (5) 

and the shape derivative of (4) is 

2J  

N
dspfpHgpgupuuC d :2  

D
dsufpuuuC d ,:2  (6) 
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where p is the solution of the adjoint equation, assumed also to be smooth and 
defined by 

,,0
,,0

,,2div

N

D

d

onp
onp
inuup

 (7) 

and H is the mean curvature defined on N  and C is a positive constant which 

depend on the space dimension.

4. Topological Derivative 

For a given ,0x  consider the perforated open set ,\  0x  

,  n is a fixed reference domain. We recall here to the general adjoint 

method and domain truncation [12] in order to get topological derivative. 

Let u  be the solution of the equation in the perturbed domain: 

.on0
,on
,on0
,indiv

u
gu

u
fu

N

D
 (8) 

The aim of the topological optimization is to compute the difference J  

.J For many cases, the asymptotic expansion of the function J can be obtained 

in the following form: 

,0 hoxGhJJ  

,0lim
0

h    .0h  (9) 

The function h  depends of the space dimension and the boundary conditions on 

. See [9], for example. 

The function 0xG  is called topological derivative (or topological sensitivity) 

and provides an information for creating a small hole located at .0x  Hence the 

function G can be used like a descent direction in optimization process. 
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Possibly changing the coordinate system, we can suppose for convenience 
.00x  Let v be the solution of the exterior problem 

.in
,at,0

,\in,0div

uv
v

v n

 (10) 

This function can be expressed by a single layer potential on 

,xdxpxyEyv    ,\ny

where 21Hp  is the solution of the boundary integral equation 

,2 0 yxuxdxpxyEyp
y    ,y  (11) 

and E is the fundamental solution for the elasticity problem in .n

Using Taylor expansion of E, it follows that v can be written as yv  

yWyP  with 

,xdxxpxDEyP    .1
ny

OyW  

Let \,0 RxBD  R  is choosing such that ,,0 RxB  and Q  be the 

solution of the interior problem 

.,on,
,in,0div

0

0

RRxBPQ
DQ

 (12) 

Using topological optimization result, cf. [12], the variation of the bilinear form 
associated to equation (8) can be written 

R
xdpPQpua ,,  

where p  is the solution of the adjoint problem. 

Let 

,0 xdxxpxuA kiik    ,1 niipp    nkkxx 1  
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be the mass matrix, if 0div p  in ,0D  then 

.:,,, 000 xpxuApupuapua a  

Using Saint-Venant principle, a good approximation of p can be obtained by 
computing extu in \ and intu on , thus p is approximatively equal to the jump 

.intuuext  

When be the unit ball of ,n  P  and A can be explicitly computed. 

Since the topological gradient is in the form pupu a ,,L  

.uJ  

The topological derivative of (3) and (4) follows, cf. [9], for the proof. 

Theorem 4.1. Let  be a smooth bounded open set and  defined as below 

and ,1,0B  the  unit ball of ,n .3,2n  Then the topological derivative 

is given by:

For ,1J  

,,:42
2 2

0 inutrutruuxG  (13) 

.,23:20149
2 3

0 inutrutruuxG  (14)

For ,2J  

,,:42
2 2

0 inptrutrpuxG  (15) 

.,23:20149
2 3

0 inptrutrpuxG  (16) 

where p  is the solution of the adjoint equation, assumed to be smooth, as ,u  

defined by (7).

5. The Proposed Numerical Method 

5.1. Numerical approximation 

In this section, we propose a method which combines a fictitious domain 
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approach for the approximation of the elastic displacement and the use of both shape 
and topological derivatives. The fictitious domain approach is the one presented in 
[10] which is inspired from Xfem principles [13, 19]. In the following, we describe 
this method adapted to our problem. It is proven in [10] that the approximation of 
the solution is optimal. 

The boundary of the domain being an unknown of the problem, we introduce 
~  a fixed (in general, rectangular or parallelepiped) domain which includes all the 

potential domains . This fictitious domain approach requires the introduction of 

two finite element spaces nh HV ;~~ 1  and nh LW ;~~ 2  on the fictitious 

domain .~  As ~  can be a rectangular or parallelepiped domain, the ones can be 

defined on the same structured mesh h  (see, Figure 1). Next, we shall suppose that 

,:;~~ hn
T

hnhh TTPvvV  (17) 

where TP  is a finite dimensional space of regular functions such that TP  

TPk  for some ,1k  integer. The mesh parameter h stands for ,max T
T

hh
h

 

where Th is the diameter of T. 

 

Figure 1. Example of a structured mesh.

Thus we can build 

hh VV ~:    and   D
hh WW ~:  

which are natural discretizations of V and ,;2 n
DLW  respectively. A mixed 

approximation of Problem (2) is defined as follows: 
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D

D
hhhh

hhhhhhh

hhhh

Wdsu

Vvvldsvvua

WVu

.0

,,

thatsuchandFind

 (18) 

Similarly to Xfem, where the shape functions of the finite element space is 
multiplied with an Heaviside function, this corresponds here to the multiplication of 
the shape functions with the characteristic function of . 

