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Abstract

Inappropriate food intake-related obesity and more importantly, visceral adiposity, are major risk factors for the onset of
type 2 diabetes. Evidence is emerging that nutriment-induced b-cell dysfunction could be related to indirect induction of a
state of low grade inflammation. Our aim was to study whether hyperphagia associated obesity could promote an
inflammatory response in pancreatic islets leading to ß-cell dysfunction. In the hyperphagic obese insulin resistant male
Zucker rat, we measured the level of circulating pro-inflammatory cytokines and estimated their production as well as the
expression of their receptors in pancreatic tissue and b-cells. Our main findings concern intra-islet pro-inflammatory
cytokines from fa/fa rats: IL-1b, IL-6 and TNFa expressions were increased; IL-1R1 was also over-expressed with a cellular
redistribution also observed for IL-6R. To get insight into the mechanisms involved in phenotypic alterations, abArrays were
used to determine the expression profile of proteins implicated in different membrane receptors signaling, apoptosis and
cell cycle pathways. Despite JNK overexpression, cell viability was unaffected probably because of decreases in cleaved
caspase3 as well as in SMAC/DIABLO and APP, involved in the induction and amplification of apoptosis. Concerning b-cell
proliferation, decreases in important cell cycle regulators (Cyclin D1, p35) and increased expression of SMAD4 probably
contribute to counteract and restrain hyperplasia in fa/fa rat islets. Finally and probably as a result of IL-1b and IL-1R1
increased expressions with sub-cellular redistribution of the receptor, islets from fa/fa rats were found more sensitive to
both stimulating and inhibitory concentrations of the cytokine; this confers some physiopathological relevance to a possible
autocrine regulation of b-cell function by IL-1b. These results support the hypothesis that pancreatic islets from prediabetic
fa/fa rats undergo an inflammatory process. That the latter could contribute to b-cell hyperactivity/proliferation and
possibly lead to progressive b-cell failure in these animals, deserves further investigations.
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Introduction

The prevalence and incidence of type 2 diabetes (T2D) are

dramatically increasing worldwide in both developed and

developing countries. This multifactorial disease results from the

interaction of environmental factors and genetic predisposition

leading to two major abnormalities: insulin resistance and

defective b-cell function. During the long lasting silent phase,

known as prediabetes, that precedes the onset of T2D,

hyperinsulinemia compensates for insulin resistance. Hyperglyce-

mia then develops with a progressive b-cell dysfunction, but the

mechanisms involved remain to be determined.

In this context, inappropriate food intake and related obesity are

major risk factors for the onset of T2D. High carbohydrate and high

fat diets, the major cause of obesity, represent two diabetogenic

factors that can lead, by their own, to b-cell dysfunction.

The molecular mechanisms that link obesity and insulin

resistance to ß-cell dysfunction have not been completely

understood yet and are the subject of intensive research. Growing

evidence suggests that obesity, insulin resistance and T2D are

accompanied by a state of subclinical inflammation [1,2]. Indeed,

biomarkers of inflammation such as leucocyte count, tumor

necrosis factor a (TNFa), interleukin-6 (IL-6) and C-reactive

protein are increased in obesity and predict the development of

T2D [3,4,5,6].

In addition, cytokines which are crucially involved in the

etiopathology of type 1 diabetes [7,8], also play a role in islet

dysfunction in T2D. In rodents, high-fat feeding leads to increased

adipocyte expression of monocyte chemotactic protein-1 (MCP-1)

which could contribute to the stimulation of macrophage

infiltration into adipose tissue [9,10]. Evidence also accumulates

that changes in cytokine production by the liver, adipose tissue and

infiltrating cells in response to chronic exposure to lipids and

glucose play an important role as pathogenic factors in the

development of T2D. Concerning pancreatic ß-cell, high glucose

and IL-1ß autostimulation have been shown to increase IL-1ß

mRNA and protein expression in human islets. Furthermore

characterization of an increased IL-1ß expression in pancreatic

sections of patients with T2D and hyperglycaemic Psammomys

obesus gerbils, have led to the hypothesis that intra-islet expression

of inflammatory cytokines and especially IL1ß, contribute to the

pathogenesis of T2D [11,12,13].
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Even if data from animal models of T2D support the concept

that local inflammation processes are essential promoters in the

disease pathogenesis, further studies are required to better

characterize intra-islet inflammation and to determine whether

overfeeding and related obesity could exacerbate and prompt ß-

cell to express cytokines and their receptors contributing thereby

to defects in insulin secretion and ß-cell survival.

In this context and using the hyperphagic obese Zucker fa/fa rat

as a relevant model, our aim was to evaluate to what extent the

low grade inflammation state induced by excessive caloric intake

could lead to ß-cell dysfunction in the early phase of T2D. We

studied the effect of excessive food intake, first, on the plasma

levels of circulating pro-inflammatory cytokines, and second, on

the ß-cellular expression of cytokines, of their receptors and

signalling pathways factors. Furthermore, to mimic and appreciate

the impact of possible autocrine effects of IL-1ß on ß-cell function

and survival, we investigated and compared the effects of the

cytokine on insulin release and apoptosis in fa/+ and fa/fa Zucker

rat islets.

