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Abstract We consider a family of one-dimensional diffusions, in dynamical Wiener mediums, which are
random perturbations of the Ornstein-Uhlenbeck diffusion process. We prove quenched and annealed
convergences in distribution and under weigh-ted total variation norms. We find two kind of stationary
probability measures, which are either the standard normal distribution or a quasi-invariant measure,
depending on the environment, and which is naturally connected to a random dynamical system. We
apply these results to the study of a model of time-inhomogeneous Brox’s diffusions, which generalizes
the diffusion studied by Brox (1986) and those investigated by Gradinaru and Offret (2011). We point
out two distinct diffusive behaviours and we give the speed of convergences in the quenched situations.
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1 Introduction

Random walks (RWs) in random environments (REs) and their continuous-time counterparts,
the diffusions in random environment, pave the way for the study of a multitude of interesting
cases, which have been tackled since the 70’s in a large section of the literature.

Concerning the genesis of the theory, we allude to [27,46], as regards the discrete-time
situation, and to [9,261[44], as regards the continuous-time one. For more recent refinements and
generalizations, we refer to [10,12HI4]23124] 34,1421 45[49] and for a general review of the topic,
we refer to [50].

Here we investigate one-dimensional diffusions evolving in dynamical Wiener media, which
have some common features with those studied in [9l21]. We give, under weighted total variation
norms, quenched and annealed diffusive scaling limits, which may depend on the environment,
and thus, which are not always normal distributions. We also give the speeds of convergence
under the quenched distributions. In addition, we bring out a phase transition phenomenon,
which is the analogue in RE, to a particular situation considered in [21].



RWs in dynamical REs have been widely and intensively considered in the past few years
under several assumptions. Initially, space-time i.i.d. REs have been introduced and studied
in [61[7,39]. Further difficulties arise when the fluctuations of the REs are i.i.d. in space and
Markovian in time, case addressed in [5l[I6], and major one arise when we consider space-time
mixing REs, case recently studied in [4lRl[I5]. However, continuous-time diffusions in time-
varying random environment have been sparsely investigate. Nevertheless, we can mention
[291[30,82,[40] concerning the homogenization of diffusions in time-dependent random flows.

1.1 The Wiener space

Introduce the space

O := {9 € C(R;R): 0(0) =0and lim z726(z) = O} (1.1)
|x|—00

endowed by the standard o-field B generated by the Borel cylinder sets. It is classical that there

exists a unique probability measure W on (0, B) such that the processes {#(+z) : 6 € ©,z > 0}

are two independent standard Brownian motions. The probability distribution W is called the

Wiener measure. We denote by {S : A > 0} the scaling transformations on © defined by

0 (%)

VA
Note that © is naturally endowed with a structure of separable Banach space, such that B
coincides with the Borel o-field Bg.

SN0 (x) :=

(1.2)

1.2 Schumacher and Brox’s results

Brox makes sense in [9] to solution of the informal diffusion equation
1
dX; =dB; — 50'(Xt) dt, (1.3)

where 8 € © and B is a standard one-dimensional Brownian motion independent of the Brow-
nian environment (0, B,W). Denoting by Py and I@, respectively the quenched and annealed
distributions (the expectation of Py under W) of such solution, Schumacher and Brox show,
independently in [43l44] and [9], that there exists a family of measurable functions {b;, : h > 0}
on (O, ) such that the following convergence holds in probability

Xt —biogt(0) B
(log t)2 t—o0

X
- 2 by (S(logt)Qe) =

Tog 07 (1.4)

The Wiener measure being invariant under the scaling transformations, if we denote by by the
distribution of by under W, the following annealed convergence holds in distribution

Xy G
(logt)? t—oo

(1.5)

The key to prove these results is to take full advantage of the representation of X in terms
of a one-dimensional Brownian motion changed in scale and time, and of the invariance of the
Brownian motions B and 6 under the scaling transformations Sy. The authors prove that the
diffusion is localized in the valleys of the potential 6, which are themselves characterized by b;.



1.3 Phase transition in a 2-stable deterministic environment

Set W(z) := |z|"/? and consider, for any 3 € R, the particular time-inhomogeneous singular
stochastic differential equation (SDE) studied in [2I] and which is given by
L)

dt. (1.6)

The authors show in [21] the existence of a pathwise unique strong solution and prove diffusive
and subdiffusive scaling limits in distribution, depending on the position of 5 with respect to
1/4. More precisely, they prove that

N(0,1), when 8 > 1/4,

Y,
7’% t(l> . (1.7)
—00 >
kgle_[TJrW(w)] dz, when 8 =1/4,
and v
T A1 W)
8 T k, e dz, when < 1/4, (1.8)

k. and k, being two normalization positive constants. In fact, to obtain the convergences in
([LT), they study the diffusion equation

1
dZ, =dB, - (Z,+e " W(Z,)] dt. (1.9)

This process is naturally related to equation (L6l by setting r := § — 1/4, via a well chosen
scaling transformation taking full advantage of the scaling property of the Brownian motion B
and of the deterministic scaling property of the potential . For more details , we refer to [21].
We can expect to obtain similar results by replacing W in equation (@) by a typical Brownian
path 6 € ©, a 2-stable random process, and this is one of the main objects of this article.

1.4 Overview of the article

The paper is organized as follows: in Section Bl we introduce a diffusion equation (Z2]) in a
dynamical Wiener potential, which generalizes equation (). Then we state our main results
and we give the general strategy of the proofs. In section B we apply these results to a model
of time-inhomogeneous Brox’s diffusions. This is a generalization of equation (6] and (L3
and we obtain similar asymptotic behaviours as in ([L7). Thereafter, in Section [l we introduce
some linear perturbations of equation (Z2]). We show some properties, related to these ones,
which are used in Sections [l and [6] to prove existence, uniqueness and nonexplosion for the
diffusion process (22) (Theorem 2.T)) and also to prove that this process is a strongly Feller
diffusion satisfying the lower local Aronson estimate and a kind of cocycle property (Theorem
2.2)). In Section [7, we prove some technical results in order to obtain the quenched and annealed
convergences (Theorems and 2.4)) in the two last Sections.

2 Model and statement of results

2.1 Diffusions in a fluctuating Ornstein-Uhlenbeck potential

In the present paper, we study Brownian motions dynamics, in time-dependent Wiener media,
given by the underlying dynamical random environment

{Tte(az) = S.pb(z) = e 0(e?x) 10 € O, t,w € R} . (2.1)

4



The family {7} : t € R} is a one-parameter group of transformations leaving invariant W and such
that, under this probability measure, {T;0(x) : t € R} is a stationary Ornstein-Uhlenbeck process
having N (0, x) as stationary distribution. Moreover, the dynamical system (0, B, W, (T})¢cr) is
ergodic (see Proposition [T.3]).

We consider, for any r € R, the diffusion process Z, solution of the informal SDE driven by
a standard Brownian motion B, independent of (0, B, W),

1
A2, = dB, = 50, Vp(t. Z)dt, Zy=z€R, 1252>0,0€80, (2.2)

with )
Vo(t,z) := % + e T0(2). (2.3)

Note that when 6 is equal to W, defined in ([L6]), 730 in ([23]) is simply equal to 6 and equation
[22)) is nothing but equation ([L9). The diffusion process Z can be seen as a Brownian motion
immersed in the random time-varying potential {Vy(t,-) : ¢ € R}, as well as an Ornstein-
Uhlenbeck diffusion process, whose potential is perturbed by the dynamical Wiener medium
{e7"™Ty0 : t € R}. Moreover, one can see Z as a distorted Brownian motion, whose drift is a
Gaussian field {I'(¢, x) : t,x € R} having mean function mp and covariance function Cr (here a
Dirac measure) given by

T 1 — It=s|
mr(t,z) = —5 and Cr(t,z;s,z) = 1€ [T(H_SH 4 ] 5(et?x — e*/%2).
We need to give a correct sense to solution of equation (2.2]). Formally, we can see Z as the
diffusion process, whose conditional infinitesimal generator, given 0 € O, is

o 1 B ) B
L = L —_— = — Vg(t,l‘)_ —Vg(t7$)_ —_. 24
T [26 oz <e 0z )| T o (24)

The domain and the socalled generalized domain of Ly are defined by

D(Lp) ={FeC':e "0, FeC'} and
D(Lg) = {F e WX i e 0,F e Wi} (25)
where C! and Wllo’go denote the space of real continuous functions F'(¢,z) on [s,00) x R such
that the partial derivatives O, F and 9, F (in the sense of distributions) exist and are respectively
continuous functions and locally bounded functions.

