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MARCHENKO-PASTUR THEOREM AND BERCOVICI-PATA

BIJECTIONS FOR HEAVY-TAILED OR LOCALIZED VECTORS

FLORENT BENAYCH-GEORGES AND THIERRY CABANAL-DUVILLARD

Abstract. The celebrated Marchenko-Pastur theorem gives the asymptotic spectral dis-
tribution of sums of random, independent, rank-one projections. Its main hypothesis is
that these projections are more or less uniformly distributed on the first grassmannian,
which implies for example that the corresponding vectors are delocalized, i.e. are essen-
tially supported by the whole canonical basis. In this paper, we propose a way to drop this
delocalization assumption and we generalize this theorem to a quite general framework,
including random projections whose corresponding vectors are localized, i.e. with some
components much larger than the other ones. The first of our two main examples is given
by heavy tailed random vectors (as in the model introduced by Ben Arous and Guionnet in
[5] or as in the model introduced by Zakharevich in [32] where the moments grow very fast
as the dimension grows). Our second main example, related to the continuum between the
classical and free convolutions introduced in [11], is given by vectors which are distributed
as the Brownian motion on the unit sphere, with localized initial law. Our framework
is in fact general enough to get new correspondences between classical infinitely divisible
laws and some limit spectral distributions of random matrices, generalizing the so-called
Bercovici-Pata bijection.

1. Introduction

In 1967, Marchenko and Pastur introduced a successful matrix model inspired by the
elementary fact that each Hermitian matrix is the sum of orthogonal rank one homotheties.
Substituting orthogonality with independence, they considered in their seminal paper [23]
the N ×N random matrix defined by

(1)
1

N

p∑

i=1

X i · U i
N (U

i
N)

∗,

where (X i)i≥1 is an i.i.d. sequence of real valued random variables and (U i
N )i≥1 is an i.i.d.

sequence of N -dimensional column vectors, whose conjugate transpose are denoted (U i
N )

∗,
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independent of (Xi)i≥1. As a main result, they proved that the empirical spectral measure
of this matrix converges to a limit with an explicit characterization under the following
assumptions:

(a) N, p tend to infinity in such a way that p/N−→λ > 0;
(b) the first four joint moments of the entries of U1

N are not too far, roughly speaking,
from the ones of the entries of a standard Gaussian vector.

In the special case where all X i’s are equal to one, the matrix (1) reduces to a so-called
empirical covariance matrix, and its limit spectral distribution is none other than the
well-known Marchenko-Pastur distribution with parameter λ.

It has to be noticed that even in the general case, the limit spectral distribution does
not depend on the particular choice of the U i

N ’s, granted they satisfy the above hypothesis.
For example, one can choose U1

N to have uniform distribution on the sphere of RN or CN

with radius
√
N , or to be a standard gaussian: such a vector is said to be delocalized, which

means that with large probability, ‖U1
N‖∞/‖U1

N‖2 is small; more specifically:

‖U1
N‖∞

‖U1
N‖2

≈
(
log(N)

N

)1/2

.

After the initial paper of Marchenko and Pastur, a long list of further-reaching results
about limit spectral distribution of empirical covariance matrices have been obtained, by
Yin and Krishnaiah [31], Götze and Tikhomirov [20, 21], Aubrun [3], Pajor and Pastur
[25], Adamczak [1]. All of them are devoted to the empirical covariance matrix of more or
less delocalized vectors, with limit spectral distribution being the Marchenko-Pastur dis-
tribution (except in the case treated in [31], but there the vector are still very delocalized).

In this paper, our goal is to drop the delocalization assumption and to be able to deal
with localized U i

N ’s, i.e. with some entries much larger than the other ones. For example,
the applications of our main theorem include the case where the entries of U i

N have heavy
tails, but also in some other examples of localized vectors, such as the one where the law
of U i

N results from a Brownian motion with localized initial condition.

This approach is based on our preceding works [6, 16] on the Bercovici-Pata bijection
(see also [7, 26, 10]). This bijection, that we denote by Λ, is a correspondence between
the probability measures on the real line that are infinitely divisible with respect to the
classical convolution ∗ and the ones which are infinitely divisible with respect to the free
convolution ⊞. In [6, 16], we constructed a set of matrix ensembles which produces a quite
natural interpretation of Λ. This construction is easy to describe for compound Poisson
laws and makes the connection with Marchenko-Pastur’s model quite clear. Let (X i)i≥1

be still an i.i.d. sequence of real valued random variables, (U i
N)i≥1 i.i.d. column vectors

uniformly distributed on the sphere of CN with radius
√
N , and (P (λ), λ > 0) a standard
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Poisson process, (X i)i≥1, (U
i
N )i≥1 and (P (λ), λ > 0) being independent. For each N ≥ 1,

we defined the random matrix

(2)
1

N

P (Nλ)∑

i=1

X i · U i
N (U

i
N)

∗

and we proved that its empirical spectral law converges to Λ(µ) when N goes to infinity,
where µ is the compound Poisson law of

P (λ)∑

i=1

X i,

The link with Marchenko-Pastur’s model of (1) is now obvious and it is easy to verify
that the empirical spectral laws of (1) and (2) have same limit if p ∼ Nλ. Hence, our
previous works [6, 16] could be viewed as another insight on Marchenko-Pastur’s results,
partly more restricted, since we only considered uniformly distributed random vectors U i

N ,
partly more general, since our construction extended to all infinitely divisible laws. In
fact, the main advantage of our matricial model, which has also been studied in [26], over
Marchenko-Pastur’s one is to be infinitely divisible. It allows us to derive simpler proofs,
using appropriate tools as cumulant computations or semi-groups.

In the present paper, we extend our construction to a larger class of U i
N ’s, while con-

tinuing to benefit of the infinitely divisible framework. Roughly speaking, we are able to
prove the convergence of the empirical spectral law if we suppose only that the entries of

U i
N are exchangeable and have a moment of order k growing as N → ∞ at most in N

k
2
−1,

for any fixed k (cf. Theorem 2.6).

Then, approximations allow to extend the result to U i
N with heavy tailed entries (see

Theorem 3.1). When the X i’s are constant, we recover a result by obtained by Belinschi,
Dembo and Guionnet in [4]. Our result is more general from a certain point of view
(we allow some random X i’s), but less explicit since we characterize the limit spectral
distribution as the weak limit of a sequence of probability distributions with calculable
moments and not with a functional equation, as in [4]. We also state (Theorem 3.2) a
“covariance matrices version” of Zakharevich’s generalization of Wigner’s theorem of [32],
which is a direct consequence of our key result Theorem 2.6.

We also devote a particular interest to the special case where the column vectors U i
N ’s

are copies of

(3) UN (t) =
√
Ne−

t
2XN +

√
1− e−tGN ,

where XN is uniformly distributed on the canonical basis (1, 0, . . ., 0)T ,. . . , (0, . . ., 0, 1)T ,
independent of GN := (z1, . . ., zN )

T , with z1, z2, z3, . . . independent standard Gaussian
variables. Let us emphasized that UN (t) is a quite typicaly localized vector since it has
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exactly one entry which is much bigger than the N − 1 others. Precisely, we have:

‖UN(t)‖∞
‖UN(t)‖2

≈ e−t/2.

This is the reason why the N → ∞ limits differ from the ones of the classical matrix
models. For example, the classical Marchenko-Pastur Theorem about empirical covariance
matrices is not true anymore for such vectors. More specifically, we have:

Theorem 1.1. Let U1
N , U

2
N , . . . be i.i.d. copies of the vector UN(t) ∈ CN defined in (3).

Let

(4) M =
1

N

p∑

i=1

U i
N (U

i
N)

∗

be the (dilated) empirical covariance matrix of the sample U1
N , . . ., U

p
N . As N, p → ∞ with

p/N → λ > 0, the empirical spectral law of M converges to a limit law Pλ,t with unbounded
support which is characterized by its moments, given by the formula

(5)

∫
xkPλ,t(dx) =

∑

π∈Part(k)
e−κ(π)tλ|π|

with Part(k) the set of partitions of {1, . . . , k} and κ defined by:

• κ(π) = κ(π1) + · · ·+ κ(πq) if π1, . . . , πq are the connected components of π;

• if π is connected, κ(π) is the number of times one changes from one block to another
when running through π in a cyclic way.

Note that the law Pλ,t is the Poisson law with parameter λ if t = 0 and tends to the
free Poisson law (also called Marchenko-Pastur law) as t tends to +∞: the weight e−κ(π)t

penalizes crossings in partitions (indeed, κ(π) = 0 if and only if π is non crossing). An
illustration is given in Figure 1 below. In fact, Formula (5) can be generalized into a
more general moments-cumulants formula which provides a new continuous interpolation
between classicaly and freely infinitely divisible laws. This interpolation is related to the
notion of t-freeness developed by the first named author and Lévy in [11] and is based on
a progressive penalization of the crossings in the moments-cumulants formula (19).

The paper is organized as follows. Next section describes the main results; Section 3
provides some applications; the following sections are devoted to the proofs; the last section
is an appendix where we recall some facts on the infinitely divisible laws, the Bercovici-Pata
bijection and (hyper)graphs, for the easyness of the reader.

As this preprint was published, Victor Pérez-Abreu informed us that he is working on
a close subject with J. Armando Domı́nguez-Molina and Alfonso Rocha-Arteaga in the
forthcoming preprint [18].



MARCHENKO-PASTUR AND BERCOVICI-PATA GENERALIZED 5

0 1 2 3 4 5 6 7 8 9
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N = 4000, p = 8000, lambda = 2, t = 0.01

(a) Case where t = 0.01
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Figure 1. The empirical spectral distribution of the matrix M of (4) for N =
4.103, p = 8.103 at several values of t. We see that this distribution, which is
approximately the law P2,t, is close to thePoisson law with parameter 2 for t close
to zero, and that it converges to the Marchenko-Pastur law with parameter 2
(whose density is plotted by a smooth continuous line) as t grows.

Acknowledgements. The authors thank James Mingo for a useful explanation during
the program “Bialgebras in free probability” in the Erwin Schrödinger Institute in Wien
during spring 2011. They also thank Thierry Lévy and Camille Male for some discussions
on a preliminary version of the paper.

2. The main results

2.1. A general family of matrix ensembles. The basic facts on the ∗-infinitely divisible
laws are recalled in the appendix. For µ such a law, its Lévy exponent is the function Ψµ

such that the Fourier transform of µ is eΨµ(·).
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2.1.1. Case of compound Poisson laws. Such a law µ is a one of

P (λ)∑

i=1

Xi,

where P (λ) is a random variable with Poisson law with expectation λ and the Xi’s are
i.i.d. random variables, independent of P (λ). In this case, if ν denotes the law of the Xi’s,
the Lévy exponent of µ is Ψµ(ξ) = λ

∫
(eitξ −1)dν(t). For N ≥ 1, let (U i

N )i≥1 be a sequence

of i.i.d. copies of a random column vector UN ∈ R
N×1 or CN×1. Then we define P

(µ)
UN

to be
the law of

1

N

P (Nλ)∑

i=1

Xi · U i
N (U

i
N)

∗,

where P (Nλ) is a random variable with Poisson law with expectation Nλ, the Xi’s are
i.i.d. random variables with law ν and the U i

N ’s are i.i.d. copies of UN (whose conjugate

transpose are denoted by (U i
N)

∗), all being independent. Let us notice that P
(µ)
UN

is still a
compound Poisson law and that its Lévy exponent is given by:

A 7→ NE [Ψµ(U
∗
NAUN/N)]

for any N ×N Hermitian matrix A.