Unfortunately, such a simple formulation leads to a potentially poor 

approximation of the solution (in hO  generally, see [10]) due to a possible 

locking phenomenon on the Dirichlet boundary. This is why it is necessary to 
consider an additional stabilization. Here, we adapt a stabilization technique 
presented by Barbosa and Hughes in [2, 3] in order to recover an optimal rate of 
convergence. Note that this stabilization technique can be viewed as a generalization 
of the former Nitsche’s method [16], where the multipliers are eliminated (see [23] 
for the link between the two stabilization techniques). We present its symmetric 
version although the nonsymmetric one can be considered in the same way. This 
technique is based on the addition of a supplementary term involving the normal 
derivative on .D  Let us suppose that we have at our disposal an operator 

D
hh LVR 2:  

which approximates the normal stress on D (i.e., for hh Vv converging to a 

sufficiently smooth function hh vRv,  tends to v  in an appropriate sense). A 

first straightforward choice is given by 

.2div j
h

ijij
hhhh vvvvR  

In [10], we can see that this gives some satisfactory numerical results in most of the 
cases except where there is some very small intersection of an element with the real 
domain . In the latter case, it is proven that a good approximation can be recovered 

using the extrapolation of hv  on a neighbor element having a sufficiently large 

intersection with . 
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Now, we obtain the stabilized problem by considering the following Lagrangian 

for hh Vv and :hh W  

D D
dsvRdsvvlvvav hhhhhhhhhh

h ,2,, 2  

where, for the sake of simplicity, 0: h  is chosen to be a positive constant over  

(for non-uniform meshes, an element dependent parameter 0Th  is a better 

choice). 

The corresponding discrete problem reads as follows: 

D D

D D
hhhhhhhh

hhhhhhhhhhhh

hhhh

WdsuRdsu

VvvldsvRuRdsvvua

WVu

.0

,,

thatsuchandFind

 (19) 

This formulation is consistent in the sense that the additional term 
2hhh vR  should vanish when h goes to zero since it is well known that in 

Problem (18), the multiplier h is an approximation of the opposite of the normal 

stress. 

The parameter 0  has to be taken sufficiently small such that the coerciveness 

of the bilinear form is kept. The quality of the approximation is not very sensitive to 
the parameter 0  which can be chosen in a wide range of values. 

Now, the shape optimization process needs the description of the boundary of 
. As in [1] or also in the framework of Xfem in [19], we chose a level-set 

approximation of the boundary. This means that the boundary will be represented by 
the zero level-set of a function approximated on a convenient finite element space. 

The advantage of this approach is to obtain both an optimal approximation of 
the elasticity problem together with an accurate location of boundary of the real 
domain. Note that to keep the optimality of the approximation, the level-set 
functions have to be approximated at the same order than the displacement u. 
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5.2. Optimization algorithm 

 

Figure 2. Structural optimization algorithm.

The optimization algorithm is summarized in Figure 2. Since we use the 
topological gradient to create holes during the optimization process, it is possible to 
start with a shape containing some initial holes or not. A very small penalization is 
used when solving the direct problem and the adjoint one to avoid the indeterminacy 
of the rigid motions of eventual isolated part. Concerning Step 4, a new hole of a 
given radius is created by the simple operation on the level-set function which can 
be written on each finite element node ,ix

,2,max: 22 rcxrxx iii  

where x  is the level-set function, ix  is its new value, r is the radius of the 

created hole and c is its center. 

At Step 6, the update of the level-set is done directly thanks to the shape 
derivative applying the following evolution equation for the level-set function: 

,xgt    in   ,~  (20) 
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where xg  corresponds to the function in front of  in the integral of (5). This 

evolution equation is integrated on a small time interval. In our simulations, the 

gradient is extended by zero on the complementary of  in .~  However, a smoother 
extension could be considered. This method is simpler than the classical way which 
is to integrate a Hamilton-Jacobi equation (see [1]). It seems also to be numerically 
more robust. 

Note that it is convenient to apply a threshold on the gradient to avoid some 
incoherent values where the shape gradient may have a singularity (corner, transition 
form Dirichlet to Neumann condition, ...). 

In order to regularize the level-set function, the reinitilization Step 7 is 
considered. It consists classically in solving 

,~in,0

,~in01sign

0

0

xx
t  (21) 

whose stationary solution is a signed distance. This Hamilton-Jacobi equation is 
known to admit multiple nonsmooth solutions. Classically, a smooth solution is 

computed thanks to an upwind scheme. Since the fictitious domain ~  can be a 
rectangular/parallelepiped domain, it is possible to use a classical upwind scheme on 
a cartesian grid (see [21]). However, to keep the possibility of having a non-
structured mesh, for instance to proceed to a local refinement, we use a different 
strategy. Equation (21) is solved on a small time interval t,0  integrating the 

following equation where the non-linearity is made explicit: 

.,0

,,0~insignsign 00

xx

tt
n

n

n

 (22) 

Here n is the level-set function at the previous time step and 1n  is given by 

.,t  The problem (22) is a pure convection one. This problem can be solved for 

instance with the simple Galerkin-characteristic scheme proposed in [24]. This 
scheme is unconditionally stable but rather dissipative. The effect is that the level-
sets are a little bit smoothed. 
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5.3. Numerical results 

In the two-dimension, the working domain is a rectangle of size 12  
discretized by a regular triangle mesh and an affine finite element method. For the 
boundary conditions, we fix D  with homogeneous Dirichlet boundary condition 

and apply a Neumann condition on the right size with force of intensity g. 

Numerical results confirm that the method is efficient and gives better result
compared with the classical shape optimization techniques. 

5.3.1. The two dimensional case 

We give here some numerical results obtained for the two dimensional case at 
two steps in a 16080  mesh. We give, left, the shape with initial holes and right, 
without initial hole.

    
Figure 3. Second step.

    

Figure 4. Fourth step (optimal design).

14



We give here some numerical results obtained for the two dimensional case in 
different initial meshes. We give, left, the shape with initial holes and right, without 
initial hole. 

    

Figure 5. Optimal shape design in a 8040  mesh. 

    

Figure 6. Optimal shape design in a 16080  mesh. 

5.3.2. The three dimensional case 

Here are different steps to reach the optimal shape design in a 603030  
mesh. We represent two steps of the evolution of the shape obtained, left, the shape 
with initial holes and right, without initial hole. 
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Figure 7. Second step.

    

Figure 8. Fourth step (optimal shape).
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