This kind of diffusion operators, with distributional drift, have been already study in [20,41]
in the case where the coefficients of the SDE do not depend on time. Rigorously speaking, a
weak solution to equation (22]) is a solution to the martingale problem related to (Lg, D(Lg)).

Definition 2.1. A continuous stochastic process {Zy : t > s} defined on a given filtered probabil-
ity space is said to be a weak solution to equation (Z2) if Zs = z and if there exists an increasing
sequence of stopping times {1, : n > 0} such that, for alln >0 and F € D(Ly),

tATh
F(t A7, Zing,) — / LoF(u,Zy)du, t>s, (2.6)
S
18 a local martingale, with
Te i=supinf{t > s : |Z;| > n} = sup7,. (2.7)
n>0 n>0

A weak solution is global when the explosion time satisfies T = oo a.s. and we said that the
weak solution is unique if all the weak solutions have the same distribution.



We are now able to state our first result.

Theorem 2.1. For anyr € R, § € O, s > 0 and z € R, there exists a unique global weak
solution Z to equation (Z2). Moreover, there exists a standard Brownian motion B such that,
for all F € D(Ly),

t ¢
F(t,Z;) = F(s,z) + / LoF(u, Zy,) du +/ 0. F(u,Z,)dBy, t>s. (2.8)

Since the one-dimensional equation (2.2]) is not time-homogeneous, there are not simple
conditions which characterize the nonexplosion as in [920L41]. Therefore, the main difficulty is
to construct Lyapunov functions. To this end, we consider some linear perturbations of equation
[22), given in (1)), for which we are able, when the potential ([@2]) is sufficiently confining, to
construct suitable Lyapunov functions (see Proposition B.2]). Then we prove (see Theorem
5.1 nonexplosion, existence and uniqueness (in a more general setting) by using the Girsanov
transformation and by considering the SDE ({.6]). This equation is connected to equation (.J]),
when the associated potential is attractive, via the pseudo-scale function Sy defined in ([£4) (see
Proposition 1)). This method is a generalization in the time-inhomogeneous setting of that
employed in [9,20041] and which uses the effective scale function.

2.2 Strong Feller property, cocycle property and lower local Aronson estimate

In the following, we denote by P .(6) the distribution of the weak solution to equation ([Z2J),
called the quenched distribution, which existence is stated in Theorem Il We introduce the
canonical process {X; : t > 0} on the space of continuous functions from [0, c0) to R, endowed
with its standard Borel o-field F, and we denote by Py(s,z;t,dx) and Ps;(#), the probabil-
ity transition kernel and the associated Markov kernel defined, for all measurable nonnegative
function F' on R by

Pui(0)F(2) == B, .(0) [F(X))] = /R F(z)Py(s, 2 ¢, dz). (2.9)

Theorem 2.2. For any r € R and all 0 € ©, the family {Ps.(6) : s > 0, z € R} is strongly
Feller continuous. Moreover, the associated time-inhomogeneous semigroups {Ps(6) : t > s >

0, 0 € ©} satisfy
Ps75+t(0) = PQJ(GiTS TSH) and P075+t(0) = PQS(H)POJ(G*TS TSH) (210)
Besides, Py(s, z;t,dx) admits a density pg(s, z;t, z), which is measurable with respect to (0, s,t, z, x)

on © x {t > s >0} x R%, and which satisfies the lower local Aronson estimate: for all 6 € ©,
T > 0 and compact set C C R, there exists M > 0 such that, for all0 < s <t <T and z,x € C,

1 \z—xP)
$,2;t,x) > ————=exp | —M . 2.11
pole, 5t.0) = o (M (2.11)

The idea is to study the more general equivalent SDE (.G)) and to prove, by using standard
technics, the analogous theorem for this diffusion (see Theorem [6.]).

Besides, the transition density being measurable with respect to ¢, we can define the annealed
distribution IP s,z and the associated Markov kernel P 4 as

By .= B [Py.] = /@ P, .(0)W(d9) and B,; = Ey[P,] = /@ P, (6) W(dB).



We point out that X is not a Markov process under I/ﬁs,z. Moreover, in the light of (ZI0), we
can assume without loss of generality that s = 0 in ([2.2)) and we set

P.(0) :=Po:(0), Pp(z;t,dx) = Py(0,2;t,dz), pe(z;t,x) = pe(0, 25, 2),
Pt(H) = P07t(9), and ﬁt = ﬁoﬂg.

Furthermore, we can see that the case r = 0 is of particular interest since the relation (2I0]) can
be written in this situation

Pyuit(6) = PTL0) and  Puy(0) = Py(0) Po(TL0). (2.12)

Roughly speaking, the equation ([2.2]) is time-homogeneous in distribution since from the scaling
property W is (T})-invariant. Relation (ZI2) is called the cocycle property and it induces (see [I]
for a definition) a random dynamical system (RDS) over (0,8, W, (T})) on the set M of signed
measures on R, by setting, for all v € M,

VB,(0)(dz) = / Py(2:t, d) v(dz) = ( /R pg(z;t,x)u(dz)> dz.

R
Note that the subset of probability measures M; C M is invariant under this RDS.

2.3 Quasi-invariant and stationary probability measures

To state our next important results, we need to introduce some additional notations. We said
that p is a random probability measure on R, over (0,8, W), if uyp € My for W-almost all 6,
and if  — pg(A) is measurable for all Borel set A. For such random probability measure p,
we introduce the probability measure [ defined by

fi= Blu] 1= /@ 1o W(d0).

Let a € R and U,, V, be the functions on R defined by
2

Ua(z) :=exp (a%) and V() = exp(|z]¥). (2.13)
The F-total variation norm, F' € {U,, V,}, of a signed measures v, is defined by
lv||F :=sup{|v(f)| : |f| < F, f bounded and measurable} .
Note that if v € M then ||v||F = v(F). In addition, we set
Mp={reM:|v|r<occ} and Mipr=M;NMp.

Theorem 2.3. Assume that r = 0. There exists a random probability measure u on R over
(©,B,W), unique up to a W-null set, such that, for all t >0,

woPi(0) = pre  W-a.s. (2.14)
Moreover, for all a € (0,1), the quasi-invariant measure satisfies
o € My, W-as. and € My,. (2.15)
Furthermore, there exists A > 0 such that, for all v € My y, and U € My y,,

s 28U EO) — priolly, )
im sup

t—o00 t

< -\ W-a.s. (2.16)

and R
Jim (197, — v, = 0. (2.17)



Linear RDSs have been studied in an extensive body of the literature. The dynamics (in
particular the Lyapunov exponents) in the case where the discrete-time linear RDS acts on
a finite dimensional space (the case of infinite products of random matrices) have been well
understood for a long time, for instance in [22)37], whereas the situation where the general
linear RDS acts on a separable Banach space has been newly studied in [33].

Our goal in Theorem is to obtain a quasi-invariant probability measure for the random
Markov kernels P;(f) and to give convergence results in the separable Banach spaces My,
(exponential convergence) and My, . We need a kind of random Perron-Frobenius theorem,
which has been, for example, obtained in [2] for infinite products of nonnegative matrices, and
more recently in [28] for infinite products of stationary Markov kernels over a compact set.