2.1.2. General case. Here, we shall extend the previous construction for µ a general infin-
itely divisible law. In the following theorem and in the rest of the paper, the spaces of
probability measures are endowed with the weak topology. K denotes either R or C.

Theorem 2.1. Let µ be an infinitely divisible law on R, let us fix N ≥ 1 and let UN ∈ KN×1

be a random column vector such that E [‖UN‖42] < +∞. Let (U i
N)i≥1 be a sequence of i.i.d.

copies of UN and, for each n ≥ 1, let X1
n, X

2
n, . . . , X

Nn
n be i.i.d. µ∗ 1

n -distributed random
variables. Then the sequence of N ×N Hermitian matrices

(6)
1

N

N×n∑

i=1

X i
n · U i

N(U
i
N)

∗

converges in distribution, as n −→ ∞ (N being fixed), to a probability measure P
(µ)
UN

on the
space of N ×N Hermitian matrices, whose Fourier transform is given by

(7)

∫
eiTr(AM)dP

(µ)
UN

(M) = exp {NE [Ψµ(U
∗
NAUN/N)]}

for any N ×N Hermitian matrix A.

The following proposition extends the theorem to a quite more general framework, where
the X i

n’s are i.i.d. but not necessarily distributed according to µ∗ 1
n and only satisfy the

limit theorem
law of (X1

n + · · · · · ·+Xkn
n ) −→

n→∞
µ
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for a sequence kn → ∞.

Proposition 2.2. a) If the law of UN is compactly supported, then to any limit theorem

νn ∗ · · · · · · ∗ νn︸ ︷︷ ︸
kn times

−→
n→∞

µ,

there corresponds a limit theorem in the space of N ×N Hermitian matrices

(8)
1

N

N×kn∑

i=1

X i
n · U i

N (U
i
N)

∗ −→
n→∞

P
(µ)
UN

,

where X1
n, X

2
n, . . . , X

Nkn
n are i.i.d. νn-distributed random variables, (U i

N)i≥1 is a sequence
of i.i.d. copies of UN , independent of the X i

n’s.

b) In the case where the law of UN is not compactly supported, (8) stays true as long as
one supposes that kn ×

∫
|t|νn(dt) is bounded uniformly in n.

Remark 2.3. Such a construction has been generalized to the more general setting of
Hopf algebras by Schürmann, Skeide and Volkwardt in [29].

2.2. Convergence of the empirical spectral law. The empirical spectral law of a ma-
trix is the uniform probability measure on its eigenvalues (see Equation (44) in the ap-

pendix). When UN/
√
N is uniformly distributed on the unit sphere, we proved that the

empirical spectral law associated to P
(µ)
UN

converges when the size N tends to infinity (cf.
[6, 16]). In order to obtain other convergences, we shall first make the following assump-
tions on the random vector UN ∈ KN×1. We denote the entries of UN by UN (1), . . . , UN (N).
Roughly speaking, these assumptions mean that the UN(i)’s are exchangeable and that the

moment of order k of UN(1) grows at most in N
k
2
−1, for all k. These assumptions will be

weakened in the next section to consider heavy tailed variables.

Hypothesis 2.4. a) For each N ≥ 1, the entries of UN are exchangeable and have moments
of all orders.

b) As N goes to infinity, we have:

• for each p ≥ 1, for each i1, . . . , i2p ≥ 1,

(9) E[UN (i1) · · ·UN(ip)UN (ip+1) · · ·UN(i2p)] = O(Np−|{i1,...,i2p}|),

• for each k ≥ 1, for all positive integers n1, . . . , nk, there exists Γ(n1, . . . , nk) finite
such that

(10) E

[ |UN(1)|2n1

Nn1−1
· · · · · · |UN (k)|2nk

Nnk−1

]
−→
N→∞

Γ(n1, . . . , nk).

Moreover, there is a constant C such that for all k ≥ 1, for all n1, . . . , nk,

(11) Γ(n1, . . . , nk) ≤ Cn1+···+nk .
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Remark 2.5. Let define the random column vector ŨN = diag(ε1, . . . , εN)UN , with
ε1, . . . , εN some i.i.d. variables uniformly distributed on {z ∈ K ; |z| = 1}, independent
of UN . Note that if UN satisfies Hypothesis 2.4, so does ŨN , with the same function Γ.
Moreover, the expectation of (9) is null for ŨN as soon as the multisets {i1, . . . , ik} and
{ik+1, . . . , i2k} are not equal (in the complex case) and as soon as an element in the multiset
{i1, . . . , i2k} appear an odd number of times (in the real case).

The following theorem is the key result of the paper. For its second part, we endow the
set of functions on multisets of integers (it is the set that Γ belongs to) with the product
topology.

Theorem 2.6. We suppose that Hypothesis 2.4 holds.

a) For any ∗-infinitely divisible distribution µ, the empirical spectral distribution of a

P
(µ)
UN

-distributed random matrix converges almost surely, as N −→ ∞, to a deterministic
probability measure ΛΓ(µ), which depends only on µ and on the function Γ of Equation
(10).

b) The probability measure ΛΓ(µ) depends continuously on the pair (µ,Γ).

c) The moments of ΛΓ(µ) moments can be computed when µ has moments to all orders
via the following formula,

(12)

∫
xkΛΓ(µ)(dx) =

∑

π∈Part(k)
fΓ(π)

∏

J∈π
c|J |(µ), (k ≥ 1)

where the non negative numbers fΓ(π), which factorize along the connected components of
π, are given at Lemma 6.3 and the numbers c|J |(µ) are the cumulants of π (whose definition
is recalled in the appendix).

d) If the Lévy measure of µ has compact support, then ΛΓ(µ) admits exponential moments
of all orders.

The following proposition allows to assert that many limit laws obtained in Theorem 2.6
have unbounded support. Recall that a law is said to be non degenerate if it is not a Dirac
mass.

Proposition 2.7. If the function Γ of Hypothesis 2.4 is such that inf Γ(n)1/n > 0, then
for any non degenerate ∗-infinitely divisible distribution µ whose classical cumulants are
all non negative, the law ΛΓ(µ) has unbounded support.

3. Applications and examples

3.1. Heavy-tailed Marchenko-Pastur theorem. In this section, we use Theorem 2.6
to extend the theorem of Marchenko and Pastur described in the introduction to vectors
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with heavy-tailed entries. This also extends Theorem 1.10 of Belinschi, Guionnet and
Dembo in [4] (their theorem corresponds to the case Xi = 1), but we do not provide the
explicit characterization of the limit that they propose. Also, our result is valid in the
complex as in the real case, whereas the one of [4] is only stated in the real case (but we
do not know whether this is an essential restriction of the approach of [4]).

Let us fix α ∈ (0, 2) and let (Yij)i,j≥1 be an infinite array of i.i.d. K-valued random
variables such that the function

(13) L(t) := tαP(|Y11| ≥ t)

has slow variations as t → ∞. For each j, define the column vector V j := (Yij)
N
i=1 ∈ KN×1

(V j depends implicitly on N). Let us define aN := inf{t ; t−αL(t) ≤ 1/N}.

Theorem 3.1. For any set (Xj)j≥1 of i.i.d. real random variables (with any law, but that
does not depend on N) independent of the Yij’s and any fixed λ > 0, the empirical spectral
law of the random matrix

MN,p :=
1

a2N

p∑

j=1

Xj · V j(V j)∗

converges almost surely, as N, p → ∞ with p/N → λ, to a deterministic probability mea-
sure which depends only on α, on λ and on the law of the Xi’s. This limit law depends
continuously of these three parameters.

3.2. Covariance matrices with exploding moments. The following theorem is a direct
consequence of Theorem 2.6 and Proposition 2.7. It is the “covariance matrices version”
of Zakharevich’s generalization of Wigner’s theorem to matrices with exploding moments
(see [32] and also the recent work [22] by Male).

Theorem 3.2. Let MN,p = [Xij ] be a complex N × p random matrix with i.i.d. centered
entries whose distribution might depend on N and p. We suppose that there is a sequence

c = (ck)k≥2 such that c
1/k
k is bounded and such that for each fixed k ≥ 2,

E[|X11|k]
N

k
2
−1

−→ ck as N, p → ∞ with p/N → λ > 0.

Then the empirical spectral law of

1

N
MN,pM

∗
N,p

converges, as N, p → ∞ with p/N → λ > 0, to a probability measure µλ,c which depends
continuously on the pair (λ, c). If ck = 0 for all k ≥ 3, µλ,c is Marchenko-Pastur distribu-
tion with parameter λ dilated by a coefficient

√
c2. Otherwise, µλ,c has unbounded support

but admits exponential moments of all orders.
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3.3. Non centered Gaussian vectors, Brownian motion on the unit sphere and a

continuum of Bercovici-Pata’s bijections. In this section, we give examples of vectors
UN which satisfy Hypothesis 2.4 for a certain function Γ. These examples will allow to
construct the continuum of Bercovici-Pata bijections (Λt)t≥0 mentioned in the introduction.

Let us fix t ≥ 0 and consider UN = UN,t defined thanks to one of the two (or three,
actually) following definitions

(a) Gaussian and uniform cases:

(14) UN,t := e−
t
2

√
NXN +

√
1− e−tGN ,

whereXN is uniformly distributed on the canonical basis (1, 0, . . . , 0)T ,. . . (0, . . . , 0, 1)T

of KN×1, independent of GN := (g1, . . . , gN)
T , with g1, g2, g3, . . . i.i.d. variables

whose distribution is either the centered Gaussian law on K with variance 1 or the
uniform law on {z ∈ K ; |z| = 1},

(b) Brownian motion: UN,t/
√
N is a Brownian motion on the unit sphere of CN×1 taken

at time t, whose distribution at time zero is the uniform law on the canonical basis
of CN×1. Such a process is a strong solution of the SDE

(15) dUN,t = (dKt)UN,t −
1

2
UN,tdt,

where K = (Kt)t≥0 is a standard Brownian motion on the Euclidian space of N×N
skew-Hermitian matrices, endowed with the scalar product A · B = N Tr(A∗B).

Of course, these models make sense for t = +∞ : in the first model, it means only that
UN,t = GN and the second model, at t = +∞, can be understood as its limit in law, i.e. a

random vector with uniform law on the sphere with radius
√
N . For t = +∞, all formulas

below make sense (and stay true) by taking their t → +∞ limits.

Thanks to the results of [9], it can be seen that the Gaussian model and the Brownian
one have approximately the same finite-dimensional marginals, as N → ∞. The following
proposition, whose proof is postponed to Section 9, makes this analogy stronger.

Proposition 3.3. For UN = UN,t as defined according to any of the above models, Hypoth-
esis 2.4 holds for Γ := Γt given by the following formulas:

(16) Γt(1, . . . , 1︸ ︷︷ ︸
k times

) = (1− e−t)k + ke−t(1− e−t)k−1 for every k ≥ 1,

(17) Γt(n, 1, . . . , 1︸ ︷︷ ︸
k times

) = e−nt(1− e−t)k for every n ≥ 2 and k ≥ 0,

(18) Γt(n1, . . . , nk) = 0 if there is i 6= j such that ni ≥ 2, nj ≥ 2.
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Let us now consider the family of transforms (ΛΓt , t ≥ 0) (denoted by Λt in the intro-
duction).