Materials and Methods

Materials
In the immunofluorescence studies we used anti-cytokines

antibodies against IL-1ß, IL-6, TNFa, IFNc, and anti-cytokine

receptor antibodies against IL-1R1, IL-1R2, IL-6R, TNF-R1,

IFN-Ra, IFN-Rß (Santa Cruz Biotechnology, Santa Cruz, CA);

guinea pig anti-insulin antibody was from MP Biomedicals (MP

Biomedicals, Irvine, CA). Fluorescein isothiocyanate (FITC)-

conjugated anti–guinea pig, Texas Red-conjugated anti-rabbit

and anti-goat (Vector Laboratories, Burlingame, CA), were used

as secondary antibodies. Western blot experiments were per-

formed with mouse anti-phospho-ERK1/2 (pT202/pY204), anti-

phospho-JNK/SAPK (pT183/pY185), anti-IKKc, rabbit anti-

Bcl-x (BD Biosciences), rabbit anti-ERK, anti-JNK, anti-Cleaved

caspase-3, anti-Bcl-10 (Cell Signaling), rabbit anti-Caspase-1- and

mouse anti-GRB2- (Abcam Cambridge, UK) antibodies. For

apoptosis detection, rabbit polyclonal anti-annexin V antibody

(abcam) was used at 5 mg/ml. Recombinant rat IL-1ß was

purchased from R & D Systems (Minneapolis, MN).

Animals
6 week-old Male Zucker fa/fa obese and Zucker fa/+ lean rats

were purchased from Harlan. They had free access to a standard

laboratory chow diet and water during 2 to 3 weeks. Body weight

was measured weekly. Blood was collected from the tail vein,

centrifuged and plasma aliquots sampled and frozen, once a week

and on the day of the experiments; animals were then sacrificed by

decapitation and tissues were immediately isolated.

Animals were treated according to institutional guideless for

animal use and care. The animals have been handled in the

laboratory animal house and used in accordance with the

‘‘Principles of Laboratory Animal Care’’ (NIH Publication

no. 85-23, revised 1985) and according to national law. Our

laboratory is habilitated to perform experimentations on alive

vertebrate animals (approval C34-172-25 from the French

Agriculture Ministry). Our study is approved by the ethics

committee of our institution.

Cytokine measurement
Circulating cytokines have been identified using the Chemiarray

rat cytokine kit from Chemicon (Canada), allowing ?identification

of GM-CSF, IFNa, IL-1b, IL-4, IL-6, IL-10, LIX, Leptin, MCP-

1, MIP-3a, b-NGF, TIMP-1, TNF-a, VEGF, Fractalkin, CNTF,

CINC-3, and CINC-2. Two fold diluted plasma samples (4 fa/+,

and 4 fa/fa Zucker rats) were incubated with saturated antibody

membranes at room temperature for 2 hours. After washing,

biotin-conjugated anti-cytokine primary antibody was added to

the membranes and further incubated during 2 hours at 4uC with

HRP-conjugated Streptavidin. Membranes were then exposed to

X-ray film and the signal analyzed. Relative levels of cytokines

were evaluated by comparing the signal intensities between fa/fa

and fa/+ Zucker rats groups. The intensities of signals were

quantified directly with a chemiluminescence imager (Vilbert-

Lourma).

Rat serum samples were simultaneously tested for cytokines IL-

1a, IL-1b, IL-2, IL-4, IL-6, IL-10, GM-CSF, interferon-c, and

TNF-a using a rat cytokine 9-Plex assay (Bio-Plex; Bio-Rad,

Hercules, CA). The assay was run according to the manufacturer’s

instructions. In brief, the premixed standards were reconstituted in

0.5 ml of a Bio-Plex human serum standard diluent, generating a

stock concentration of 50,000 pg/ml for each cytokine. The

standard stock was serially diluted in the Bio-Plex rat serum

standard diluent to generate eight points for the standard curve.

The assay was performed in a 96-well filtration plate supplied with

the assay kit. Premixed beads (50 ml) coated with target capture

antibodies were transferred to each well of the filtration plate and

washed twice with Bio-Plex wash buffer. The samples were diluted

1:3 in the Bio-Plex serum sample diluent. Premixed standards or

diluted samples (50 ml) were added to each well containing washed

beads. The plate was shaken and incubated at room temperature

for 30 min at low speed (300 rpm). After incubation and washing,

premixed biotin conjugated detection antibodies were added to

each well. Then, the plate was incubated for 30 min with shaking

at low speed (300 rpm). After incubation and washing, streptavi-

din-phycoerythrin was added to each well. The incubation was

terminated after shaking for 10 min at room temperature. After

washing, the beads were resuspended in 125 ml of Bio-Plex assay

buffer. Beads were read on the Bio-Plex suspension array system

(Bio-Rad), and the data were analyzed using Bio-Plex Manager

software version 3.0 with 5PL curve fitting.