However, the Markov operators that we consider act on the infinite dimensional space M and
are defined over the noncompact set R. To overcome this problem, we need to see that U, and
Vg, are Foster-Lyapunov functions (see Propositions and [[3)). More precisely, we show that
Lyapunov exponents can be chosen independently of the environment 6, while keeping a control
on the expectation of the U,-norm and the V,-norm. The classical method to construct Foster-
Lyapunov functions for Markov kernels is to construct Lyapunov functions for the infinitesimal
generators (see Lemmal[l Jland [[2). Nonetheless, we stress that neither U, nor V,, belong to the
generalized domain D(Lg) and we need to approximate uniformly these functions by functions
of this domain, while keeping a control on the expectation under the Wiener measure. This is
possible by using the Holder continuity of Brownian paths (see Proposition [.]).

Then, we use the explicit bound on convergence of time-inhomogeneous Markov chains (see
Proposition [[4]), obtained from [I7], via coupling constructions, Foster-Lyapunov conditions
and the cocycle property, together with the ergodicity of the underlying dynamical system
(©,B,W,(T})ier). We point out that the Aronson estimate (Z2.II]) is necessary to the coupling
constructions.

Furthermore, let us denote by {U; : t > 0} the canonical process on the space = of continuous
functions from [0, 00) to ©, endowed with its standard Borel o-field G, and introduce the Markov
kernels IIy . on (2 x Q2,G ® F), and the probability measure 7z on (© x R, B® B(R)), defined by
the product and disintegration formula

Hp . := 41,0401 @ P2(0) and  7(dw,dz) := W(dw)pu,(dz).

Then we can see that {(U;, Xy) : t > 0} is a time-homogeneous Markov process under Iy,
such that 7 is an invariant initial distribution. This process is called the skew-product Markov
process (see [I1136] for the discrete-time situation). By applying standard results on general time-
homogeneous Markov processes (see for instance [35]) we deduce that for all F' € L1(© x R, 7)),
z € R and W almost all 8 € O,

1 t
lim — [ F(U;,X;)dr = F(w,z)n(dw,dx), Il .-a.s.
t=oo t Jo OxR

Note that equation ([ZI5]) provides some information on the tails of py and fi.

Theorem 2.4. Assume that r > 0. For any z € R and for W-almost all 0 € O, the following
convergence holds under the quenched distribution P ,(0),

d
lim X, € A0, 1). (2.18)
t—o0
Here the space-time mixing environment is, contrary to Theorem [2.3] asymptotically neg-
ligible and the diffusion behaves, in long time, as the underlying Ornstein-Uhlenbeck process.
Since the cocycle property ([Z.12)) is no longer satisfied, we loss the structure of linear RDS. To



prove this result, we use once-again Proposition [[4] but we also need to apply |21, Lemma 4.5]
to the more general equivalent SDE (Z.6]).

Following the terminology used in [21], it is not difficult to see that this equation is asymptot-
ically time-homogeneous and S,I'-ergodic, with S the scale function of the Ornstein-Uhlenbeck
diffusion process having I' ~ A/ (0,1) as stationary distribution and S,I" the pushforward distri-
bution of T by S. As they mention in [2I], the main difficulty to apply this lemma is usually
to show the boundedness in probability. To this end, we need to use again the Foster-Lyapunov
functions U, and V.

3 Application to time-inhomogeneous Brox’s diffusions

3.1 Associated models

We turn now to our main application, the study of the socalled time-inhomogeneous Brox’s
diffusion. We consider, for any § € R, the informal SDE driven by a standard Brownian motion
B, independent of the Brownian environment (©, 8, W),

10(Y,
dY; = dB; — 3 iﬁt)

dt, Yy=yeR, t>u>0,0€0. (3.1)

A weak solution to equation (B is, in the same manner as in definition 211 the diffusion whose
conditional generator, given 6 € O, is

L o 9 [ —o@s 9 9 .
Ly := |:26 I e E +8t’ with

D(Ly) = {F(t,x) e Cl: e 0@/ F(t.2) € cl} .

As for equation (2.2]), where we can assume without loss of generality that s = 0, we can assume
that v = 1 in equation ([BI). Moreover, as in (L9), we assume that § = r + 1/4 and we
define, for all continuous functions w on [1,00) and all measurable function G on [1,00) x R,
Do (w)(t) := w(e?)/et? and EG(t,x) := G(et, e/?x).

It is a simple calculation to see that & : D(Ly) — D(Ly) is a bijection and that Ly =
EoLyoE L. In the same way as in [2ZI, Proposition 2.1 and Section 2.2.1] we deduce that
{Y; : t > 1} is a weak solution to equation ([BI)) if and only if {Z; := ®(Y;) : t > 0} is a weak
solution to equation (Z2)). Then a direct application of Theorem [ZT] gives that for all § € O,
there exists a unique irreducible strongly Feller diffusion process solution to equation (B.1J).

Let Qy(0) be its quenched distribution and denote by {R¢(6) : t > 1}, the time-inhomogeneous
semigroup associated to {X;/v/t : t > 1} under Q,(6), and by @y and {R; : t > 1}, there an-
nealed counterparts.

3.2 Associated asymptotic behaviours

The following two corollaries are the analogous of Theorems and 241 We recall that S) is
defined in (L2)).

Corollary 3.1. Assume that f = 1/4. For all a € (0,1) there exists A > 0 such that, for all
ve Mg, and v € My y,,

. log(|[vRe(6) — ps ;0llv.)
lim sup
t—00 logt

< =X W-as. (3.2)



and R
Jim [[0Ry — fillv, = 0. (3.3)

Corollary 3.2. Assume that 5 > 1/4. For anyy € R and for W-almost all 0 € O, the following
convergence holds under the quenched distribution Q,(0),

im 2t @ a0, 1). (3.4)

The scaling limits ([82), B3) and ([B4) are to be compared with the two convergences
presented in (L7 (the deterministic situation studied in [21I]) and convergences (L4)) and (L3
(the random time-homogeneous situation considered in [9]). These results have some commons
features with those presented in [2I] and [9] and also with those presented in [729130, 321 39]
[40,[421[49] concerning the quenched central limit theorem (B.4). There is still a phase transition
phenomenon for 5 = 1/4 and we obtain distinct quenched and annealed scaling limits for the
critical point. Moreover, we are more accurate concerning the speed of convergence, which is
polynomial here, and exponential in Theorem

Nevertheless, the case < 1/4 seems to be out of range of the present technics. In fact,
we expect a stronger localization phenomenon and a subdiffusive behaviour of order t2# log?(t)
when 5 > 0 and an almost sure convergence when 8 < 0 (which can seen as a generalization
and mixture of results presented in (L4), (L5) and (L8))). Note that in the case where 8 < 0,
equation ([BJ) is (via a simple change of time) a damped SDE in random environment.

Furthermore, some methods elaborated in this paper can be used to study a similar interest-
ing situation where we replace the Brownian environment € in ([B]) by an another self-similar
process. These situations are object of some works in progress. The case of a multiplicative
noise or similar equations in higher dimension seems to be more difficult.

4 Preliminaries of Theorems 2.1l and

4.1  Linear perturbations of equation (Z.2)

We consider, for any a € R, the informal SDE

1
dZ; = dB; — 561629(75, Zt) dt, Zs=zeR, t>52>0, RS @, (41)
with the more general potential than ([2:2)) given by
2
-1
Qult,z) == a% e T0(x) = Vot x) + L a2, (4.2)

Here once again r € R and B denotes a standard Brownian motion independent of the Wiener
space (©,B,). This equation coincides with equation ([2.2) for a = 1. The conditional in-
finitesimal generator Ay and its associated domains are given as in (2.4]) and (2.3]), replacing Vj
by Qg. Moreover, it is not difficult to check that

a—1 0
T—.

2 oz
We get that the domains of Ag and Lg are equals, in particular, the domains of Ag do not depend

on a. A weak solution to equation (4] is, in the same way as in Definition 2] a solution to
the martingale problem related to (Ag, D(Ay)). In the sequel, we set

0
Ag,t = Ag - 5

Ag =Ly — (4.3)

10



4.2 FEquivalent SDE and martingale problem

We assume that a > 0 and we introduce an auxiliary SDE on R, which is naturally connected
to equation ([@I). Let S and H be the functions on © x R? defined by

t/2,, _t

T e 2
Se(t,x) == / @ty gy = et/Q/ exp (ae 2Z - 67(r+1/4)t9(z)>dz
0 0

and Sy(t,Hy(t,z)) = x. (4.4)

Note that Hy is well defined since a > 0 and in this case, the socalled pseudo-scale function
x — Sp(t,x) is an increasing bijection of R. Moreover, by using the second representation of S,
obtained by the change of time z := e*/%y, we can see that Sy(t,z) and Hy(t,z) are continuously
differentiable with respect to (¢,z) € R? and we can set

0'9(15,1‘) = (3x59)(t, Hg(t,x)) and d@(t,x) = ((%S.g)(t,Hg(t,.%’)).