In both models, when t = 0, the rank-one random projector UN,tU
∗
N,t is a diagonal matrix

with unique non zero entry uniformly distributed on the diagonal and equal to N . In such a

case, it can be readily seen that P
(µ)
UN,0

is the law of a diagonal matrix with i.i.d. entries with

law µ. Owing to the law of large numbers, ΛΓ0 is obviously the identity map. Moreover, it
has been seen in [6, 16] that for t = ∞, ΛΓ∞

is the Bercovici-Pata bijection.

Therefore, (ΛΓt , t ∈ [0,+∞]) provides a continuum of maps passing from the identity
(t = 0) to the Bercovici-Pata bijection (t = +∞). This continuum is related to the notion
of t-freeness developed by the first named author and Lévy in [11]. The maps ΛΓt are made
explicit (at least at the moments level) by the following proposition, whose proof, based
on the explicitation of the functions fΓt , is postponed to Section 10.

Proposition 3.4. Let µ be an infinitely divisible law with moments of all orders. Then
for each t ≥ 0,

(19)

∫
xkΛΓt(µ)(dx) =

∑

π∈Part(k)
e−κ(π)tcπ(µ) (k ≥ 1)

with κ defined by:

• κ(π) = κ(π1) + · · ·+ κ(πq) if π1, . . . , πq are the connected components of π;

• if π is connected, κ(π) is the number of times one changes from one block to another
when running through π in a cyclic way.

Example of computation of κ(π). For instance, let us consider the partition π =
{{1, 8, 10}, {2, 4}, {3, 5}, {6, 7, 9}} ∈ Part(10) (cf. Figure 2). Then the connected com-
ponents of π are the partitions π1 and π2 induced by π on the sets {1, 6, 7, 8, 9, 10} and
{2, 3, 4, 5}. Since κ(π1) = 5 and κ(π2) = 4, κ(π) = 9.

b b b b b b b b b b
1 2 3 4 5 6 7 8 9 10

Figure 2. The partition π = {{1, 8, 10}, {2, 4}, {3, 5}, {6, 7, 9}} ∈ Part(10).

Let us now say a few words about the bijection ΛΓt , as a function of t ∈ [0,+∞).
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If t = 0, then: ∫
xkΛΓ0(µ)(dx) =

∑

π∈Part(k)
cπ(µ) =

∫
xkµ(dx).

This corroborates the fact that ΛΓ0 is the identity map.

If t tends to infinity, then:

lim
t→+∞

∫
xkΛΓt(µ)(dx) =

∑

π∈NC(k)

cπ(µ) =

∫
xkΛ(µ)(dx)

where NC(k) denotes the set of non-crossing partitions of {1, . . . , k} (see Section 5.1 for a
precise definition). Indeed, κ(π) is positive unless π is non-crossing. Since the continuity
of ΛΓ w.r.t. the weak topology is uniform in Γ, as it appears from the proof of Proposition
6.5 b), this proves that ΛΓt tends to the Bercovici-Pata bijection Λ when t goes to infinity,
as expected.

3.4. The distribution P
(µ)
UN

made more explicit. When µ is a compound Poisson law,

the definition of P
(µ)
UN

has been made explicit in Section 2.1.1. In this section, we explicit

P
(µ)
UN

for µ a Dirac mass or a Gaussian laws (the column vector UN underlying the definition

of P
(µ)
UN

staying as general as possible). Since any infinitely divisible law is a weak limit of
convolutions of such laws and obviously, by the Formula (7) of the Fourier transform of

P
(µ)
UN

, the law P
(µ)
UN

depends continuously on µ and satisfies

P
(µ)
UN

∗ P(ν)
UN

= P
(µ∗ν)
UN

,

this gives a good idea of what a random matrix distributed according to P
(µ)
UN

looks like.
Moreover, we also consider the case where µ is a Cauchy law, where a surprising behaviour
w.r.t. the convolution appears.

First, it can easily be seen that if µ is the Dirac mass at γ ∈ R, then P
(µ)
UN

is the Dirac
mass at

γE[UNU
∗
N ] = γ

(
E
[
|UN(1)|2

]
− E

[
UN(1)UN (2)

])
+ rank-one matrix.

Hence, due to Hypothesis 2.4 and Lemma 12.2, ΛΓ(δγ) = δγ′ for γ′ = γΓ(1).

Suppose that now µ is the standard Gaussian law N (0, 1) and that Hypotheses 2.4

holds. Let ŨN be as in Remark 2.5. Then the distribution P
(µ)

ŨN
only depends on α :=

E[|UN (1)|2|UN (2)|2], γ := E [|UN(1)|4] and β := dimR(K) : when γ ≥ α, P
(µ)
UN

is the law of

√
γ − 2α

N



g1

. . .

gN


+

√
α

N



g

. . .

g


+

√
2α

Nβ
GO(U)E,
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where g1, . . . , gN , g are standard Gaussian variables and GO(U)E designs a GOE or GUE
matrix (according to weither K = R of C) as defined p. 51 of [2] (i.e. a standard Gaussian
vector on the space of real symmetric or Hermitian matrices endowed with the scalar
product A · B := β

2
TrAB). As a consequence, since when N → ∞, α ∼ Γ(1, 1) and

γ ∼ NΓ(2), the spectral law of a P
(µ)

ŨN
-distributed matrix converges to

ΛΓ(µ) = N (0,Γ(2))⊞ (Semicircle law with variance 2Γ(1, 1)/β).

In the next proposition, we consider the case where µ is a Cauchy law with paramater t:

µ = Ct(dx) :=
tdx

π(t2 + x2)
.

Let Pt be the associated kernel, defined by

Pt(f)(x) =

∫
f(x+ y)Ct(dy).

Proposition 3.5. We suppose that E [UNU
∗
N ] = IN . For Mt a P

(Ct)
UN

-distributed random
matrix and f : R → R bounded, for any N ×N Hermitian matrix A,

E [f(A+Mt)] = Pt(f)(A),

real functions being applied to Hermitian matrices via the functional calculus.

The following Corollary follows easily, using the vector VN := ŨN/
√
Γ(1) instead of UN

(with ŨN as defined in Remark 2.5).

Corollary 3.6. Under Hypothesis 2.4, the set of Cauchy laws is invariant by ΓΛ : for any
t > 0, ΛΓ(Ct) = Ct′ , for t′ = Γ(1)t.

4. Proof of Theorem 2.1 and Proposition 2.2

One proves the theorem and the proposition in the same time, by showing that under
the hypotheses of the theorem or of a) or b) of the remark, the Fourier transform of the
left hand term of (8), that we denote by Mn, converges pointwise to the right hand term
of (7). Indeed, for any Hermitian matrix A,

E[eiTr(AMn)] =

(
1 +

E[Ψn(U
∗
NAUN/N)]

kn

)kn

,

where for any x ∈ R, Ψn(x) := kn
∫
(eitx − 1)dνn(t). The function Ψn converges to Ψµ

as n −→ ∞, uniformly on every compact subset of R (this follows from [27, Lem. 3.1]
and from the fact that ν̂kn

n −→ µ̂ uniformly on every compact set). It is enough to prove
the result in the case where the law of UN is compactly supported. To conclude in the

case where νn = µ∗ 1
kn (resp. in the case where

∫
|t|νn(dt) = O(1/kn)), one needs to argue

that there is a constant C such that for all t > 0, Ψµt(λ) ≤ tC (|λ|+ λ2) (resp. that
|Ψn(x)| ≤ kn

∫
|t|νn(dt)).
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5. Preliminaries for the proof of Theorem 2.6 : partitions and graphs

The aim of this section is to introduce the combinatorial definitions which will be used in
the next section in order to prove Theorem 2.6. The conventions we chose for the definitions
of partitions, graphs, and for the less well-known notion of hypergraph are presented in
Section 12.3 of the appendix.

5.1. Partitions.

• Let us recall that we denote by Part(k) the set of partitions of V = {1, . . . , k},
and by NC(k) the set of non-crossing partitions of {1, . . . , k} (a partition π of
{1, . . . , k} is said to be non-crossing if there does not exist x < y < z < t such that

x
π∼ z

π
≁ y

π∼ t).
• For any given partition π ∈ Part(k), we denote by nc(π) be the minimal non-
crossing partition which is above π for the refinement order; the partitions induced
by π on the blocks of nc(π) are called the connected components of π.

• If nc(π) has only one block, then π is said to be connected.
• We define thin(π) to be the partition induced by π on the subset of {1, . . . , k}
obtained by erasing ℓ whenever ℓ+ 1

π∼ ℓ (with the convention k + 1 = 1).
• A partition π is said to be thin if π = thin(π).

For instance, for π = {{1, 8, 10}, {2, 4}, {3, 5}, {6, 7, 9}} ∈ Part(10) the partition nc(π)
is {{1, 6, 7, 8, 9, 10}, {2, 3, 4, 5}} and Figure 3 illustrates of the operation π 7→ thin(π).

b b b b b b b b b b
1 2 3 4 5 6 7 8 9 10

b b b b b b b b
1 2 3 4 5 6 8 9

Figure 3. Illustration of the operation π 7→ thin(π)

For any function f defined on a set E, we denote by ker f the partition of E whose blocks
are the level sets of f . For any partition π ∈ Part(k), for each ℓ ∈ {1, . . . , k}, we denote
by π(ℓ) the index of the class of ℓ in π, after having ordered the classes according to the
order of their first element (for the example given Figure 2, we have π(1) = 1, π(2) = 2,
π(3) = 3 and π(4) = 2, π(5) = 3, π(6) = 4),...). Moreover, 0 is identified with k and k + 1
is identified with 1, so that π(0) = π(k) and π(k + 1) = π(1).

5.2. Graphs. Let G = (V,E = (ei, i ∈ I)) be a graph, and π a partition of V . Let π̃ be
the canonical surjection from V onto π. The quotient graph G/π is the graph with π as set
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of vertices and with edges (e
(π)
i , i ∈ I) such that e

(π)
i is the edge between π̃(v) and π̃(w) if

ei is an edge between v and w, with same direction if the graph is directed. Note that the
quotient graph can have strictly less vertices than the initial one, but it has as much edges
as the initial one. Note also that the quotient of a circuit is still a circuit.

For instance, let us consider the preceding partition π and G be the cyclic graph with
vertex set V = {1, . . . , 10} and edges 1 → 2 → · · · → 10 → 1 (cf. Figure 4(a) where we
draw the partition π with dashed lines). The quotient graph G/π is then given by Figure
4(b) with V 1 = {1, 8, 10}, V 2 = {2, 4}, V 3 = {3, 5} and V 4 = {6, 7, 9}.

b

b

b

b

b

b

b

b

b

b

1

2

3

4

5

6

7

8

9

10

(a) A cyclic graph G and a partition π of its
vertices

−→

b

b

b

b

V1

V2

V3

V4

(b) The quotient G/π of the left graph
G by the partition π

Figure 4. A cyclic graph and one of its quotients

Let G = (V,E) a directed graph. For any vertex v ∈ V , we denote by E+(v) the subset
of out-going edges from v, and by E−(v) the subset of in-going edges to v:

E+(v) = {e ∈ E ; (∃v′ ∈ π)(e = (v, v′))}
E−(v) = {e ∈ E ; (∃v′ ∈ π)(e = (v′, v))}

Notice that E+(v) and E−(v) are not necessarily disjoints.