Isolation of rat pancreatic islets
Male Zucker fa/+ (260–280 g) and fa/fa (350–380 g) rats were

used in all experiments. After collagenase (Roche, Meylan, France)

perfusion, pancreas was removed and islets of Langerhans were

isolated using Ficoll gradients (Sigma Aldrich) as previously

described [14]. Rat islets were hand-picked and then used for

mRNA and protein extraction, as well as islets functional and ß-

cell immunofluorescence studies.

RNA extraction, reverse transcription and real time PCR
Total RNA from isolated rat islets was extracted with the Trizol

reagent (Invitrogen, Carlsbad, CA) and purified using the

purification Qiagen kit (Qiagen, Germany). First-strand cDNA

was obtained from 5 mg total RNA using 3 mg random

hexanucleotide primers (Invitrogen), 1 mg oligo(dT) (Invitrogen),

and Superscript II RNAse H2 Reverse Transcriptase (Invitrogen)

in a volume of 50 ml. Quantitative detection of PCR products was

performed using a 106 LightCycler Faststart DNA Master Sybr

Green I mix (Roche), 5 mM of each primer, and 2.5 mmol/l

MgCl2. After an 8-min denaturation at 95uC, 50 cycles were

performed: 95uC for 5 s, 64uC for 10 s, and 72uC for 6 s. As

control, a melting curve was performed after each amplification. A

standard curve was made with serial dilutions (H2O; 1:6, 1:36,

1:216, 1:1,296, and 1:7,776) of a control cDNA sample to evaluate

the efficiency of the primers and to relatively quantify the

expression level of each sample. The relative expression was

Pancreatic b-Cell Inflammation in Zucker Rats
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normalized using the ß actin gene as housekeeping gene.

Oligonucleotide primers were as follows: rat IL-1ß: forward 59-

GGC TTC GAG ATG AAC AAC AAA -39 and reverse 59-AGA

ATA CCA CTT GTT GGC TTA -39, rat IL-1R1: forward 59-

AGG GAC AGA CCT GTG ATT A-39 and reverse 59-TTC

CAG TAG ACA AGG TCG G-39, rat IL-1R2: forward 59-TAT

GAC ATT TAC CTA CGA GGG-39 and reverse 59-AAC GTG

CTG TTA GCC A-39, rat TNFa: forward 59-GGT GAT TGG

TCC CAA CA-39 and reverse 59- GTC TTT GAG ATC CAT

GCC-39, rat TNFa-R1: forward 59- CTT TCT AAG CGG AAA

TGA G-39, and reverse 59-TCG GCA CAG TAG ACT GA-39,

rat TNFa-R2 forward: 59-GAT GTT AGG ACT GGC GA-39

and reverse 59-CGC TGT GAC TCT TGC T -39, rat IL6

forward: 59-AAC AGC GAT GAT GCA C-39 and reverse 59-

TGG GGT AGG AAG GAC T-39, rat IL6-R forward: 59-ATG

ACA ACC ACG AGG A-39 and reverse 59-GGA AGG TCG

GCT TCA G-39, IFNc-R1 forward: 59-ATT TGG ATG CTG

CTT GT-39 and reverse 59-CAG GTT TGG TCT CGG A-39.

Immunofluorescence studies on ß-cells and pancreatic
tissue

After islets digestion with trypsine/EDTA, isolated pancreatic

ß-cells were grown during 72 hours and seeded on LabTech

chamber slide system (Sigma) previously coated with poly-L-lysine

at 0.1 mg/ml (Sigma). Pancreatic-cells were cultured in RPMI

medium containing 10% of fetal calf serum (FCS), 50 U/mL

penicillin, 50 mg/mL streptomycin, 2 mmol/L glutamine (Life

technology, France), 1 M hepes, 100 mM sodium pyruvate,

50 mM 2-mercaptoethanol and glucose (5.6 mM and 4,2 mM

for respectively fa/+ and fa/fa pancreatic ß-cells).

Then, cells were washed with PBS (pH 7.4) containing CaCl2
and MgCl2, fixed with 3% paraformaldehyde for 30 min,

permeabilized 5 min in 0.1% Triton X-100 and quenched with

50 mM NH4Cl for 10 min. After two washings with PBS, the slides

were saturated with 2% BSA-Gelatine solution and then incubated

with a combination of primary antibodies (anti-cytokine or anti-

cytokine receptor antibody diluted at 1/50 plus anti-insulin

antibody diluted at 1/200) overnight at 4uC. After three washings,

cells were incubated for 1 h with FITC- and Texas red- conjugated

antibodies. After three additional washings, cells were covered with

citifluor (Citifluor, U.K.) and observed with the BioRad MRC 1024

confocal microscope using the facilities of RIO imagery plateform

(Montpellier, France). The negative control was performed by

incubating the cells with the secondary antibody alone.