In addition, remark that, for all (0, s,t,z) € © x R3,

S@(S 4+, 1‘) = S(e—Tsng) (t, .%'), Hg(s +1, 1‘) = H(e—Tsng) (t, 1‘),
og(s +1,2) = 0(cror,0)(t,z) and  dp(s +t,2) = die—rsqyp)(t,2).  (4.5)

We can consider, for any 6 € ©, the SDE on R with continuous coefficients and driven by a
standard Brownian motion B, independent of (0, B, W),

AZ; = 09(t, Z)dBy + dg(t, Z)dt, Zs=Z2€R, t>s>0. (4.6)

Let C%2 be the space of continuous functions F(t,x) on [s,o0) x R such that 9, F, 9, F and 92, F
exist and are continuous functions and introduce
J 03 (t,z) 02 0 0

Ag = Ag’t_{_a = 9 @—{—dg(t,,l?)% —|—a

Note that Sy and Hy induce two bijections from the space of measurable functions on [s, 00) x R
into itself, inverse to each other, by setting

SoF(t,z) :== F(t,Sp(t,x)) and HeF(t,x):= F(t,Hy(t,x)).
By restriction, we get that Sp and Hy induce bijections

Sp: CY? — D(A4y), Hg: D(Ag) — CH2,
Sp: W™ — D(Ag) and Hg: D(Ag) — W2,

loc loc

where VVI1 0’3’00 denote the Sobolev space of continuous functions F(¢,x) on [s,00) x R such that

the partial derivatives O,F, 0,F, 0;(0F) andN(?%mF exist and are locally bounded functions.
Moreover, the infinitesimal generators Ay and Ay are equivalent. More precisely, they satisfy

59_1 0AgoSy = Avg. (47)

Proposition 4.1. Foranyr e R, 0 € O, s > 0 and z,Z € R such that zZ := Sy(s,2), {Z¢ : t > s}
is a weak solution to equation [1) if and only if {Zy := Se(t, Z) : t > s} is a weak solution, up
to the explosion time T, to SDE ({{.0). Furthermore, there exists a unique weak solution (Z,B)
and, for all G € WE2® and s < t < Te,

loc

Gt 7)) = G(s,5) + / " Ayl ) du + / 0. (w. Z,) o9, Z) ABy. (4.8)

s
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Proof. Assume that 7 is a weak solution to (AG). By using the Ito formula, Z solves the
martingale problem related to (Ag, C12?). Therefore, Z, = Z and there exists an increasing
sequence of stopping time {7, : n > 0} such that, for all n > 0 and G € C*2,

- tATn -
G(t N\ T, Zins,) — / ApG(u, Zy) du, t>s,

is a local martingale, with

Te := supinf {t > s ]Z\ > n} = Sup Tp.
n>0 n>0

We deduce from relation E7) that {Z; := Hy(t, Z;) : t > s} is a weak solution to 1)) since
Zs =z foralln>0and F € D(Lg), G := HgF € C"2, and

tATn . tATn "
F(t A\ T, Zing,) — / AgF (u, Zy) du = G(t A Ty, Zinr,) — / ApG(u, Z,) du.

A similar reasoning allow us to show that if Z is a weak solution to (1) then {Z; := Sp(t, Z;) :
t > s} is a weak solution to ([6]). Moreover, equation (G) has continuous coefficients oy and dp
and is strictly elliptic (o9 > 0) and we deduce, by using classical arguments of localization (see,
for instance, [48] pp. 250-251]), that there exists a unique weak solution (Z, B). Furthermore,
by using the Ito-Krylov formula (see, for instance, [31l Chapter 10| or [I8, p. 134]), we obtain

(E3). ]

4.3 Chain rules and nonexplosion

To construct Lyapunov functions for the infinitesimal generator Ly, or more generally for Ay
associated to (), we need to give the associated chain rules. For all § € © and ¢ € W™ (the

loc
space of real continuous functions such that the partial derivatives in the sense of distributions

exist and are locally bounded functions) define
F(t.0) = [ exp e Do) (t) dy € D). (49)
By standard computations, we get the following chain rules
Ag i Fy (t,x) = %exp [67” Ti0(x)] (Oup(t, x) — azp(t,z)), (4.10)
and
OF) (t,x) = %exp e T,0(x)] x o(t, ) — %Fg’(t,x)
+ [ e [ 1000] (aret) ~ S0spte.))
- (r + i) /0 “exp [ TO)] (¢ TO) (k) dy. (411)

Proposition 4.2. Assume that a > 1. For anyr € R, 8 € O, s > 0 and z € R, any weak
solution Z to ([{.1) is global and, for all T > s and 0 < § < (a —1)/2,

E{exp (5 siltlgT Zf)] < 00. (4.12)
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Proof. Let 0 < a < a — 1 and U, be the function defined in (ZI3) and set

Upalt;x) :=1+ /0 exp [ T,0(y)|Us(y) dy € D(Ap).

We shall prove that Uy is a Lyapunov function, in the sense that, for all T' > s, there exists
A > 0 such that, for all 0 <¢ < T and = € R,

AgUg o(t,x) < ANUpo(t,x) and  lim inf Up,(t,x) = oo. (4.13)

|z| =00 0<t<T

First note that the second relation in (T3] is clear since lim,_ 6(x)/z* = 0. Moreover,

by using (LI1)) and (£I0), we can see that

1 1
AgUpo(t,x) = —504(61 - ) <1 -

(a — a)x?

> 2% exp e T,0(x)] Ua () (4.14)
and

0Up o(t,z) = %amz exp [e_” TtH(x)]Ua(x) - %(Ug,a(t,x) -1)
! —rt ayQ +1 /
- [ e et mow)] (L) Uit dy

- (r + i) /0 " exp [ T0(y)] (e T8 (y)) Ug(y) dy.  (4.15)

In addition, since 0 < o < a — 1, we can write for x sufficiently large,
1 1 1
— = — 1———— —a <0. 4.16
2a(a a)( (a—a)x2> +2a (4.16)

Then we get from ([AI6) and (£I4) that there exist L; > 0 and a compact set C' such that, for
all 0 <t <T and x € R,

1
Ag U o(t,z) + 504352 exp [e*” Tté?(x)] Ua(z) < L1 1c(x) < L1 Upo(t, x). (4.17)
Besides, we can see that there exists Lo > 0 such that, for all 0 <t < T and y € R,
2 1 1 2
Y ; +(r+7)e " T0w > -~ L, (4.18)

We deduce from ([@I8]), (@I7) and (£I5) that [@I3]) is satisfied with A\ := L; + Ls. By using
a classical argument (see, for instance, [48, Theorem 10.2.1]) we get that the explosion time is
infinite a.s. Furthermore, the right hand side of [I3) implies that {e MUy, (t,Z;) : s <t <
T} is a positive supermartingale. By using the maximal inequality (obtain from the optional
stopping theorem) we get that, for all R > 0,

RP < sup e MUp o(t, Zy) > R) < e MU o8, 2). (4.19)
s<t<T

Besides, we can check that, for all 5 < «/2, there exists ¢ > 0 such that, for all s <¢ < T and

z €R, cUyo(t,x) > exp(Bz?). Then by using ([EIJ), we obtain

IP( sup 77 > R) < CBA(Tfs)Ue,a(S,Z) exp(—BR).

s<t<T

Since 8 and « are arbitrary parameters satisfying 8 < a/2 < (a —1)/2, we deduce from the last
inequality that ([4I2]) holds for any 8 < (a —1)/2. O
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5 Proof of Theorem 2.1]

Theorem [2.1] will be a direct consequence of Theorem B.1] below.