Let us consider {1, . . . , N}E as a set of “colorings” of the edges of G by the col-
ors 1, . . . , N . For any coloring c ∈ {1, . . . , N}E , let n+

c (v, i) := |E+(v) ∩ c−1({i})| and
n−
c (v, i) := |E−(v)∩ c−1({i})|. If for each vertex v and each color i, n+

c (v, i) = n−
c (v, i), the

coloring is called admissible.

Figure 5 presents an instance of an admissible coloring of G/π with three colors.

A partition τ of the edges of G will be said admissible if it is the kernel of an admissible
coloring. In this case, for any vertex v ∈ G, we define

(20) nτ (v) := (nτ (v, 1), nτ(v, 2), . . . . . .)

to be the common value of the decreasing reordering of the families (n+
c (v, 1), n

+
c (v, 2), . . . . . .)

for c coloring such that ker c = τ .
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b

b

b

b

V1

V2

V3

V4

Figure 5. An admissible coloring

5.3. Hypergraph associated to a partition of the edges of a graph. Let G be a
graph with vertex set V , π be a partition of V and τ be a partition of the edge set of G.
Then one can define H(π, τ) to be the hypergraph with the same vertex set as G/π (i.e. π)
and with edges (EW ,W ∈ τ), where each edge EW is the set of blocks J ∈ π such that at
least one edge of G/π starting or ending at J belongs to W .

For instance, with π, G/π and τ as given by the preceding example Figure 5, H(π, τ) is
the hypergraph with three edges drawn in Figure 6. Another example, where H(π, τ) has
no cycle, is given at Figure 7.

b

b

b

b

V1

V2

V3

V4

Figure 6. The graph H(π, τ) with π, G/π and τ as given by the preceding ex-
ample Figure 5

The next proposition will be used in the following. For τ a partition of the edges of a
graph, a cycle of the graph is said to be τ -monochromatic if all the edges it visits belong
to the same block of τ .

Proposition 5.1. Let G = (V,E) be a directed graph, which is a circuit. Fix π ∈ Part(V )
and τ be a partition of the edge set of G such that H(π, τ) has no cycle. Then G/π is a
disjoint union of τ -monochromatic cycles. As a consequence, τ is admissible.

Proof. If τ has more than one block (the case with one bloc being obvious), since G/π is
a circuit, one can find a closed path

γ = (v0, e1, v1, e2, . . . , ek, vk) (with vk = v0)
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of G/π which visits each edge of G/π exactly once and such that e1 and ek do not belong to
the same block of τ . For each edge e of G/π, let E(e) be the edge of H(π, τ) consisting of
all vertices of G/π which are the beginning or the end of an edge of G/π with the same color
as e (i.e. in the same block of τ as e). Then (v0, E(e1), v1, E(e2), . . . , E(ek), vk) is a path of
H(π, τ), i.e. for all ℓ = 1,≤, k, vℓ−1, vℓ ∈ E(eℓ). Let us introduce i0 = 0 < i1 < · · · < ip = k
such that i1, . . . , ip are the instants where the color of the edges change in γ (i.e. for all
s = 1, . . . , p, eis−1+1, . . . , eis have the same color, and for all s = 1, . . . , p− 1, eis and eis+1

do not have the same color. Then

γ̄ := (vi0 , E(ei1), vi1, . . . . . . , vip−1 , E(eip), vip)

is a also a path of H(π, τ).

Since H(π, τ) has no cycle, hence is linear, vir = E(eir) ∩ E(eir+1) for r = 1, . . . , p − 1
and vi0 = vip = E(ei1) ∩ E(eip). Let vir , vir+1, . . . , vis a sequence of pairwise distinct
vertices, with vir = vis and r < s (this exists since vi0 = vip). Then s = r + 1 otherwise(
vir , E(eir+1), vir+1, . . . , E(eis), vis

)
would be a cycle of H(π, τ). Let us consider the path

(vir , eir+1, vir+1, . . . , eis, vis). All the edges have the same color, and this is a disjoint union
of τ -monochromatic cycles.

Let us now apply the same trick to the reduced path

(vi0 , E(ei1), vi1, . . . , vir , E(eis+1), . . . , vip−1, E(eip), vip).

This allows us to achieve by induction the proof of the proposition.

�

An example of τ such that H(π, τ) has no cycle is given at Figure 7 below (another
example of hypergraph with no cycle is given in Figure 10(b) of the appendix).

b

b

b

b

V1

V2

V3

V4

b

b

b

b

V1

V2

V3

V4

Figure 7. On the left: an admissible partition τ of the edges of G/π whose
corresponding hypergraph H(π, τ) (on the right) has no cycle.
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6. Proof of Theorem 2.6

The proof of Theorem 2.6 will follow from Propositions 6.1 and 6.5 and Lemma 6.7
below. We suppose that Hypothesis 2.4 holds.

6.1. Convergence of the mean spectral distribution in the case with moments. In
this section, we prove the following proposition. The parametrization of infinitely divisible
laws via formula µ = νγ,σ

∗ is introduced in Section 12.2 of the appendix.

Proposition 6.1. Consider an infinitely divisible law µ = νγ,σ
∗ such that σ has compact

support. Define the mean spectral distribution Λ̄
(µ)
N of a P

(µ)
UN

-distributed random matrix M
by

∫
g(t)Λ̄

(µ)
N (dt) = E

[
1

N
Tr g(M)

]
(for any Borel function g).

Then Λ̄
(µ)
N converges weakly, as N −→ ∞, to a probability measure ΛΓ(µ) which depends

only on µ and on the function Γ introduced in Hypothesis 2.4. This distribution admits
exponential moments of any order, hence is characterized by its moments, given by Formula
(12) in Theorem 2.6.

Let us introduce a P
(µ)
UN

-distributed random matrix M and fix k ≥ 1. Proposition 6.1
follows directly from Lemmas 6.2, 6.3 and 6.4 below.

Lemma 6.2. For any N ≥ 1 and k ≥ 1, there is a collection (fN(π))π∈Part(k) of numbers
depending only on the distribution of UN such that

E

[
1

N
TrMk

]
=

∑

π∈Part(k)
fN(π)cπ(µ).

Moreover, for any π, fN(π) is given by the formula

(21) fN(π) = N |π|−1−k
E

[
k∏

ℓ=1

U
π(ℓ)∗
N U

π(ℓ+1)
N

]
,

where (U i
N )i≥1 is a sequence of i.i.d. copies of UN .

Proof. For each n ≥ 1, set νn = µ∗ 1
n and let X1

n, X
2
n, . . . be a sequence of i.i.d. νn-

distributed random variables, independent of the U i
N ’s, so that according to Theorem 2.1,

for

Mn :=
1

N

N×n∑

i=1

X i
n · U i

NU
i∗
N ,
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the law of Mn converges weakly to P
(µ)
UN

. Then it is immediate that for n large enough,

E

[
1

N
TrMk

n

]
=

1

Nk+1

∑

π∈Part(k)

(Nn)!

(Nn− |π|)! mπ(νn)E

[
Tr

k∏

ℓ=1

U
π(ℓ)
N U

π(ℓ)∗
N

]
,

where for any π,

mπ(νn) := E

[
k∏

ℓ=1

Xπ(ℓ)
n

]
=
∏

J∈π

∫
t|J |dνn(t).

Note that since the U i
N ’s are column vectors, Tr

∏k
ℓ=1U

π(ℓ)
N U

π(ℓ)∗
N =

∏k
ℓ=1 U

π(ℓ)∗
N U

π(ℓ+1)
N .

Moreover, by [6, Th. 1.6], n|π|mπ(νn) −→
n→∞

cπ(µ), which allows to conclude. �

Let us now consider the large N limit of fN(π). Let G be the cyclic graph with vertex
set V = {1, . . . , k} and edges 1 → 2 → · · · → k → 1. The hypergraph H(π, τ) is defined
in Section 5.3 and the operator thin on partitions is defined in Section 5.1.

Lemma 6.3. For each π ∈ Part(k), there is fΓ(π) ≥ 0 such that fN(π) −→
N→∞

fΓ(π). The

number f(π) factorizes along the connected components of π and is given by:

(22) fΓ(π) =
∑

τ partition of the edges of
G/π s.t. H(π, τ) has no cycle

∏

J∈π
Γ(nτ (J)).

If, moreover, UN is a unitary vector, for any π, fΓ(π) = fΓ(thin(π)) and for π non crossing
fΓ(π) = 1.

Before proving the lemma, let us give two examples to make the set of partitions τ such
that H(π, τ) has no cycle a bit more intuitive.

a) Consider for example the case k = 4 and π = {{1}, {2}, {3}, {4}} (trivial partition).
Then it can easily be seen that there is only one such τ : it is the trivial partition with only
one block.

b) Consider now the partition π = {{1}, {2, 4}, {3}}. Then there are two such τ ’s:
the first one is the one with only one block, containing all vertices; the second one is
{{(1, 2), (4, 1)}, {(2, 3), (3, 4)}}.
Proof. • Let us first prove that fN (π) has a limit fΓ(π) given by Formula (22) as N → ∞.
We start with Formula (21), expand the matrix product, and use the independence of the
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U i
N ’s and the exchangeability of the entries UN(1), . . . , UN(N) of UN :

fN(π) = N |π|−1−k
E

[
k∏

ℓ=1

U
π(ℓ)∗
N U

π(ℓ+1)
N

]

= N |π|−1−k
∑

1≤i1,...,ik≤N

E

[
k∏

ℓ=1

U
π(ℓ)
N (iℓ)U

π(ℓ+1)
N (iℓ)

]

= N |π|−1−k
∑

1≤i1,...,ik≤N

∏

J∈π
E

[∏

ℓ∈J
UN(iℓ)

∏

ℓ′ s.t. ℓ′+1∈J
UN (iℓ′)

]

= N |π|−1−k
∑

τ partition
of the edges of G/π

A
|τ |
N

∏

J∈π
E

[∏

ℓ∈J
UN(iτl )

∏

ℓ′ s.t. ℓ′+1∈J
UN (i

τ
l′)

]
,

where for all τ , A
|τ |
N = N(N − 1) · · · (N − |τ | + 1) and iτ is a coloring of the edges of G/π

with kernel τ .

Now, for each τ , for each J , let aτ (J) be the number of blocks of τ containing an
edge having J as an extremity. By Formula (9) of Hypothesis 2.4, as N → ∞, the term
associated to τ is

O(N |π|−1+|τ |−
∑

J∈π aτ (J)),

and that in the particular case where τ is admissible, this term is equivalent to

N |π|+|τ |−1−
∑

J∈π aτ (J)
∏

J∈π
Γ(nτ (J)).

Let us consider the hypergraph H(π, τ) defined at Section 5.3, with edges (EW ,W ∈ τ).
Notice that each edge of G/π is included in one edge of H(π, τ). This implies that H(π, τ)
is connected. Notice also that:∑

J∈π
aτ (J) =

∑

J∈π
W∈τ

1J∈EW
=
∑

W∈τ
|EW |

Hence, using Property 12.5, we know that

|π|+ |τ | − 1−
∑

J∈π
a(J) = |π|+ |τ | − 1−

∑

W∈τ
|EW |

is non positive, and vanishes if and only if H(π, τ) has no cycle. By Proposition 5.1, this
proves that fN(π) converges when N goes to infinity, with a limit given by (22).

• Let us now prove that fΓ(π) factorizes along the connected components of π.