Frozen pancreatic tissue sections (5 mm) from fa/fa and fa/+
were fixed, permeabilized and quenched as previously described.

After several washings, the slides were incubated with anti-

cytokine or anti-cytokine receptor antibodies. After incubation

with conjugated antibodies, slides were observed with an upright

fluorescence microscope using the facilities of RIO imagery

platform. The negative control was performed using only the

conjugated antibody.

Insulin secretion by isolated islets
Following isolation, 20 islets per batch were incubated overnight

in RPMI medium supplemented with FCS and adjuvant (as

described) plus 10 mM glucose for fa/+ islets and 7.5 mM glucose

for fa/fa islets to compensate for the higher sensitivity and

responsiveness of the latter; they were then cultured for 2 days in

the absence or in the presence of increasing IL-1b concentrations

of (0.01, 0.1, 1 and 10 ng/ml). At the end of the 48 h exposure

period, islets were then washed, deprived in glucose during 1 hour

and incubated in the presence of 2.8 and 8.3 mM glucose. Islet

supernatant fractions were then collected and insulin was extracted

from islets with acid/alcohol mixture (1.5%/75%). Quantification

of insulin content and insulin present in islet supernatants was

performed using HTRF assay (Cisbio). Differences in insulin

release between 2.8 and 8.3 mM glucose were estimated for each

experimental condition and plotted on the corresponding figure, as

percentages of the increase recorded without exposure to the

cytokine.

Apoptosis detection
Annexin V is a Ca2+-dependent phospholipid-binding protein

with a high affinity for phosphatidylserine (PS). In normal cells, PS

is located on the cytoplasmic surface of the cell membrane. In

apoptotic cells, PS is translocated from the inner to the outer

surface of the cell membrane. Annexin V labeled with a

fluorophore can identify apoptotic cells by binding to PS exposed

on the outer leaflet. Pancreatic ß-cells cultured in LabTech

chamber slide (as previously described) were treated with vehicle

or with IL-1-ß (0.01; 0.1; 1; 10 ng/ml) for 48 hours and then

washed once with ice-cold PBS, immunostained with rabbit

polyclonal anti-annexin V antibody (abcam) and then fixed with

3% paraformaldehyde for 30 min. Cells were washed again and

analyzed by confocal microscopy with excitation at 488 nm

(green, annexin V).

Protein extraction and Western-blotting
Isolated islets from fa/+ or fa/fa zucker rats were homogenized

in 20 mmol/l Tris lysis buffer, pH 7.4, containing 150 mmol/l

NaCl, 1% Triton X-100, 0.5% NP-40, and a cocktail of protease

inhibitors (Roche Applied Science, Mannheim, Germany).

Insoluble materials were removed by centrifugation. The proteins

(40 mg) were fractionated on a 12% polyacrylamide gel and

transferred to a nitrocellulose membrane. After blocking with 5%

dried skim milk or BSA, filters were then incubated overnight with

anti-phospho-ERK1/2, anti-ERK1, anti-phospho-JNK/SAPK,

anti- JNK anti-IKKc (diluted 1/250), anti-Caspase-1, anti-

GRB2, anti-cleaved caspase-3, anti Bcl-x and Bcl-10 antibodies

(1/1000). After three washings, membranes were incubated with a

horseradish peroxidase–conjugated anti-mouse or rabbit antibody

(diluted 1:3,000; Sigma-Aldrich, Steinheim, Germany). Immuno-

reactivity was detected using an enhanced chemiluminescence

reaction (Amersham Biosciences, Little Chalfont, U.K) and

analysed with a chemiluminescence imager.

Antibody Arrays
Panorama antibody microarray containing 224 different

antibodies spotted in duplicate on nitrocellulose-coated glass slides

was purchased from Sigma-Aldrich. Protein extracts (1 mg/ml)

from zucker fa/+ or fa/fa rat islets were labeled with Cy3 and Cy5

(Amersham Biosciences) as described by the manufacturer (Sigma).

Samples labeled with a dye/protein molar ratio .2 were applied

to the antibody microarray in Array Incubation Buffer (Sigma)

and incubated for 45 min protected from light with gentle shaking.

The array was then washed three times with 5 ml of Washing

Buffer (Sigma) and air-dried. Cy3 and Cy5 signals were read on

the Gene Pix Pro 4.0 (MDS Analytical Technologies).

Proteins whose expression was found down or upregulated by

20% or more versus control were then validated by Western

blotting analysis.

Results

A low grade inflammation is present in Zucker fa/fa rat
Zucker fa/fa rats display a body mass weight significantly

greater than age-matched fa/+ controls, with a more pronounced

Pancreatic b-Cell Inflammation in Zucker Rats
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development of visceral adipose tissue. These obese animals

develop insulin resistance, hyperinsulinemia and moderate hyper-

glycemia (Table 1).