Theorem 5.1. For any a,r € R, 0 € ©, s > 0 and z € R, there exists a unique global weak
solution to equation ({f-1)). Moreover, there exists a standard Brownian motion B such that, for
all F € D(Ag),

t t
F(t,Z;) = F(s, 2) +/ ApF (u, Zu)du—i—/ 0. F(u,Zy,)dB,, t>s. (5.1)

Proof. First of all, when a > 1, the proof is a direct consequence of Propositions (£.2) and (E.I)).
More generally than relation ({]), we note that, for any aj,as € R,

al — ay 0

(1) _ 4@
A=A Ty

where A® denotes the infinitesimal generator associated to a;, i € {1,2}. By using this relation,
it is not difficult to see that the Girsanov transformation induces, by localization, a linear
bijection between the weak solutions associated to parameters a; and as. Since for all ag > 1
there exists a unique weak solution, we obtain that, for all a3 < 1 there exists a unique weak
solution. Therefore, to complete the proof, it suffices to show that there exists a global weak
solution. Remark that since uniqueness holds for the martingale problems, any weak solution is
a Markov process.

Let a3 < 1 < ag be and consider for as a global weak solution (Z, W) on a given filtered
probability space (Q, F,Py). We set k := (a2 — a1)/2 and, for all t > s,

t t t

1

D, := exp (/ k Z, dW, — 5/ kQZZdu> and B, := W, — W, —/ k Z,, du.
S S S

By using the moment inequality (£I2) and the Novikov criterion, we can see that {D; : s <
t < s+ T} is a martingale for any 0 < T < (ag — 1)/k?. The Girsanov theorem applies and
{By:s<t<s+T}is astandard Brownian motion under the probability measure Py, defined
by the Radon-Nykodym derivatives

dIP1|]:t ::DtdIPQ‘]:t, s<t<s+T.

Moreover, for all F' € ﬁ(A(g ) = ﬁ(A(gl)) and s <t <s+1T,

t t
F(t,Z,) = F(s,2) + / AP F(u, 2,) du + / O F(u, Z,) AW,
t t
:F(s,z)—i—/ Aél)F(u,Zu)du—i—/ 0. F(u, Z,) dB,,.

Then {(Z;,B:) : s <t < s+ T} is a weak solution, which does not explode, on the filtered
probability space (2, F,P1). Since the life time T is independent on the initial state (s, z), we
deduce by using the Markov property that the unique weak solution associated to aj is global.
This completes the proof. O
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6 Proof of Theorem [2.2

We first show that it suffices to prove the analogous theorem for the more general equivalent
SDE (ZL0) (see Theorem [G]). Thereafter, we prove this theorem.

Let I~Ps7g(9) be the distribution of the global weak solution to the SDE (E.6l), which existence
is stated in Proposition ([@1)), and denote by Py(s, Z;t,dz) and ﬁs,t(ﬁ) the associated transition
kernels and Markov kernels.

Theorem 6.1. For any r € R and all 6 € O, the family {INPS@(H) 18>0, 2 € R} is strongly
Feller continuous. Moreover, the associated time-inhomogeneous semigroups {Ps(6) : t > s >

0, 0 € ©} satisfy

Py oit(0) = Poy(e7™T0) and Pygys(0) = Poo(0)Po (e "*Tsb). (6.1)

Besides, ﬁg(s, Z;t,dx) admits a density py(s, Z; t, ), which is measurable with respect to (0, s,t, zZ, x)
on © x {t > s >0} x R%, and which satisfies the lower local Aronson estimate: for all 6 € ©,
T > 0 and compact set C C R, there exists M > 0 such that, for all0 < s <t <T and z,x € C,

. 1 \2—30]2)
$,2:t,x) > —————=exp | —M . 6.2
fale, it.0) > o (M (6:2)

Denote by PP, .(#) the distribution of the unique global weak solution to the equation (@),
which is given in Theorem 5.1} and by Py(s, z;t, dx) and Ps;(6) the associated transition kernels
and Markov kernels. Assume first that {ﬁs,g(ﬁ) : 8 >0, 2 € R} is strongly Feller continuous.
One get by using Proposition 1] that, for all bounded measurable function F' on [0,00) X R,
t>s>0and z € R,

E&Z(a)[F(t?Xt)] = Es,Sg(s,z)(a)[F(t7He(taXt))]'

Since Sp is continuous on R?, we deduce that {P; .(f) : s > 0, z € R} is also strongly Feller
continuous. Secondly, assume that {P,;(6) : t > s > 0} satisfies relations ([G.I). We get from
(£3) and Proposition @] that, for all nonnegative function F' on R, s,¢ > 0 and z € R,

Posst(O)F(2) = Posa (O)[F (Hy(s +1,4))](S(s, 2))
= Po’t(e_T‘STSH)[F(H(e—rsng) (t, *))](S(e—rsng)(O, Z)) = PQJ(G_TSTSH)F(Z).

By using the Markov property, we obtain relations (ZI0). Finally, assume that the transition
kernels ﬁg(s,é;t,dx) admits a measurable density py(s, Z;t,z) which satisfies the lower local
Aronson estimate (6.2). Once again, Proposition EIlapplies and gives that Py(s, z;t,dz) admits
a density p such that

po(s, zit,x) = Po(s, So(s, 2); t, Sy(t, z))e0 ).

Since Sy is a locally Lipschitz function, we deduce that py(s, z;¢,dx) is also measurable and sat-
isfies the lower local Aronson estimate. In particular, Theorem implies Theorem This
ends the proof, excepted for Theorem

Proof of Theorem [G1l Since equation (6] is strictly elliptic (o9 > 0) and has continuous co-
efficients, it is classical (see for instance [48], Corollary 10.1.4]) that its unique weak solution is
a strongly Feller continuous diffusion, which admits transition densities py(s, Z; ¢, ) measurable
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with respect to (s,t,Z,7) € {t > s > 0} x R? for each §# € ©. Moreover, we can see that
relations (G]) are direct consequences of the Markov property and of (LH). We need to prove
the measurability of  on © x {t > s > 0} x R? and the lower local Aronson estimate (62)). Set,
for all 6 > 0,

Psg(s, 5, dz) == Py 2()(X; € da, 75(s) > t) = POU(O)(X, € du, 75 > 1)

with
T5(s) :==inf{t > s: | Xy| >} AT.

Here IAE;LE&;(H) denotes the distribution of the truncated diffusion process whose coefficients are
given on [s,00) X R by

d0 (t, ) = dg(t AT, (x AS)V —=8) and o) (t,x) = og(t AT, (x AS)V —F).
Then the fundamental solution ﬁgs) of the associated partial differential equation (PDE) satisfies
the local Aronson estimates. Indeed, even if the associated partial differential operator is not of

divergence form, we can see that it is equivalent to a uniformly elliptic divergence type operator,
with bounded coefficients, employing the change of scale defined on [s,00) x R by

©) o x 1 . Y dgs)(t’ Z) .
%G )"/0 (057 (8, )2 p<2/o <a§‘”<t,z>>2d ) w

Therefore, the results in [3] or [38] apply, and the fundamental solution (jéé) of the associated

PDE satisfies the global Aronson estimates. Besides, since
~(0 ~ ~(0 6 ~ § é
5y (s, 2t x) = G5 (s, k) (5, 2), 6.k (1,2)) 0ok (8, )
and ké(s) is locally Lipschitz, we get that ﬁ((f) satisfies the local Aronson estimates.
Then, following exactly the same lines as the proof of [A7, Theorem II.1.3] in the time-

homogeneous situation, we can prove that the kernel P5g admits a density psg such that, for
all 0 < n < 1, there exists M > 0 such that, for all 0 < s <t < T, |Z| < 7nd, |z| < nd and

|t —s| < (n0)?,
ps,0(S, 2,1 )>71 < M’x_E‘Q>
s, zZ,t,x) > exp | — )
o Mi—s) t—s

Since p > ps, we deduce that p satisfies ([6.2)) by taking ¢ sufficiently large.