Suppose that π has at least two connected components, and let G be the cyclic graph
on {1, . . . , k} introduced in the statement of the previous lemma and G/π = (π, E) be the
associated quotient graph. There exists at least one connected component π|A of π whose
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support A is an interval [l, l′]. The corresponding subgraph of G/π is connected to the rest
of the graph through two directed edges, ε = (V1, V2) and ε′ = (V3, V4) with l − 1 ∈ V1,
l ∈ V2, l

′ ∈ V3 and l′ + 1 ∈ V4 (with the usual identifications 0 = k and 1 = k + 1).

For instance, if we still consider the partition π = {{1, 8, 10}, {2, 4}, {3, 5}, {6, 7, 9}} ∈
Part(10), then the restriction of π to the interval {2, 3, 4, 5} is a connected component of
π, and the corresponding subgraph of G/π (cf. Figure 5 page 16) is its restriction to the set
of vertices {V 2, V 3}, and is connected to the rest of the graph by the edges ε = (V 1, V 2)
and ε′ = (V 3, V 4):

b

b

b

b

V1

V2

V3

V4

ε

ε′

Figure 8. The quotient graph G/π, with the edges ε and ε′

Let us define the graph T
(
G/π

)
obtained from G/π by replacing the edges ε and ε′ by

the edges ε0 = (V3, V2) and ε1 = (V1, V4). This graph has two connected components, one
on the subset of vertices π|A, the other on the complementary π|Ac . The first (resp. second)
one, that we denote by G1 (resp. G0), is the restriction of G/π to A (resp. Ac), plus the
edge ε1 (resp. ε0).

For instance, T (G/π) is drawn for the preceding example in Figure 9(a).

Let us consider a partition τ of the edges of G/π such that H(π, τ) has no cycle. Since,
by Proposition 5.1, G/π is a union of pairwise disjoint τ -monochromatic cycles, ε and ε′

belong to the same block of τ . Let us define the partition T (τ) of T
(
G/π

)
deduced from

τ by replacing ε and ε′ by ε0 and ε1 in their block of τ (see Figure 9(b)). It is easy to see
that T is a bijection between the set of partitions τ of the edges of G/π such that H(π, τ)
has no cycle and the set of pairs of such partitions of the two connected components of
T (G/π). Moreover, nτ (J) = nT (τ)(J) for any J ∈ π. The conclusion follows directly.

• Under the additional hypothesis that UN is a unitary vector, it follows directly from
Formula (21) that fN(π) = fN(thin(π)), hence fΓ(π) = fΓ(thin(π)). It also follows from
Formula (21) that for k = 1, fN({{1}}) = 1. If π is non crossing, then the partition
induced by π on its connected components are all some one-bloc partitions. Hence the fact
that fΓ factorizes on its connected components and the identities fΓ(π) = fΓ(thin(π)) and
fΓ({{1}}) = 1 iterated imply that fΓ(π) = 1. �
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b

b

b

b

V1

V2

V3

V4

ε0

ε1

(a) The graph T (G/π)

b

b

b

b

V1

V2

V3

V4

ε0

ε1

(b) The coloring T (τ)

Figure 9. The graph T (G/π) and the coloring T (τ)

Lemma 6.4. Let us define m0 = 1 and, for each k ≥ 1,

mk =
∑

π∈Part(k)
fΓ(π)cπ(µ).

Then the radius of convergence of the series
∑

k≥0
mk

k!
zk is infinite.

Proof. Claim: it suffices to prove the result under the additional hypothesis that Γ(·) = 1.

Let us prove the claim. Recall that γ, σ are such that µ = νγ,σ
∗ . Let σ̃ be the push-

forward of the measure σ by the map t 7→ |t| and define µ̃ := ν
|γ|,σ̃
∗ . Note that by Formula

(50) of the appendix, for any k, |ck(µ)| ≤ ck(µ̃). Let us define, the function Γ̃(·) by

Γ̃(n1, . . . , nk) := 1 for any integers n1, . . . , nk. For C the constant of Equation (11), we
have, for any k ≥ 1 and any π ∈ Part(k),

0 ≤ fΓ(π) ≤ CkfΓ̃(π).

As a consequence, if one defines, for each k ≥ 0,

m̃k :=
∑

π∈Part(k)
fΓ̃(π)cπ(µ̃),

we have |mk| ≤ Ckm̃k, and it suffices to prove the lemma for m̃k instead of mk. We have
proved the claim.

So from now on, we suppose that Γ(·) = 1. It allows us to choose a particular model for
the random column vector UN : we choose UN such that its entries UN(1), . . . , UN(N) are

i.i.d. random variables whose law is the one of
√
NBeiΘ, where B has law (1 − 1/N)δ0 +

(1/N)δ1, and is independent of Θ, who has uniform law on [0, 2π]. This vector obviously
satisfies Hypothesis 2.4 with Γ(·) = 1.

Let us define the function gθ(A) :=
1
N
Tr eθA on Hermitian matrices. To prove the lemma,

it suffices to prove that for any θ ∈ R, the sequence P
(µ)
UN

(gθ) stays bounded as N → ∞,
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which, by definition of the law P
(µ)
UN

, will be implied by the fact that

lim sup
N→∞

lim sup
n→∞

1

N
E[Tr e

θ
N

∑N×n
i=1 Xi

n·U i
NU i∗

N ] < ∞,

where for each n, the X i
n’s are i.i.d. with law µ∗ 1

n , independent of the U i
N ’s, some i.i.d.

copies of UN .

The Golden-Thompson inequality (cf. [30, Sect. 3.2]) states that for A1, A2 Hermitian
matrices, Tr eA1+A2 ≤ Tr eA1eA2. In the case where A1, . . . , Ak are random, independent,
such that for all i, E[eAi ] = miIN with mi ≥ 0, we can deduce, by induction on k, that

(23)
1

N
E[Tr eA1+···+Ak ] ≤ m1 · · ·mk.

Let us now compute E[e
θ
N
Xn·UNU∗

N ] for Xn a µ∗ 1
n -distributed variable independent of UN .

Note first that since the Lévy measure σ of µ has compact support, by for instance [28,

Lem. 25.6], for all n, the Laplace transform of µ∗ 1
n is defined as an entire function on C

and given by the fonction e
1
n
φ(·), where

φ(λ) = λγ +

∫
(eλt − 1− λt

1 + t2
)
1 + t2

t2︸ ︷︷ ︸
:=λ2

2
for t = 0

σ(dt).

Since UN is a column vector, we have

(24) e
θ
N
Xn·UNU∗

N = IN +
e

θ
N
Xn‖UN‖2 − 1

‖UN‖2
UNU

∗
N ,

with the convention (et − 1)/t = 1 for t = 0. For any diagonal matrix D with diagonal
entries on the unit circle, DUN has the same law as UN , hence the expectation of the
right-hand term of (24) is a diagonal matrix. Moreover, by exchangeability, for any f ,

E[f(‖UN‖2)|UN(k)|2] =
1

N
E[f(‖UN‖2)‖UN‖2] (1 ≤ k ≤ N),

so

E[e
θ
N
Xn·UNU∗

N ] = IN +
1

N
E[e

θ
N
Xn‖UN‖2 − 1]IN = IN +

nE[e
1
n
φ(θ‖UN‖2/N) − 1]

Nn
IN .

Hence by (23), we have

1

N
E[Tr e

θ
N

∑N×n
i=1 Xi

n·U i
NU i∗

N ] ≤
(
1 +

nE[e
1
n
φ(‖UN‖2) − 1]

Nn

)Nn

.

As n → ∞ with N fixed, the function n(e
1
n
φ(·)−1) converges weakly to φ(·). Moreover, the

random variable ‖UN‖ takes a finite set of values, hence nE[e
1
n
φ(‖UN ‖2)−1] → E[φ(‖UN‖2)],
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so that

lim sup
n→∞

1

N
E[Tr e

θ
N

∑N×n
i=1 Xi

n·U i
NU i∗

N ] ≤ eE[φ(θ‖UN‖2/N)].

To conclude, it suffices to verify that E[φ(θ‖UN‖2/N)] stays bounded as N → ∞. It follows

from the fact that the law of ‖UN‖2/N is the one of
∑N

i=1Bi, where the Bi’s are i.i.d. with
law (1− 1/N)δ0 + (1/N)δ1. �

6.2. Convergence of the mean spectral distribution: extension to the case with-

out moments and continuity of the limit.

Proposition 6.5. a) For any ∗-infinitely divisible law µ, the mean spectral distribution

Λ̄
(µ)
N of a P

(µ)
UN

-distributed random matrix M , defined by
∫

g(t)Λ̄
(µ)
N (dt) = E

[
1

N
Tr g(M)

]
(for any function g),

converges weakly, as N −→ ∞, to a probability measure ΛΓ(µ) which depends only on µ
and on the function Γ introduced at Equation (10).

b) The limit measure ΛΓ(µ) depends continuously on the pair (µ,Γ) for the weak topology.

Proof. a) Let (γ, σ) be the Lévy pair of µ. Note that if σ is compactly supported, the
result has been established in Proposition 6.1, so we shall prove the result thanks to Lemma
12.2.

Let ε > 0 and M > 1 such that λ∞ := σ(R\ [−M,M ]) < ε. Let σε (resp. σ∞) the
restriction of σ to [−M,M ] (resp. R\ [−M,M ]). Let µ∞ be the compound Poisson law
with Fourier transform:

∀θ ∈ R,

∫
eiθtdµ∞(t) = exp

(∫

R

(
eiθx − 1

) 1 + x2

x2
σ∞(dx)

)

The Lévy pair of µ∞ is (γ∞, σ∞) for some γ∞ ∈ R. Let γε = γ − γ∞ ∈ R, and let µε the
infinitely divisible law with Lévy pair (γε, σε). The law µ∞ is a compound Poisson law
whose underlying Poisson variable has a parameter less than 2λ∞, so by construction of

the law P
(µ)
UN

for µ a compound Poisson given at Section 2.1.1, the expectation of the rank

of a P
(µ∞)
UN

-distributed matrix is not larger than 2εN .

Since µ = µε ∗ µ∞, we have P
(µ)
UN

= P
(µε)
UN

∗ P
(µ∞)
UN

by (7). The mean spectral law of a

P
(µε)
UN

-distributed matrix converges for any ε, so the result holds by application of Lemma
12.2.

b) Let µn be a sequence of infinitely divisible probability measures that converges to
a probability measure µ (by [28, Lem. 7.8], we know that µ is infinitely divisible). It is
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known (see [19, Th. 1, §19]) that if (γn, σn) denotes the Lévy pair of µn and (γ, σ) the one
of µ, the weak convergence of µn to µ is equivalent to the fact that

(25) γn −→ γ and σn(g) −→ σ(g) for any continuous bounded function g.

Let us also consider, for each n ≥ 1, a sequence (U
(n)
N )N≥1 of random column vectors

which satisfies Hypothesis 2.4. We suppose that there is another sequence (UN)N≥1 of
random column vectors which satisfies Hypothesis 2.4 such that the function Γ(n) associated

to (U
(n)
N )N≥1 converges pointwise to the function Γ associated to the sequence (UN )N≥1.

Let us now prove that the sequence ΛΓ(n)(µn) converges weakly to ΛΓ(µ).

Let us first suppose that there exists M > 0 such that

∀n ≥ 1, σn([−M,M ]c) = 0.