To determine whether prediabetic state encompasses an

inflammatory process, we identified and quantified a number of

circulating pro-inflammatory cytokines and investigated pancre-

atic islets and ß-cell expression of cytokines and their receptors.

In blood samples, cytokine expression levels (fa/fa versus fa/+)

were analyzed using the Chemiarray system from Chemicon

(Figure 1A) and the Bio-Plex rat cytokine panel from Biorad

(figure 1B). Concerning circulating cytokines, most of them were

found at similar levels in fa/fa and fa/+ rats; only IFNc appeared

drastically reduced by 50–75% and LIX (CCXCL5) was

moderately higher in fa/fa rats.

Previous studies point to changes in cytokine production by the

liver and adipose tissue in T2D and an increased IL-1ß expression

has been recently reported in pancreatic sections of T2 D patients.

Therefore, we hypothesized that in prediabetic state, intra-islet

expression of inflammatory cytokines could be modified and thus

contribute to ß-cell dysfunction in the early phase of T2D. We

could confirm this hypothesis by using quantitative RT-PCR and

immunofluorescence studies. qPCR experiments were performed

on cDNA issued from 12 fa/+ and 12 fa/fa rat islet extracts and

repeated three times with reproducible data. Double immuno-

staining with anti-insulin antibody and anti-cytokine or receptor

antibodies was performed on pancreatic tissue and isolated islets to

determine expression of cytokines and of their receptors by ß-cells.

First, using anti-CD11 antibody, we found no evidence for

macrophage infiltration in pancreatic sections (data not shown).

IL-1R1 and IL-6R receptors are expressed in both fa/fa and fa/+
rat pancreatic islets but with an overexpression in fa/fa endocrine

and exocrine pancreatic tissue. Increases in the expression of IL-

1ß, TNFa and, to a lesser extent IFNc, were also observed in fa/fa

rat islets, attesting that an inflammatory process occurs in pancreas

of prediabetic animals (Figure 2).

Interestingly, in fa/fa pancreatic islets, IL-1ß and IL-1R1

expressions were found respectively 2.1 and 5.9 fold higher than in

fa/+ rat islets (Figure 3A). Immunostaining of pancreatic ß-cells led

to results similar to those observed on pancreatic tissue slices with

an increased expression of IL-ß and its receptors IL-1R1 and IL-

1R2 on fa/fa rat ß-cells (Figure 3B). In addition and very

interestingly, we observed alterations in IL-1ß receptor sub-

cellular distribution; IL-1-R1 appeared more strongly associated

with the b-cell surface and insulin granules in fa/fa rats (Figure 3B).

A 2.5 fold higher expression of IL-6 in fa/fa versus fa/+ islets

was also observed using qPCR and confirmed by immunofluores-

cence in pancreatic islets and ß-cells. No difference in IL-6R

expression could be detected in fa/fa and fa/+ islets but a clear

sub-cellular re-localization of the receptor occurred; indeed most

IL-6R appeared co-localized with insulin granules in fa/+ ß-cells

which is no longer the case for fa/fa rats.

Finally, TNFa was found over-expressed in fa/fa pancreatic

islets and immunostaining revealed clearly a cytoplasmic localiza-

tion of the cytokine in ß-cells. No changes in the expression and

staining pattern could be observed for IFNc; IFNcRb only faintly

expressed in fa/+ rats was slightly increased and co-localized with

insulin in fa/fa rats. In summary, qPCR and immunofluorescence

studies point to an increase of pro-inflammatory cytokines

expression (IL1ß, IL6 and TNFa) in insulin-resistant Zucker fa/

fa rats with a re-localization of their respective receptors. These

Table 1. Phenotypic features of fa/fa and fa/+ rats.

fa/+ fa/fa

Weight (g) 260.7611.6 397.4638.8

Plasma Insulin (ng/ml) 3.6661.1 60.59612.9

Plasma Glucose (mM) 7.5360.11 14.2561.37

Body weight, plasma insulin and glucose.
doi:10.1371/journal.pone.0022954.t001

Figure 1. Determination of plasma cytokines levels in fa/+ and fa/fa rats. A) Chemiarray: Rat cytokine array membranes were incubated with
1 ml of 2-fold diluted fa+ or fa/fa rats plasma for 2 h. After removing unbound materials, membranes were incubated with a mixture of biotin-labeled
antibodies and controls with TBS buffer only. Signals were detected with HRP-conjugated streptavidin and ECL. The relative expression levels of
cytokines were determined by densitometry and plotted from 4 fa/+ and 4 fa/fa rats. The array membranes were scanned with a chemiluminescence
imager. Signal densities were normalized and background corrected. B) Bio-Plex rat cytokine analysis. Cytokines concentrations were calculated
automatically with Bio-Plex Manager software, using a standard curve derived from a recombinant cytokine standard. Concentrations are given in
picograms per milliliter.
doi:10.1371/journal.pone.0022954.g001
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results support the hypothesis that pancreatic islets undergo an

inflammatory process potentially involved in T2D pathogenesis.