It remains to prove the measurability of p. We shall apply [48 Theorem 11.1.4|. Since
(0,5,2) — og(s,z) and (0, s,x) — dy(s,x) are continuous on © x R?, we can see that, for all
convergent, sequence 6, — 6 in © and all T, R > 0,

sup |0y, — ool + |dg, — dg| —— 0.
[0.T]x[~R,R] e

We can ckeck that the assumptions of [48, Theorem 11.1.4] are satisfied and we conclude that,
for all convergent sequence (s, Z,) — (s, 2) in [0,00) x R and all bounded continuous function
G on the canonical space €2,

Esn,én (an) [G] — ES,E(H) [G]

n—oo

We deduce that (6,s,2) — INEs,g(H)[G] is continuous on © x [0,00) x R. In particular, the
family of probability measures {P;:(0) : s > 0, Z € R, § € ©} is tight and we can see that,
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for all bounded measurable function F' on R, (0,s,2,t) — INEs,g(H)[F(Xt)] is measurable on
© x {t > s> 0} x R. To this end, assume furthermore that F' is L-Lipschitz. We can write, for
all compact set K of the canonical space (2,

B, 2(0)[F(X0)] — By 2 (00)[F(Xy,)]| < LP,2(0)(Q\ K) + LfEs,é(Q)[ﬂKLXt — X ]

+ B 2(0)[F(Xao)] = Bz (60) [F(Xs, ).

By letting (s, 2,0,t) — (S0, 20, 60,t0) and by using the tightness of the family of probability

measure {P;:(f) : s >0, Z € R, § € ©}, we get the continuity and we deduce our claim, since
any measurable bounded function is the bounded pointwise limit of a sequence of Lipschitzian
functions.

Therefore, we can define the measure v on the product measurable space © x R* by setting,
for all B € B and I, 1o, 13,14 € B(R),

4
v | B x HIk ::/ Py(s, 2, t, I1) 1> 550 W(dH) ds dz dt.
bl BxIixIaxI3 a

By standard results on disintegration of measures, the Radon-Nykodym derivative of v with
respect to W(d#) ds dz dt dx, which is nothing but py(s, Z,t, x), is measurable. O

7 Preliminaries of Theorems and 2.4]

7.1 Uniform affine approximations of the environment
In the following, set for all v € (0,1/2) and 6 € O,
107 lym + 110" lly.m

H.,(0) = fg()) Tn) , 0,:={0< Hy < oo}, (7.1)
with, for all n > 0 and x € R,
0(+y) — 6(+
[/ ——— Y = OED 0 L) =TT losd ). (72)
nlz<y<n+1 ly — x|

In addition, denote for all ¢ > 0 by A, ((6) (see Figure [Il) the piecewise linear approximation of
6, associated to the subdivision Sy, := {x, :n € Z, 0 < k < m,}, defined by m,, := h;l =
[Ll/'y(n)afl] +1€eN, 2,5 :=n+khy, and _, j := —2, . Then introduce the random affine
approximation W, . defined, for all § € ©, by

Woe(0) i= Ay 0)(0),  with 1.(0) = ( Hj( 9))1/ § (7.3)
and set
W (0)(x
Ay (0)(x) :=0(x) —W,(0)(x) and D,.(f):=sup Wy (0)()] (7.4)

zeR Ll/’y(x)

Proposition 7.1. For all v € (0,1/2), the subset ©, C © is (T})-invariant and of full measure.
Furthermore, there exists o > 0 such that

E,y[exp (aHg/)] = / exp (aHg/(H)) W(dh) < oo. (7.5)
S
Besides, for alle >0 and 0 € ©,,

sup |8y o(0)(2)| <& and Dye(0) <e(l+ (e " Hy(0)). (7.6)

17



MMM ﬁ“\

hn—l—l B
Xnk 0 Xnmy,
Xnb 1,0 Xnd Lk Xndklmy gy
n n+1 n+2

Figure 1: Affine approximation of a typical Brownian path 6

Proof. Clearly H, : © — [0, 00] is a seminorm and to get inequality (Z3) it suffices to apply the
Fernique theorem presented in [19, Theorem 1.3.2, p. 11]. To this end, we need to check that
W(H, < 00) > 0. By using the Hélder continuity of the Brownian motion on compact sets, the
seminorm defined on © by N () := [|0T|y1 + || ||4,1 is finite W-a.s. Moreover, by using the
Fernique theorem and the Markov inequality, we deduce that there exists ¢, 5 > 0 such that, for
r sufficiently large,

F(r)=WH{N >r}) < IE)W[eXp(ﬁNQ)]e*B"2 < ce P

Besides, the random variables (8 — (|65, + 1|0~ |ly,n), n > 0, being i.i.d. by using again the
Markov property, we get that

00 0 c
] < g 1 — > i - = *
Jim W({H, < h}) gg;J!fl F(hLUUD<_;ggJ!JC nwﬂ) 1

Fernique’s theorem applies and we deduce (L3H). The fact that ©, is (T})-invariant is obtained
by noting that, for all § € © and t € R,

H,(T;9) < 2e071/2(/2) (et/2 +1) sup H.(0).

{L ((n+1)et/? + 1)]
n>0

L(n)

Furthermore, let ¢ > 0, n > 0 and z,y € R be such that n < z,y <n+1 and |y — x| < hy,
where h,, denotes the step of the subdivision S, . defined in Figure [l We can see that

6% (y) — 0% (2)| < L(n)H,(0) b}, < H,(6) &
and, when |y — x| = hy,, we get

6% (y) — 0% ()]
ly — x|

< L(n)H,(0)ly — 2" < H,(6)" (e LY (n) + 1),
Therefore, we obtain that

Sp[6(2) — A, (B)(e)| < Hy(8) and sup 220D _

e 0)e71(1 .
vk vk Ll/'y(.%') = ’Y( )5 ( +€)

Replacing in the two last inequalities € by 7, - (€), defined in (Z3]), we deduce the proposition. [
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7.2 Random Foster-Lyapunov drift conditions
7.2.1  For the infinitesimal generators
Let ¢ be a twice continuously differentiable function from [1,00) into itself such that, ¢(v) =1

on [1,2], ¢(v) = v on [3,00) and ¢(v) < v on [1,00). In the sequel, we set

F)(t,x) =1+ /OJ: exp [e " T A, . (0)(y)] Us(y) dy € D(Lg) (7.7)

and

Gg’e(t,x) =1+ / exp [e*”tTtA%,g(H)(y)] G;(y) dy € E(Lg),
0
with Gy () := (Vo (z)). (7.8)
Here we use G, = ¢(V,) in (Z8) instead of V,, because V.. do not belong to W}OZO (there is a
singularity in 0) contrary to U/, in (7).

Lemma 7.1. For allr € R, a € (0,1), v € (0,1/2), T > 0 and X\ > 0, there exists € > 0 such
that, for all 0 < e < g, there exist a random variable B : © — [1,00) and p,k,c > 0 such that,
forall €©,,0<t<T andx € R,

LoF) " (t,x) < =\F)"(t,x) + By, with By < kexp(c HL(0)). (7.9)

Proof. The proof will be a consequence of the following two steps.