Then, since the cumulants of µn are more or less the moments of σn (see Formula (50) for
more details), we have convergence of the cumulants : for all k, ck(µn) −→

n→∞
ck(µ). Hence

by Formula (12), the moments of ΛΓ(n)(µn) tend to the ones of ΛΓ(µ). It implies the weak
convergence, since ΛΓ(µ) is determined by its moments, as stated in Proposition 6.1.

Let us now deal with the general case. It suffices to prove that the Cauchy transform of
ΛΓ(n)(µn) converges pointwise to the one of ΛΓ(µ). So let us fix z ∈ C+ and ε > 0. Define
the function g(t) := 1

z−t
. As in the proof of a), one can findM such that σ(R\[−M,M ]) ≤ ε

and for all n, σn(R\[−M,M ]) ≤ ε. Hence with some decompositions µ = µε ∗ µ∞ and
µn = µn,ε ∗ µ∞,ε as above with µε and µn,ε having some Lévy measures supported on
[−M,M ] and µ∞ and µn,∞ some compound Poisson measures, we have

(26) |ΛΓ(µ)(g)− ΛΓ(µε)(g)| ≤
4ε

ℑz , |ΛΓ(µn)(g)− ΛΓ(µn,ε)(g)| ≤
4ε

ℑz .

This is a consequence of the resolvent identity (see Equation (46), Lemma 12.2 in the
Appendix). Moreover, by what (25), µn,ε converges weakly to µε as n → ∞. So by what
precedes about the compact case, ΛΓ(n)(µn,ε) converges weakly to ΛΓ(µε). Joining this to
(26), we get the desired result. �

6.3. Concentration of measure and almost sure convergence. To conclude the proof

of Theorem 2.6, we still need to prove that that not only the mean spectral law of a P
(µ)
UN

-
distributed random matrix M converges to ΛΓ(µ) as N −→ ∞, but also, almost surely, the
empirical spectral law . By the Borel-Cantelli lemma, it follows directly from what precedes
and the following lemma.

Remark 6.6 (The associated Lévy process). There exists a Lévy process (Ms)s≥0 with

values in the space of N × N Hermitian matrices such that Ms has distribution P
(µ∗s)
UN

≡
(P

(µ)
UN

)∗s for every s ≥ 0 (this is due to the fact that the distribution P
(µ)
UN

is infinitely
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divisible, see e.g. [28, Cor. 11.6]). Let
(
P

(N,µ)
s , s ≥ 0

)
be the corresponding semi-group:

for every Hermitian matrix A, every bounded function f :

P (N,µ)
s (f)(A) = E [f (Ms + A)] .

Let A(N,µ) the infinitesimal generator associated to this semi-group. Its domain contains
the set of twice continuously differentiable functions onN×N Hermitian matrices vanishing
at infinity and if (γ, σ) denotes the Lévy pair of µ (cf. Proposition-Definition 12.3), for
any Hermitian matrix A, we have, by [28, Th. 31.5],

A(N,µ)(f)(A) = γdf(A) [DN ]

+

∫ {
N [E [f (A + xUNU

∗
N)]− f(A)]− x

1 + x2
df(A) [DN ]

}
1 + x2

x2
σ(dx),

where df denotes the derivative of f and DN = E [UNU
∗
N ]. Note that for f : R → R

extended to Hermitian matrices by spectral calculus, we have df(A) [IN ] = f ′(A).

Lemma 6.7. Consider µ an infinitely divisible law and g : R → R a Lipschitz function
with finite total variation. Then for every ε > 0, there exists δ > 0 such that for all N ≥ 1,

P

(∣∣∣∣
1

N
Tr g(M)− E

[
1

N
Tr g(M)

]∣∣∣∣ > ε

)
≤ 2e−Nδ

with M a P
(µ)
UN

-distributed random matrix.

Proof. This is an extension of Theorem III.4 in [16] which is established for a special

case of UN . Its proof only uses the fact that ‖UN/
√
N‖2 = 1 (one has to notice that in

the present paper, what plays the role of UN in [16] is UN/
√
N). Theorem III.4 in [16]

can be readily extended to the case when E

[
‖UN/

√
N‖42

]
is bounded w.r.t. N . Then, we

conclude noticing that by exchangeability and Equation (10), E
[
‖UN/

√
N‖42

]
converges

to Γ(2) + Γ(1, 1). Indeed,

E

[
‖UN/

√
N‖42

]
= N−2

∑

i

E[|UN (i)|4] +N−2
∑

i 6=j

E[|UN (i)|2|UN (j)|2]

= N−1
E[|UN (1)|4] + (1−N−1)E[|UN (1)|2|UN(2)|2]

�

7. Proof of Proposition 2.7

For each n ≥ 1, let mn be the nth moment of ΛΓ(µ). Let c = inf Γ(n)1/n. It suffices to
prove that there is ε > 0 such that for all n even,

mn ≥ εn × nth moment of a standard Gaussian variable,
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i.e. that for all n even, mn ≥ εn|Part2(n)|, where Part2(n) is the number of pairings of
{1, . . . , n}. The formula of mn is given by (12), where each term is positive. Moreover,
we know that c2(µ) = Var(µ) > 0. Hence it suffices to notice that for any k ≥ 1 and any
π ∈ Part2(k), fΓ(π) ≥ ck, which follows from the expression of fΓ(π) as a sum of positive
terms in (22), where the term associated to the trivial partition τ with one block is

∏

J∈π
Γ(|J |) ≥

∏

J∈π
c|J | = ck.

8. Proof of Theorem 3.1

First, in the case where α > 1, we can suppose the Yij’s to be centered. Indeed, replacing
the Yij’s by Yij − E[Yij ] is a rank-two perturbation of MN,p and by Lemma 12.2, a rank-
two perturbation of an Hermitian matrix has no influence on the weak convergence of its
spectral law.

Let (P (t), t ≥ 0) be a standard Poisson process, independent of the other variables. For
each B > 0, let us introduce both following approximations of the random matrix MN,p :

M̂N,p :=
1

a2N

p∑

j=1

Xj · V̂ j(V̂ j)∗ and M̃N :=
1

a2N

P (Nλ)∑

j=1

Xi · V̂ j(V̂ j)∗

with V̂ j := (Yij1|Yij |≤BaN )
N
j=1 ∈ K

N×1 (this column vector depends implicitly on N and

on the cutoff parameter B). It is noticed in Sections 1 and 9 of [5] that for Z
(B)
N :=√

N
aN

Y111|Y11 |≤BaN , we have, for each n ≥ 1,

E[|Z(B)
N |2n]

Nn−1
−→
N→∞

α

2n− α
B2n−α

and
√
NE[Z

(B)
N ] = O(1) (this is where the recentering is necessary when α > 1). So

Hypothesis 2.4 holds for UN distributed as the V̂ j ’s, with

(27) Γ(n1, . . . , nk) = Γ(B)(n1, . . . , nk) := B2(n1+······+nk)−kα
k∏

ℓ=1

α

2nℓ − α
.

As a consequence, by Theorem 2.6, the empirical spectral law of M̃N converges almost

surely, as N → ∞, to the law ΛΓ(B)(µ), with µ the (compound Poisson) law of
∑P (λ)

j=1 Xj .

By Lemma 12.2 (applied with MN = M̂N,p and and Mε
N = M̃N for all ε > 0), the same

holds for M̂N,p, because by the Law of Large Numbers, as N, p → ∞, with p/N → λ,

rank(M̃N − M̂N,p)

N
−→ 0 (almost surely).
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To prove the convergence of the empirical spectral law ofMN,p, by Lemma 12.2, it suffices
to prove that for any ε > 0, if B is large enough, then almost surely, for N, p large enough,

(28) rank(MN,p − M̂N,p) ≤ Nε.

But we have

rank(MN,p − M̂N,p) ≤
p∑

j=1

21V j 6=V̂ j .

The above right-hand-term is a sum of p independent Bernoulli variables with parameter

qN := 1− (P(|Y11| ≤ BaN ))
N .

We have, for L the slow variations function introduced at (13),

P(|Y11| ≤ BaN ) = 1−B−αa−α
N L(BaN) = 1−B−αa−α

N L(aN )×
L(BaN)

L(aN )
= 1−B−α(1 + ǫN )

N
,

where ǫN is a sequence tending to zero. As a consequence, as N → ∞, qN tends to
1 − e−B−α

. By some Laplace transform estimates like p. 722 of [5], there is a constant c
such that

P(rank(MN,p − M̂N,p) ≥ 4pqN ) ≤ e−cpqN ,

hence by Borel-Cantelli’s lemma, almost surely, for N, p large enough (N and p grow

together in such a way that p/N → λ), rank(MN,p − M̂N,p) ≤ 4pqN . But 1− e−B−α ∼ B−α

as B → ∞, so for any fixed ε, one can choose B such that almost surely, for N, p large
enough, (28) holds. It concludes the proof of the convergence.

Let us now denote by ν the law of the Xi’s and by Λα(ν, λ) the limit of the empirical
spectral law of MN,p. We shall prove that this is a continuous function of (ν, α, λ). By

the formula given for Γ(B) at (27), for any fixed cutoff B, the limit spectral law of M̂N,p

depends continuously on the parameters (ν, α, λ). Since the cutoff necessary to obtain a
right-hand-term Nε in (28) can be chosen uniformly on α and λ as soon as they vary in
compact sets which do not contain zero (regardless to the law of the Xj ’s), this proves the
continuity.

9. Proof of Proposition 3.3

We first treat (together) the Gaussian and uniform cases. Exchangeability is obvious.
Let us now prove that for any diagonal matrix D = diag(ε1, . . . , εN) with diagonal entries
in {z ∈ K ; |z| = 1},

(29) UNU
∗
N

law
= DUNU

∗
ND

∗.

It will imply that the expectation of (9) is null as soon as the condition on multisets given
at Remark 2.5 is satisfied. Let {e1, . . . , eN} denote the canonical basis of CN×1. For each
ℓ = 1, . . . , N , let us denote by Lℓ the law of UN conditionally to the event XN = eℓ (XN
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is the random variable with uniform law on {e1, . . . , eN} that was introduced after (14)).
We know that the law L of UN is given by

(30) L(B) =
1

N

N∑

ℓ=1

Lℓ(B)

for any Borel set B ⊂ K
N . Hence it suffices to prove that for all ℓ, an Lℓ-distributed vector

V satisfies (29). So let us fix ℓ ∈ {1, . . . , N}, consider such a vector V = (V (1), . . . , V (N))T

and such a matrix D = diag(ε1, . . . , εN). Note that the entries of V are independent and
that all of them except the ℓ-th one are invariant, in law, by multiplication by any εi.
Hence for D′ = ε−1

ℓ IN , we have

(D′D)V
law
= V.

As a consequence, we have

(D′D)V V ∗(D′D)∗
law
= V V ∗.

But we also have (D′D)V V ∗(D′D)∗ = DV V ∗D∗, hence (29) is proved. It remains to prove
(10) and more precisely Formulas (16), (17) and (18). So let us fix k ≥ 1, n1, . . . , nk ≥ 1
and find out the limit, as N → ∞, of

Nk
E[|UN(1)|2n1 · · · |UN(k)|2nk ].