Signalling pathways involved in the dysfunction of fa/fa
pancreatic islets

We then investigated alterations in the expression of proteins

involved in apoptosis, cell cycle, cytoskeleton, nuclear signaling,

neurobiology, and signal transduction by Ab array analysis, with

more than two hundreds distinct antibodies printed at high-density

on a glass microscope slide. We observed differences in protein

expression in fa/fa versus fa/+ pancreatic islets for apoptosis,

proliferation and NFkB pathways. Among proteins mediating

apoptosis [15], caspases, a family of ubiquitous proteases, play a

central role. Caspase-3 is situated at a pivotal junction in the

apoptotic pathway [16]. It is activated by proteolytic cleavage into

19 and 17 kDa subunits. Our data point to a 44% lower caspase-3

expression in pancreatic islets from fa/fa versus fa/+ rats

(Figure 4A). Furthermore, the expression levels of the anti-

apoptotic Bcl-x protein and of the pro-apoptotic Bcl-10 protein

were found similar in the two phenotypes. Taken together these

data suggest that apoptosis is unlikely to be involved in

inflammation-induced ß-cell dysfunction in prediabetic state. In

Figure 2. Cytokines and receptors expression on pancreatic sections from fa/fa and fa/+ rats. Pancreatic sections from fa/fa and fa/+ rats
were immunostained with anti-insulin and anti-cytokines or cytokine receptors antibodies (anti-TNF-R1, -TNFa, -IL-6R, -IL6, -IL-1R1, -IL-1ß, -IFNc-R, and
–IFNc). Merge images give the double staining with anti-insulin antibody in green and anti-cytokines or cytokine receptors antibodies in red.
doi:10.1371/journal.pone.0022954.g002
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contrast, we observed functionally relevant differences in the

expression of factors involved in pancreatic islets cell proliferation;

indeed, a 46% lower expression of Grb2 which plays a major

function in proliferation of various cell types, could be recorded in

islets from fa/fa rats. Interestingly, Erk1, and MAPK phophorylated

form on threonine appeared also down-regulated by respectively

42%, and 26% in fa/fa versus fa/+ pancreatic islets. In addition,

JNK was found up-regulated, and phospho-JNK decreased by 22%

in fa/fa rats. To better assess the extent of the differences in GrB2,

Erk and JNK expression, we performed a Western blotting analysis

for these factors (Figure 4B). Comparison of the bands confirms that

Grb2, and phospho-JNK expressions are significantly depressed in

pancreatic islets of fa/fa rats when compared to controls, whereas

phopho-Erk is up-regulated. Cleaved caspase 3 was down-regulated

and anti and pro-apoptotic proteins Bcl-x and Bcl-10 remained

unchanched, in agreement with the Ab array results. Taken

together, these data suggest an alteration of islets cell proliferation in

fa/fa rats without major effect on cell viability. Furthermore,

modifications in the expression of proteins involved in cell cycle

were also observed with a decrease of cyclin D1 and regulating

proteins as well as an increase in SMAD4 and a decrease of amyloid

precursor protein (APP) of 43%.

Of great interest are also modifications in the expression of proteins

involved in IL-1b signaling pathways which were particularly affected

in fa/fa rat islets; indeed, NAK, Ikk kinase, NFkB and c-Jun/AP-1

were found increased by respectively 45, 20 and 30% with a decrease

of IkBa in fa/fa versus fa/+ islets (Figure 4A and B).

Effects of IL-1ß on insulin release and apoptosis from the
isolated fa/fa and fa/+ rat islet

The increased IL-1ß expression in ß-cells in fa/fa zucker rats

prompted us to study the effect of an exposure to IL-1ß of fa/fa

and fa/+ rat islets on insulin release and b-cells apoptosis. fa/fa and

fa/+ rat islets were cultured in the presence of increasing IL-1ß

concentrations for 2 days (Figure 5A). Previous exposure to

0.01 ng/ml did not modify the difference in insulin secretion

between islets incubated at 2.8 and 8.3 mmol/l glucose. After 48 h

culture with 0.1 mmol/l cytokine, the differential insulin release

was increased by 35 and 49% in respectively fa/fa and fa/+ islets.

In contrast, exposure to higher concentrations, 1 and 10 ng/ml,

resulted into an almost complete (80%) inhibition in fa/fa islets

versus only 33 and 23% in fa/+ islets (P,0.05). Insulin content was

not significantly affected (data not shown). We also measured the

effect of IL-1b on islet-cell viability using confocal microscopy after

annexin staining. After the 2-day culture in the presence of

increasing concentrations of IL-1ß, only moderate differences in

the number of apoptotic cells could be observed in fa/fa versus fa/

+ islets (Figure 5B). Likewise, flow cytometry analysis pointed to a

small 17% increase of dead ß-cells in fa/fa versus fa/+ islets (data

not shown).