Step 1. For all 0 < § < 1 and R > 1, there exists €1 > 0 such that, for all 0 < € < &1 and
0 < ¢ <1, there exist a map R : © — [R,00) and c¢; > 0 such that, for allf € ©,,0<t<T
and |z| > Ry(0),

1—
Lg,th’a(t, .%') § —5M

First of all, by using chain rule (£I0), with a = 1, we obtain that

1
2’ F)S(t,x), with Ri(0) < er(Hy" ™7 (0) v 1). (7.10)

Lo F)e(tx) = = (—a(1 — Q)z? — axe " (T, -(0)) () + )

x exp [e "' TyA, . (0)(2)] Ua(z), (7.11)

1
2

which can be written

1 e " (TiW4,e(9)) ()
(1—a)z? + (1—a)z

x z2exp [e " T A, (0)(2)] Ua(z). (7.12)

1
Lo Fy=(t,x) = —504(1 —a)|l-

Moreover, we can see that
[(TiW5e(0))'(2)] < oy () Dy (O)LY (), with () := (1 2/ (713)
Recall that D, . is defined in (Z4). In order to simplify our calculations, introduce
qg:=1Vve YT and  W(e) := explgel. (7.14)

Note that
(\If(es))f1 Ua(x) < Fg’a(t,x) < U(e)Uy(x). (7.15)
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Besides, we can choose €1 > 0 and D > R such that

e—rT
(1 - (1 _2)D2 - (11\/_ Oé)D) (\I](el))72 > 0. (7.16)

Then we deduce the left hand side of (ZI0) by using (ZI6), (ZI5), (ZI3), (ZI2) and by setting,

for any 0 < e < e,

L/
R1(0) :== [0y (T) D~ c(0)cy e V 1]ﬁ Dﬁ7 with ¢y := sup L 7(z)

< 0. (7.17)
|| >1 |33|£

Furthermore, the right hand side of ((ZI0) is obtained by using the right hand side of (.6]) and
by choosing ¢ sufficiently large.

Step 2. For all0 < § <1 and R > 1, there exists o > 0 such that, for all 0 < € < &9, there
exists a constant Ry > R such that, for all € ©,, 0 <t < T and |z| > Ro,

OF](t,2) < (1= 0)5aF; < (t, ). (7.18)

By using chain rule (£I1l), we get that

BtF;’e(t,x) = %x2 exp [e*rtTtAmg(H)(x)]Ua(x) — % (Fg’a(t,x) — 1)

_ /Oﬂﬁ ay22+ 1 exp [e—rt TtA'y,g(e)(y)] U’ (y) dy
- (r+ i) /0 (7" T2 2(0)(y)) exp [T T (0) ()] Ua(y) dy. (7.19)
We can write, by integration by parts in the third term of the right hand side of (ZI9)),
QF) " (t,x) = %mQ exp [e " TLA, 2(0)(2)|Ua(z) — (F,)°(t,z) — 1)
N %O‘xQFéy’s(f, )+ /Ox F*(t,y)ay dy
- (T + i) /OJC (e T A (0)(y)) exp [T TiA, (0)(y)] Un(y) dy.  (7.20)

Besides, by using (ZI5) and the left hand side of (Z.6), we can see that

/0 (T, 2 (0) () exp [T TA, L(0)(@)] UL (1) dy' < qe 0P (e) Fy* (t, )
and
‘/096 F)e(t,y)oy dy‘ < Ui(e)F)°(t, ).
We deduce from the two previous inequalities, (Z20) and (ZI3]) that
O F) = (t,x) < <[\I/2(8) 1] %ﬁ + 1+ nqaw(g))pgvf(t,x), (7.21)

with k := |r| + 1/4. Inequality (ZI8) is then a simple consequence of (L.2I)) by taking 5 > 0
and Ry > R such that, for all > Rs,

(07

(T2 (e9) — 1] 51'2 + [1 + grea] T2 (e2) < (1 — 5)g 2

21’.

20



Proof of Lemma [T.Il. We deduce Lemma [T] from (ZI8) and (ZI0). Indeed, we can choose
0<d<1and R >1 such that

(5@ —(1- 5)%) R?> A (7.22)

Then we get the left hand side of ([L9) by using ([Z22]) and by setting £ := €1 A g2 and

By = sup LoF)*(t, x). (7.23)
|z|<R1(0)VRz,0<t<T

Moreover, by using inequalities (C.21]), (ZI5), (CI3) and (ZII)), we can see that there exists
C > 0 such that

LoF)*(t,2) < C(1+ Dy (0)|| LYY (2) + 22) U (). (7.24)
We obtain the right hand side of (Z9) by taking p := 2/(v(1 — ¥)), k, ¢ sufficiently large and by
using (.24), (T23)) and the right hand sides of (.I0) and (7.6). O

Lemma 7.2. Forallr € R, a € (0,1), v € («/2,1/2), T > 0, € > 0 and X\ > 0, there ezist a
random variable B : © — [1,00), k,c > 0 and 0 < p < 2 such that, for all € ©,, 0 <t < T
and z € R,

LoGy©(t,x) < =AGy°(t,z) + By,  with By < kexp(cHL(0)). (7.25)

Proof. This proof uses similar ideas as the proof of Lemma [Tl and we only give the main lines.
Once again, the proof will be a consequence of the following two steps.

Step 1. Forall0<d <1, R>1and 0 < ¢ <1, there exist Ry : © — [R,00) and ¢1 > 0 such
that, for all§ € ©,, 0 <t <T and |x| > Ri(0),

1
Lo GYe(ta) < —(1 — 5)%|x|aGg’€(t,x), with Ry(0) < c1(H777(6) v 1). (7.26)

By using chain rule (I0), with a = 1, we can see that, for all z € {V,, > 3},

e " (TW,, 2(0)) (x o 1—a
Lo Gye(t,x) = —= <1+ (T ;’5( V@) _ e +—3 )

| Q

x |z|*exp [e " T,A, (0)(2)] Go(x). lienURLunsrt

Moreover, we can choose D > 1 such that {V, < 3} C [-D, D] and

(1 1 \/le)rT B D?_@) ()2 > (1—90).

Then by setting Ry as in (ZI7) we can deduce ([Z.26]).

Step 2. For all 6 > 0 and R > 1, there exists a constant Ry > R such that, for all 0 € ©,,
0<t<T and|z| > Ry,
0GYE(t,x) < 6%|x|O‘Gg’€(t,x). (7.27)

By using chain rule (£II]) we can see that, for all x € {V, > 3},

&gGg’e(t,x) = %|x|°‘exp [ef”t TtAme(H)(x)]Va(x) - (Gg’e(t,x) -1)

1

- /0 Cexp [ TAL (0)(w)] ¥ G () dy

- (r+ i) /ox 7 Ti2q 2 (0) ()] exp [T TiA£(0) ()] G (v) dy-
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Then we can obtain (Z.27)) by using similar methods as in the proof of (ZIS).

Proof of Lemma [7.2l We deduce Lemma [Z.2] from (C.27) and (Z26)) in the same manner as we
get Lemma [[T] from (ZI8)) and (ZI0). The main variation is that we need to choose 0 < ¢ < 1

in (Z26) such that p := o/(y(1 —¥¢)) < 2. O

7.2.2 For the Markov kernels

Proposition 7.2. For allr € R, a € (0,1), v € (0,1/2) and n,7,T > 0, there exists a random
variable B : © — [1,00) and k,c,p > 0 such that, for all k >0, 0 € ©,,0<s <t <T and
rzeR,

Ps,t(H)Ua(x) < (?7 + K+ ]ls§t§8+7)Ua(1‘) + BG]IJEE{UaSH’lBe}’ (7.28)
with

By < kexp(c HY(0)). (7.29)

Proof. Let A\ > €% and 0 < € < 1 be as in Lemma [[Iland 0 < & <  be such that e 2721 < p
and €% < 5 + 1, where ¢ is defined in (ZI4). One can see by using Ito’s formula (ZJ) that
there exists a Brownian motion W such that, under P .,

t
M) (t, Xy) = M F) (s, x) + / M (LoFy) " + AF)"%) (u, X)) du

s

t
+ / MO, FY (u, X, ) AW, (7.30)

Besides, we get from Lemma [[I] that there exist a random variable B : © — [1,00), k,¢,p > 0
such that, forall 0 € ©,,0<s <t <T and x € R,

LoFy(t,x) < —AF)°(t,x) + By, with By < kexp(cHE(0)).
Then one can see by taking the expectation in (Z30) and by using (ZIZ) that, for all § € ©,,
0<s<t<TandzxzeR,
Py y(0)Un(z) < e M2 (2) + A1e® By < () + Lo<y<sir)Ua(z) + By.
and we deduce that inequalities (T.28) and (Z.29)) hold for any x > 0. O
Proposition 7.3. Forallr € R, a € (0,1), v € (a/2,1/2) andn,7,T > 0, there exist a random
variable B : © — [1,00), k,c¢ > 0 and 0 < p < 2 such that, for allk > 0,0 € 0,,0<s<t<T

and x € R,

PS,t(H)Va(x) <(Mm+r+ ]ISStSS-i—T)Va(x) + BG]I:BE{Vagli*lBg]w (7.31)
with

By < kexp(c HY(0)). (7.32)
Proof. The proof follows the same lines as the proof of Proposition [[.2] and we only give the main
ideas. Once again, by using Ito’s formula and Lemmal[l.2] we can prove that there exist a random
variable B : © — [0,00), k,¢ > 0 and 0 < p < 2 such that, for all § € ©,, 0 < s <t <T and
rzeR,
Psi(@)Ga(x) < (77 + ]lsgtgs—l—r)Ga(x) + By, with By < keXp(CH,ZY)(H)).