Note that by (30), we have

Nk−(n1+···+nk)E[|UN (1)|2n1 · · · |UN(k)|2nk ] =(31) (
1− k

N

)
Nk−(n1+···+nk)(1− e−t)n1+···+nk

∏k
j=1E[|g1|2nj ]+(32)

∑k
j0=1N

k−(n1+···+nk)+nj0
−1(1− e−t)n1+···+nk−nj0E[|e− t

2 + g1√
N
|2nj0 ]

∏k
j=1
j 6=j0

E[|g1|2nj ].(33)

First, as soon as one of the nj ’s is ≥ 2, the term of (32) vanishes as N → ∞. The same
happens for each of the terms of the sum (33) if two of the nj ’s are ≥ 2. Equation (10)
follows easily.

Let us now consider the case where UN = Ut, for (Ut/
√
N)t≥0 a solution of (15) whose

initial law is the uniform law on the canonical basis. Let us introduce the N × N matrix
Pt (the dependence on N is implicit in Pt and in Ut)

Pt := UtU
∗
t /N.

By a direct application of the matricial Itô calculus (see [9, Sect. 2.1]), the process (Pt)t≥0

satisfies the SDE

(34) dPt = (dKt)Pt − Pt(dKt) +

(
1

N
I − Pt

)
ds.

First, from this SDE, it follows easily that TrPt = 1 for all t, so that ‖Ut‖2 = N . Second,
it is easy to see that the law of K is invariant under conjugation by any unitary matrix.
By uniqueness, in law, of the solutions of (15) and (34), given the initial conditions, it

follows that for any permutation matrix Q and any matrix D as in (29), QUt
law
= Ut and
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DUtD
∗ law

= Pt. It remains to prove (10) and Formulas (16), (17) and (18). For each
n1, . . . , nk ≥ 0, let us define

Γ̃t(n1, . . . , nk) := N(N − 1) · · · (N − p+ 1)E
[
|Ut(1)|2n1 · · · · · · |Ut(k)|2nk

]
N−(n1+···+nk),

where p = |{ℓ ; nℓ 6= 0}| (the dependence of Γ̃t on N is implicit). We have to prove that

Γ̃t(n1, . . . , nk) −→
N→∞

Γt(n1, . . . , nk).

Due to exchangeability and to ‖Ut‖ = N , we have Γ̃t(1) = 1 and
(35)
Γ̃t(n1, . . . , nk) = Γ̃t(n1 + 1, n2, . . . , nk) + · · ·+ Γ̃t(n1, . . . , nk−1, nk + 1) + Γ̃t(n1, . . . , nk, 1),

and since all |Ut(i)|’s are≤ 1, if one considers two families n1, . . . , nk ≥ 1 and n′
1, . . . , n

′
k ≥ 1

such that nj ≤ n′
j for all j, then

(36) Γ̃t(n1, . . . , nk) ≥ Γ̃t(n
′
1, . . . , n

′
k).

It is easy to see that thanks to (35) and (36) and to the obvious formula Γ̃t(1) = 1, it
suffices to prove that

(37) Γ̃t(2, 2) −→
N→∞

0 and Γ̃t(n) −→
N→∞

e−nt for all n ≥ 2.

For any multiset {k1, . . . , kn} of integers in {1, . . . , N}, let us define
γt(k1, . . . , kn) = N−n|Ut(k1)|2 · · · |Ut(kn)|2

(the dependence of γt(· · · ) in N is implicit). By exchangeability, E [γt(k1, . . . , kn)] only
depends on the level sets partition of the map j 7→ kj. To prove (37), we have to prove

(38) N2
E [γt(1, 1, 2, 2)] −→

N→∞
0

and

(39) NE


γt(1, . . . , 1︸ ︷︷ ︸

n times

)


 −→

N→∞
e−nt for all n ≥ 2.

Recall that {e1, . . . , eN} denotes the canonical basis of CN×1. For each k ≥ 1,

dγt(k) = e∗k(dKt)Ptek − e∗kPtdKtek +

(
1

N
− γt(k)

)
dt.

As an application of the matricial Itô calculus (see [9, Sect. 2.1]), we get the quadratic
variation dynamics

d〈γt(k), γt(ℓ)〉 = − 2

N
[γt(k)γt(ℓ)− 1k=ℓγt(k)] dt.
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By Itô’s formula for products of semi martingales, it follows that E [γt(k1, . . . , kn)] is a
smooth function of t which satisfies the differential system

∂tE [γt(k1, . . . , kn)] = −n

(
1 +

n− 1

N

)
E [γt(k1, . . . , kn)](40)

+
1

N

n∑

j=1

(2 |{i ; i < j, ki = kj}|+ 1)E
[
γt(k1, . . . , k̂j, . . . , kn)

]
,

where we used the convention γt(k1, . . . , kn) = 1 if n = 0. Let us now prove (39). For each
n ≥ 1, we define

qt(n) = NentE


γt(1, . . . , 1︸ ︷︷ ︸

n times

)




(the dependence of qt(n) on N is implicit). Note first that since ‖Ut‖2 = N , for all n ≥ 1,

E
[
|Ut(1)|2n

]
N−n+1 ≤ E

[
|Ut(1)|2

]
= 1,

so that qt(n) ≤ ent. Moreover, by the differential system of (40), we have, for all n ≥ 2,

∂tqt(n) = −n− 1

N
qt(n) +

1

N

n∑

i=1

(2j − 3)qt(n− 1).

It follows that ∂tqt(n) converges to zero uniformly on every compact subset of R+ as
N −→ ∞. Since for t = 0, qt(n) = 1 for each n, we get that for each n ≥ 2,

qt(n) −→
N→∞

1,

so that (39) is proved. Let us at last prove (38). Thanks to the differential system of (40)
and to the fact that E [γt(1, 1, 2)] = E [γt(1, 2, 2)], we have

∂tE [γt(1, 1, 2, 2)] = −4

(
1 +

3

N

)
E [γt(1, 1, 2, 2)] +

8

N
E [γt(1, 1, 2)]

Due to exchangeability and to ‖Ut‖ = N , both E [γt(1, 1, 2)] and E [γt(1, 1, 2)] are not
greater than 1

N(N−1)
. Therefore, we get:

∣∣∂t
(
N2e4tE [γt(1, 1, 2, 2)]

)∣∣ ≤ 11

N

Since γ0(1, 1, 2, 2) = 0, this proves (38). �

10. Proof of Proposition 3.4

Let π ∈ Part(k) and Γ := Γt; we have to prove that fΓt(π) = eκ(π)t. By the very
definition of κ, it is obvious that κ(π) = κ(thin(π)) and that κ is additive on the connected
components of π. Therefore, due to Lemma 6.3, it is enough to prove that fΓt(π) = eκ(π)t

for π thin and connected. Note that in this case, κ(π) is equal to k.
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We start from Formula (22) for fΓt(π) and are going to prove that the only non-vanishing
term in this formula corresponds to the trivial partition τ with only one block. This will
imply:

fΓt(π) =
∏

J∈π
Γt(|J |) =

∏

J∈π
e−|J |t = e−kt = e−κ(π)t

and this will prove the proposition.

For k = 1, it is trivial. Let us suppose k > 1. Since π is thin and connected, it has a
crossing (and this implies in fact k ≥ 4). Let us consider a non trivial τ (i.e. with at least
two blocks) such that H := H(π, τ) has no cycle. Let c be a coloring of the edges of G/π

with kernel τ .

Since H is connected, there exists two blocks E and E ′ of H with a non-empty inter-
section. Let J0 ∈ π such that {J0} = E ∩ E ′ (since H has no cycle, this intersection is a
singleton). Since π is thin, by Proposition 5.1, E is not a singleton. Let J ′

0 ∈ E \ {J0}.
Since the graph G/π is a circuit, there exist at least one path from J0 to J ′

0 and one path
from J ′

0 to J0. But if they were the only ones, there would be no crossing between J0

and the others blocks of E, and π would not be connected (cf. for instance the (counter-
)example page 15). Therefore there exist at least two paths from J0 to J ′

0 and two paths
from J ′

0 to J0. Hence we deduce that n+
c (J0, i) ≥ 2 for a certain colour i (see page 15 for

the definition of n+
c (J0, i)). With the same argument, we get n+

c (J0, j) ≥ 2 for a certain
j 6= i. This implies that

Γ(nτ (J0)) = Γ(n+
c (J0, ℓ), ℓ ≥ 1) = 0.

Hence,
∏

J∈π Γ(nτ (J)) = 0, and this implies that the only τ with a non-vanishing contri-
bution to the computation of fΓt(π) is the trivial one with only one block. �

11. Proof of Proposition 3.5

Lemma 11.1. For any Hermitian matrices A,B with B positive, any column vector V ,
any constant c ∈ R:

(41) E
[
(A+ iB − cXtV V ∗)−1

]
= (A + iB + it|c|V V ∗)−1

with Xt a random variable with law Ct.

Proof. On can suppose V to have unit norm. First, for f a rational function bounded
with non positive degree whose poles are all in C+ := {z ∈ C ; ℑ(z) > 0}, Ct(f) = f(−ti)
(it can be proved via the residue formula if f(z) = 1

z−a
and can then be generalized by

density). Second, for Q the orthogonal projector on V ⊥,

det (A+ iB − cxV V ∗) = (〈V, (A+ iB)V 〉 − cx)det|Q(Q(A+ iB)Q)

with det|Q the determinant on the space V ⊥. If we suppose c > 0, this implies that the
entries of (A + iB − cxV V ∗)−1 are rational functions of x with poles in C+. The equality
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(41) can then be deduced from these two remarks. �

Proof of Proposition 3.5. Let X1
n, . . . , X

Nn
n , U1

N , U
2
N , . . . be as in Theorem 2.1, with

X i
n ∼ C t

n
. If we apply repeatedly the preceding equality, we obtain that for any Hermitian

matrix A, z ∈ C+, c ∈ R:

E
[
(zIN − A− (X1

nU
1
NU

1∗
N + · · ·+XNn

n UNn
N UNn∗

N )/N)−1|U1
N , . . . , U

Nn
N

]

=

(
zIN + it

U1
NU

1∗
N + · · ·+ UNn

N UNn∗
N

nN
− A

)−1

When n −→ ∞,
U1
NU1∗

N +···+UNn
N UNn∗

N

nN
tends a.s. to E [UNU

∗
N ] = IN by the law of large

numbers, and (X1
nU

1
NU

1∗
N + · · ·+XNn

n UNn
N UNn∗

N )/N tends in law to P
(Ct)
UN

following Theorem
2.1. Therefore, it is now easy to deduce that:

E
[
(zIN −A−Mt)

−1
]
= (zIN + itIN − A)−1 = Pt(fz)(A)

with fz(x) = (z − x)−1. This establishes the proposition for f = fz. Using routine density
and linearity arguments, this is enough to prove the proposition. �

12. Appendix

12.1. Matrix approximations in the sense of the rank. The Cauchy transform of a

finite measure µ on R is Gµ(z) :=
∫ µ(dt)

z−t
, for z ∈ C

+.

Lemma 12.1. Let µN be a sequence of random probability measures on the real line such
that for any ε > 0, there is another sequence µε

N converging weakly to a deterministic
probability measure µε and such that almost surely, for N large enough, for any z ∈ C+,

(42)
∣∣GµN

(z)−Gµε
N
(z)
∣∣ ≤ ε

ℑz .

Then µN converges weakly to a deterministic probability measure µ = limε→0 µ
ε.

Proof. Almost surely, by (42), for any z ∈ C+, the sequence GµN
(z) is a Cauchy sequence,

hence converges to a deterministic limit G(z) such that for any ε,

(43) |Gµ(z)−Gµε(z)| ≤ ε

ℑz .