Discussion

Recently cytokines have been recognized as essential factors

involved in nutrient-induced b-cell dysfunction during the

development of type 2 diabetes; however that pancreatic islets

are the target of inflammation and undergo a local inflammatory

process in prediabetic states remains poorly explored. In the

present study, if only minor changes in systemic markers of

inflammation could argue for the presence of a low grade

inflammation state, we bring evidence for the development of a

clear inflammatory process in pancreatic islets from Zucker fa/fa

rats, a model of obesity-associated insulin resistance.

Concerning circulating inflammation markers, we unexpectedly

found a decrease in IFNclevels in our obese insulin resistant rats.

Figure 3. fa/fa and fa/+ rat ß-cells cytokines and receptors expression. A) qPCR analysis of the expression of TNFa, IL-1ß, IL6 and their
receptors TNFR1, TNFR2, IL-1R1, IL6R and IFNcRa. Total mRNA were extracted from isolated fa/+ and fa/fa rats islets and converted to cDNA using
reverse transcriptase and oligo dT primers. Cytokine or receptor-specific primers were then used to amplify the corresponding cDNA. Each bar
represents the average +/2 S.E. of twelve fa/fa (black square) and twelve fa/+ extracts (grey square). Asterisk denotes a significant difference between
fa/fa and fa/+ extracts. B) Immunocytochemical analysis of cytokines and receptors expression; anti-TNF-R1, -TNF-R2, -TNFa, -IL-6R, -IL6, -IL-1R1, -IL-
1R2, -IL-1ß, -IFNc-Ra, -IFNc-Rß and –IFNc antibodies were used in double immunostaining experiments with anti-insulin antibody on fa/fa and fa/+ ß-
cells. Staining of cytokines and receptors (red) was detected using Texas red conjugate and insulin (green) was revealed using FITC conjugated
antibody. Pictures show merged images of the double staining, from six fa/fa and six fa/+ rat islets.
doi:10.1371/journal.pone.0022954.g003
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As this cytokine attenuates insulin signalling in adipose tissue [17],

the decrease in IFNc could participate in and favour the

development of fat stores in these animals. Conversely, we also

observed an increase in circulating neutrophil chemoattractant

LIX (CXCL5), which is known to induce IL1-b and TNFa
promoter activity, cytokine gene expression and to activate NFkB

[18]. This chemokine could thereby amplify the inflammatory

cascade and participate in the local production of cytokines.

Our qPCR and immunocytochemical studies on pancreatic islet

b-cells bring evidence for a marked induction of IL-1 production

together with a pronounced increase in IL1-R1 expression in fa/fa

rats. Our data are in line with those of previous studies pointing to

an increase in IL-1b expression in islets from T2D patients [12],

hyperglycemic Psammomys obesus gerbils as well as OLEFT [19]

and GK [20] diabetic rats. Hence, we extend the latter

observations to the prediabetic state like in the obese insulin

resistant fa/fa rat. Interestingly, induction of IL-1b has also been

reported to occur in human islets (from non diabetic organ donors)

upon culture in high glucose and to be followed by NFkB

activation. In our study, we observed an increased expression of

NFkB activating kinase (NAK), known to induce IKB degradation,

to increase NFkB activity, and thus to feed an auto-stimulatory

loop of IL-1b expression through activation of the cytokine

promoter as previously suggested in T2D patients [13]. In this

respect, our data show that, in addition to the increased IL-1R1

expression, the receptor also appears re-localized and more

associated with the b-cell plasma membrane which could also

contribute to a possible autostimulation of IL-1b. This effect might

also be further sustained by our findings of first an increased

expression of caspase-1, required to cleave pro-IL-1b to active IL-

1b and second decreased levels of APP the precursor molecule of

amyloid, also known to potentiate IL-1b processing.

As concerns b-cell function, IL-1b is known to induce a bimodal

effect on insulin secretion: a stimulating and a suppressive effect

depending on IL-1b concentration, duration of exposure and

glucose concentration [21,22]. The secondary inhibitory phase is

Figure 4. Differential islet proteins expression. A) Protein expression detected by Antibody Array technique. Changes in the expression pattern
of proteins involved in signal transduction, apoptosis, and cell cycle were examined by Ab Array. Equal amounts of labelled proteins extracted from
fa/fa and fa/+ isolated islets were incubated on nitrocellulose-coated glass slides. Up or down regulated fa/fa islet proteins were presented in
percentage relative to values recorded for fa/+ islet proteins. A 20% cut-off value (positive or negative) is considered as significant. B) Immunoblot
confirmation of Ab array results. Forty micrograms of total fa/fa or fa/+ islet extracts were run on SDS polyacrylamide gel and blotted. Blots were
incubated with Grb2, Caspase 1, Erk1/2, Erk1/2 phosphospecific, JNK, JNK phosphospecific, IKKc, cleaved Caspase-3, Bcl-10 and Bcl-x antibodies that
displayed interesting differential expression in Ab array experiments. Experiments were all duplicated with highly reproducible data. Results were
quantified by densitometry as percentage of ß-actin, they are plotted as percents relative to fa/+ value taken as 0.
doi:10.1371/journal.pone.0022954.g004
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known for a long time [23,24] and is accompanied by decreases in

oxidative metabolism and calcium uptake [25] secondary to nitric

oxide (NO) production after induction of the inducible form of NO

synthase (iNOS) [26,27]. At the opposite, the initial stimulatory

effect of IL-1b has been shown to be glucose-dependent and

related to diacylglycerol formation and stimulation of PKC [28].