So by [2, Th. 2.4.4 b)], µN converges vaguely to a measure µ with total mass ≤ 1 such that
Gµ = G and µ = limε→0 µ

ε. To see that µ is a probability measure, it suffices to notice
that for any measure ν, iyℑ(Gν(iy)) increases to ν(R) as y ↑ ∞, and then to use (43). �
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For M a random N × N Hermitian matrix with eigenvalues λ1, . . . , λN , recall that the
empirical spectral law of M is the random probability measure µM defined by

(44) µM :=
1

N

N∑

i=1

δλi

and that the mean spectral law of M is the deterministic probability measure µM defined,
for any bounded Borel function f , by

(45) µM(f) := E(µM(f)],

with µM as in (44).

Lemma 12.2. For each N , let MN be an N ×N random Hermitian matrix. Suppose that
for any ε > 0, there is a sequence Mε

N of random Hermitian matrices whose empirical (resp.
mean) spectral law converges almost surely (resp. converges) to a deterministic probability
measure µε and such that almost surely, for N large enough, rank(MN −Mε

N ) ≤ Nε (resp.
such that for N large enough, E[rank(MN −Mε

N )] ≤ Nε). Then the empirical (resp. mean)
spectral law of MN converges almost surely (resp. converges) to a deterministic probability
measure µ = limε→0 µ

ε

Proof. Let us first prove the almost sure version of the lemma. For any Hermitian
matrix H and any z ∈ C+, we have ‖(z −H)−1‖op ≤ (ℑz)−1. So by the formula

(z −B)−1 − (z − A)−1 = (z − B)−1(B −A)(z − A)−1,

we have

(46)
∣∣Tr(z −MN)

−1 − Tr(z −Mε
N )

−1
∣∣ ≤ 2(ℑz)−1 × rank(MN −Mε

N )

and for any ε, with probability one, for N large enough, for all z ∈ C+

∣∣∣∣
1

N
Tr(z −MN )

−1 − 1

N
Tr(z −Mε

N )
−1

∣∣∣∣ ≤
2ε

ℑz , i.e. |GµMN
(z)−GµMε

N
(z)| ≤ 2ε

ℑz .

It follows that the sequences µN := µMN
and µε

N := µMε
N

satisfy the hypotheses of the
previous lemma, which allows to conclude.

Let us now prove the expectations version of the lemma. Taking the expectation of (46),
we get

|GµMN
(z)−GµMε

N
(z)| ≤ 2ε

ℑz .
It follows that the (non random) sequences µN := µMN

and µε
N := µMε

N
satisfy the hy-

potheses of the previous lemma, which allows to conclude. �

12.2. Infinitely divisible distributions and cumulants.
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12.2.1. The classical case. Let us recall the definition of infinitely divisible laws with re-
spect to the classical convolution ∗ (see [27]).

Proposition-Definition 12.3. Let µ be a probability measure on R. The we have equiv-
alence between :

(i) there is a sequence (kn) of positive integers tending to +∞ and a sequence (νn) of
probability measures on the real line such that as n −→ ∞,

(47) νn ∗ · · · ∗ νn︸ ︷︷ ︸
kn times

−→ µ,

(ii) there is a continuous semigroup (µ∗t)t∈[0,∞) for the convolution ∗ starting at δ0 such
that µ∗1 = µ,

(iii) the Fourier transform of µ has the form
∫
t∈R e

itξdµ(t) = eΨµ(ξ), with

(48) Ψµ(ξ) = iγξ +

∫

R

(eitξ − 1− itξ

t2 + 1
)
t2 + 1

t2︸ ︷︷ ︸
:=− ξ2

2
for t = 0

dσ(t),

γ being a real number and σ being a finite positive measure on R.

In this case, µ is said to be ∗-infinitely divisible, the pair (γ, σ), called the Lévy pair of
µ, is unique, and µ will be denoted by νγ,σ

∗ .

Part (i) of the above definition characterizes such laws as the limit laws of sums of
i.i.d. random variables, Part (ii) expresses them as the distributions of one-dimensional
marginals of Lévy processes, and Part (iii) is known as the Lévy-Kinchine formula. The
pair (γ, σ) can be interpreted as follows: γ is a drift, σ({0}) represents the brownian

component of the Lévy process associated to µ, and the measure 1x 6=0
1+x2

x2 dσ(x), when it
is finite, represents its Poisson compound part (when this measure is not finite, the Lévy
process can be understood as a limit of such decompositions).

12.2.2. The free case. In [13, 14], Bercovici and Voiculescu have proved that Proposition-
Definition 12.3 stays true if one replaces the classical convolution ∗ by the free additive
convolution ⊞ and Formula (48) by the following formula for the R-transform of µ:

(49) Rµ(z) = γ +

∫

R

z + t

1− tz
dσ(t)

(recall that the R-transform of µ is defined by the formula Rµ(z) = G−1
µ (z)+ 1

z
, see [24, 2]).

In this case, µ is said to be ⊞-infinitely divisible and is denoted by νγ,σ
⊞

.

The map Λ : νγ,σ
∗ ∈ {∗-infinitely divisible laws} → νγ,σ

⊞
∈ {⊞-infinitely divisible laws} is

called the Bercovici-Pata bijection. In [12] (see also [17]), Bercovici and Pata proved that
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this bijection preserves limit theorems, i.e. that for any sequence (kn) of positive integers
tending to infinity, for any sequence (νn) of laws on R, for any ∗-infinitely divisible law µ,
we have

νn ∗ · · · ∗ νn︸ ︷︷ ︸
kn times

−→ µ ⇐⇒ νn ⊞ · · ·⊞ νn︸ ︷︷ ︸
kn times

−→ Λ(µ).

12.2.3. The cumulants point of view. Let µ be a probability measure on R whose Laplace
transform is defined in a neighborhood of zero. Its classical cumulants are the numbers
(cn(µ))n≥1 defined by the formula

log

∫

t∈R
eξtdµ(t) =

∑

n≥1

cn(µ)

n!
ξn (ξ ∈ C small enough).

In the same way, for µ a compactly supported probability measure on R, the free cumu-
lants of µ are the numbers (kn(µ))n≥1 defined by the formula

Rµ(z) =
∑

n≥1

kn(µ)z
n−1 (z ∈ C small enough).

It can easily be seen (see e.g. [8, Eq. (2.1)]) that for any Lévy pair (γ, µ), the classical
(resp. free) cumulants of νγ,σ

∗ (resp. of νγ,σ
⊞

) are the given by the formula

(50) kn(ν
γ,σ
∗ ) = cn(ν

γ,σ
⊞

) =





γ +
∫
tdσ(t) if n = 1,

∫
tn−2(1 + t2)dσ(t) if n ≥ 2.

Hence the Bercovici-Pata bijection can be seen as (the continuous extension of) the map
which transforms classical cumulants into free ones.

12.3. Combinatorial definitions. In this section, definitions and results can be found
in the classical book [15] of Berge.

12.3.1. Graphs. A graph G = (V,E) is characterized by a set V of vertices and a family
E = (ei, i ∈ I) of edges:

(1) If the edges are elements of V × V , G is a directed graph;
(2) If the edges are singletons or pairs of V , G is a non-directed graph.

Note that multiple edges are possible with this definition, since E = (ei, i ∈ I) is a family
and not a set, which means that the ei’s are not pairwise distinct.

In the following three definitions, we suppose G non-directed.
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(1) A connected component of G is a block of the smallest partition of V which is above
E w.r.t. the refinement order.

(2) A path in G is a sequence (v0, ei1 , v1, ei2 , . . . , eik , vk) with k ≥ 1, v0, . . . , vk ∈ V ,
eij = {vj−1, vj}. If, moreover, the v0 = vk, then the path is said to be a closed.
In this case, if v0, . . . , vk−1 are pairwise distinct and i1, . . . , ik are pairwise distinct,
the path is said to be a cycle.

(3) The cyclomatic number of G is equal to |I| − |V | + n, with n the number of con-
nected components of G.

The following proposition can easily be proved by induction on the number of vertices
of G.

Proposition 12.4. For every non directed graph G, its cyclomatic number is non-negative.
It vanishes if and only if G has no cycle.

The previous definitions extend easily to the framework of a directed graphG = (V,E =
(ei, i ∈ I)). For example, a path in G is a sequence (v0, ei1 , v1, ei2 , . . . , eik , vk) with ℓ ≥ 1,
v0, . . . , vk ∈ V , eij = (vj−1, vj). In a directed graph, two cycles c, c′ are said to be disjoint
if they do not have any edge in common, i.e. if there is no i ∈ I such that ei appears both
in c and in c′ (whereas they can have some vertices in common). We say that the directed
graph G is a circuit if a closed path of G visits each of its edges exactly once (vertices can
be passed-by more than once). One can easily prove (by induction) that any circuit is a
union of disjoint cycles.

12.3.2. Hypergraphs. A hypergraph is a pairH = (V,E) , where V is a set (the vertices) and
E = (Ei, i ∈ I) is a family (the edges), of non-empty subsets of V such that ∪i∈IEi = V .
An example is given at Figure 10(a). If the edges have only one or two elements, then H
reduces to a non directed graph.

b
b

b

bb

b

b

b
b

b

(a) A hypergraph

b
b

b

bb

b

b

b
b

b

(b) A hypergraph with no cycle

Figure 10. Two examples of hypergraphs



38 FLORENT BENAYCH-GEORGES AND THIERRY CABANAL-DUVILLARD

The refinement order for hypergraphs defined on a same set of vertices is defined as the
refinement order on their sets of edges.

A connected component of H is a block of the smallest partition of V which is above E
w.r.t. the refinement order. For instance, there is only one connected component in the
hypergraph of Figure 10(a), hence it is said to be connected.

Cycles are defined in hypergraphs as in non-directed graphs, except that cycles with
length one are not accepted (in fact, they do not make sense) : a cycle of H is a sequence
(v0, Ei1, v1, Ei2, . . . , vℓ−1, Eiℓ , vℓ) with ℓ ≥ 2, v0, v1, · · · , vℓ−1 pairwise distincts, v0 = vℓ,
i1, . . . , iℓ pairwise distinct and vj−1, vj ∈ Eij for all j.

An example of hypergraph with no cycle is given in Figure 10(b). Notice that a hy-
pergraph with no cycle is linear: two different edges have at most one vertex in common.
Notice also that a hypergraph with only one vertex or only one edge has no cycle.

Proposition 12.5. Let n be the number of connected components of H. Then:

• ∑i∈I |Ei| − |I| − |V |+ n ≥ 0;

• ∑i∈I |Ei| − |I| − |V |+ n = 0 if and only if H has no cycle.

Proof. This is a standard result (see for instance [15, Ch. 7, Prop. 4]), which is a conse-
quence of Proposition 12.4. For the easyness of the reader, let us recall the short proof. We
associate to H a non directed graph G(H) with vertices V ∪ I, and with an edge between
x ∈ V and i ∈ I if and only if x ∈ Ei. The graph G(H) is simple, i.e. there cannot be
more than one edge between two of its vertices. Also, it has no loop, i.e. no edge from one
vertex to itself. The number of edges is equal to

∑
i∈I |Ei|, and the number of connected

components is n, so the cyclomatic number of G(H) is equal to
∑

i∈I |Ei| − (|V |+ |I|)+n.
It is non-negative, and vanishes if and only G(H) has no cycle, which means exactly that
H has no cycle. �
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