As for b-cell survival, IL-1b induces apoptosis in rodent and

human islets [24,29,30] but the cytokine has been reported to

stimulate b-cell proliferation and to inhibit apoptosis at low

concentrations [31]. In our study, we confirm the bimodal effect of

IL-1-b on insulin secretion in both fa/fa and lean control Zucker

rats. Interestingly, islets from obese insulin resistant rats seem to be

more responsive to both stimulating and inhibitory concentrations

of the cytokine. Such a difference could probably be related to the

increased expression and plasma membrane localization of IL1-

R1 and be of physiological relevance in IL-1b autocrine regulation

of b-cell function. In this respect, we cannot exclude that the

stimulating effect of IL-1b on b-cell function could play a part in

the high plasma insulin levels that compensate for insulin

resistance in obese rats. Increased IL-1b and IL1-R1 expressions

have no impact on b-cell survival under basal conditions in fa/fa

rats. Furthermore, we found no significant difference in the

apoptotic effect of the cytokine in fa/fa versus lean controls.

TNFa has been proposed to be a key compound of the obesity-

diabetes link [32]. The cytokine is over-expressed in adipose tissue

of different models of obesity and known to inhibit insulin

signalling. Moreover, immuno-neutralization of TNFa in Zucker

fa/fa rats has been shown to increase insulin receptor auto-

phosphorylation and phosphorylation of insulin receptor substrate-

1 (IRS-1) in muscle and adipose tissue and to reduce glucose,

insulin and FFA plasma levels. In our study, we now demonstrate,

for the first time, a very strong increase in TNFa expression in

pancreatic b-cells from fa/fa rats. That such an increase could

interfere in b-cell function cannot be excluded; its importance

should nevertheless be dampened by the drastic decrease in TNF-

R2 receptor expression and its delocalization; the receptor seems

much less co-localized with insulin granules. The increased

expression of TNFa could however be partly responsible for the

marked increase in IL-6 expression we found in pancreatic b-cells;

indeed, TNFa has been reported to up-regulate IL-6 in murine

pancreatic islets [33]. No consistent in vitro data are available

regarding insulin secretion in human and rodent islets [34].

However, the marked increase in IL-6 expression together with a

clear delocalization to insulin granules questions the possible

involvement of IL-6 in the hyperinsulinemia of fa/fa rats, which

deserves to be reassessed in vivo in this model of prediabetic state.

Figure 5. Effects of IL-1ß on the functionality of fa/fa and fa/+ rat islets. Rat islets were cultured for 2 days at 7.5 mM glucose for fa/fa rat
islets and 10 mM glucose for fa/+ rat islets in the absence and in the presence of increasing IL-1ß concentrations. Rat islets functional activity was
then determined by insulin release and apoptosis measurements. A) Changes in the differential insulin release at 2.8 and 8.3 mmol/l glucose, by fa/+
and fa/fa isolated islets rats previously exposed during 48 h to increasing IL-1b concentrations. Control value (given as 100%) represents the increase
in insulin secretion observed in islets cultured in the absence of interleukin. fa/fa *: P,0.05 versus untreated islets, fa/+ **: P,0.05 versus fa/fa rat
islets. Data were collected from three separate experiments, each performed with four fa/fa and four fa/+ rats). B) Islet b-cells apoptosis determined
by annexin immunofluorescence staining.
doi:10.1371/journal.pone.0022954.g005
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Concerning b-cell survival, IL-6 has been shown to stimulate

human islet cell proliferation [35] and to afford protection against

IL-1b, TNFa and IFNc-induced cell death [36]. Such an effect

could occur in pancreatic islets and account for the marked

decrease in active caspase-3 expression; indeed, chronic exposure

of neurons to IL-6 prevents the enhancement of the cleaved

caspase-3 levels induced by NMDA [37].

Finally, from our abArray study, it appears that up- and down

regulation of factors involved in the regulation of cell prolifera-

tion/survival, contributes to control islet hyperplasia known to

occur in fa/fa rats [38].

We may conclude that pancreatic islets from hyperphagic, obese

insulin-resistant Zucker fa/fa rats undergo a clear and possibly self-

perpetuating inflammatory process. The complexity of cytokines

effects and of their interactions makes it difficult to evaluate their

pathogenic role in b-cell hyperactivity that compensates for insulin

resistance. In Zucker rats, compensation will keep going, but in the

presence of an additional b-cell defect, as in ZDF rats,

inflammation will be exacerbated and diabetes will ensue.
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