Moreover, since G, < V,, and G, (z) = V,(x), for x € {V > 3}, we obtain that

Esw(@) [Va(Xt)]l{Va(Xt)EB}] < (0 + Ls<i<sir)Ga(z) + By and
P 1(0)Va(z) < (0 + Ls<t<str) < (0 + Ls<t<srr)Val(x) + (Bo + 3).
This is enough to complete the proof. O
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7.3 Coupling method
7.3.1  Coupling construction

We say that C' is a random (1, e)-coupling set associated to the random Markov kernel P and
the random probability measure v over (©,58,)V) on R, if ¢ : © — (0,1/2] is a measurable
map, Cy is a compact set of R for W-almost all § € © and

inf Py(z;%) > egrp(x) W-ass.

z€Cy
Given a random (1, €)-coupling set C' associated to the random probability measure v, we con-
struct a random Markov kernel P* on R x R as follows. Let R and P be two random Markov
kernels on R x R satisfying, for all z,y € Cp and A, B € B(R),

= Pp(r; A) —egup(A)

Ry(xz,y; A X R) = Py(y; A) —egvp(A)

1—¢g

R R x A) =
1_56 ) Re(:ﬂ,y, X )

and
Po(z,y; A x B) = (1 — g9)Ro(w,y; A x B) + ggvg(AN B). (7.33)

Note that we can assume that P is a random coupling Markov kernel over P, in the sense that,
forall 9 € ©, z,y € R and A € B(R),

Py(z,y; A x R) = Pp(z; A) and  Po(z,y;R x A) = Py(y; A). (7.34)

Then we define, o
Ee(xay;*)a if (x’y) € C@ X C@,

Fyla,y%) = { Po(x,y:%), if (z,y) ¢ Cy x C. (7.35)

7.3.2 The Douc-Moulines-Rosenthal bound
In order to simplify our claims, we set

P@ = Pl(e)’ P@(Zadx) = Pg(O,Z;l,dﬂ?), p@(z?x) = pg(O,Z;l,x)

T0:=T0 and Upuy(x,y) = M

2
Moreover, we denote for any function F': © — (0,00), n € N and j € {0,--- ,n},
j
+ — —TNp M
F(0) 0§n1<¥-1-13;{j§n1]€1_[1F(6 T" ) and
: ( )
- - —r(n—mg —Ng — + -n
Fi(6): ng}%jgngﬂe T-"0) = F; (T™"6). (7.36)

Proposition 7.4. For allr € R, a € (0,1), v € (0,1/2) and p € (0,00), there exist a random
variable B : © — [1,00), with log(B) € LY(©,B,W), and a random (1,¢)-coupling set C' over
(©,B,W) on R such that, for all 0 € ©,,

— — - B
PiUq < pUa + Bylcyee, and — sup  ReUa(z,y) < L0

< (7.37)
(2,y)€CyxCy L —¢g
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Moreover, for alln € N, j € {1,--- ,n+ 1} and v1,v9 € My,

150 (0) = v2 Pa(0) I, < 20" [(1 = &)1, (0) 1< + By, (O] [Ival]v [v2 v,
n—1
+2(1 =)l (O)Lj<n Y pFBe R TnmET1g) - (7.38)
k=0
Proof. Let  and k be two positive constants such that p =7 + 2x and use the Proposition
to obtain B : © — [1,00) and k, c,p > 0 such that, for all § € ©,,

PyU, < (n+ Kr)Uy + E@]lce, with By < kexp(cHY(0)) and Cp = {Uy < mflgg}.

The same arguments as in the proof of [I7, Proposition 11, p. 1660] apply. Indeed, we can write,
for any random Markov kernel P satisfying (.34,

o By _
f%UaS(n+ﬁﬂhy+7?@0pcg+1@x%)+1%1@x@-

Since E@ < 2kU, on Cg x Cg and Cy x Cf, we obtain from the last inequality that
PoUq < pUq + Byloyxc,- (7.39)

Then we deduce that (T37) is satisfied by setting By := ((p/flég + ég)pfl) V By and by using
([T39), [Z35) and ([Z33). Besides, log(B) € L(6,B8,W) by using () and thus similarly for
log(B). Moreover, for all § € ©,,, Cy is a compact set and we get from the lower local Aronson
estimate (2I1) that C' is a random (1,¢)-coupling set associated to the random distribution v
defined, for all # € ©,, and A € B(R) by

_ Jyinf.cc, po(z, x) dz
fR inf.ec, po(z,x)dz’

gy 1= (/ inf py(z,x) dx> /\% >0 and 1p(A):
R

2€Cy

Furthermore, we can write by using (ZI0) that
P,(0) = P()--- P(e" """V 1)

and therefore, a direct application of [I7, Theorem 8, p. 1656] gives (38]). ]

7.4  Ergodicity and exponential stability of the RDS

7.4.1 FErgodicity

Proposition 7.5. The dynamical system (©,8, W, (T})ier) is ergodic.

Proof. Introduce three measurable maps U* : © — © and S; : © — O defined by
UE(0) := (s — e73/*0(£e*?)) and  S;(0) := (s —> O(s +1)).

It is classical that the distribution of UT under the Wiener measure W, denoted by T, is the dis-
tribution of the stationary Ornstein-Uhlenbeck process having the standard normal distribution
as stationary distribution. This one is an ergodic process and, as a consequence, the dynamical
system (©,B,T, (S¢)wer) is ergodic (see, for instance, |25l Theorem 20.10]). Besides, it is clear
that the following diagram is commutative:

Ui

(©,B,W) (0,B,T)
nl ?HJ s;ﬁ L&
(0,8,W) = (0,B,T)



Let A € B be such that T, '(A) = A, with t # 0. By using the ergodicity of the dynamical
system (O, B, T, (S¢)ier), it follows that

S;HUE(A) =UH(T7H(A) =UF(A) and T(UF(A)=0 or =1
Moreover, we can see that
U=(A) = (UH)THUF(A) and (UH)THUTA)NOU)THU(4) = A
We conclude that W(A) =0 or = 1 and the proof is finished. O

7.4.2  FEzxponential stability

Lemma 7.3. Assume that 7 = 0. Let F be such that (log(F) Vv 0) € LY(©,B,W) and F* as in

1. If W(F < 1) =1 then, for all L > 1, there exists A > 0 such that

limsup e

An F:ly:L
n— 00 [Z]’

n(@) =0 W-as. (7.40)

2. If W(F > 1) > 0 then, for all n > 0, there exists L > 0 such that

limsup e™ " F[j;] (0)=0 W-as. (7.41)

n—oo L

Proof. We prove the lemma only for F'™ since the proof for F'~ is obtained replacing 6 by 716
and T by T—'. We set, for all ¢ >0 and k > 1,

log[F{”(8)] := log[F(T* ' 0)|Lp(rn-19ys, and  F© .= F.
Assume that W(F < 1) = 1. We can see that there exist 0 < ¢ < 1 and ¢ > 0 such that
Ewlpsd < L7 and  Eyflog(F©)] < —.

By applying the ergodic theorem to the ergodic dynamical system (©, 8, W,T') we obtain that,
for W-almost all § € © and all integer n sufficiently large,

n n n . .
Z]IF(kalg)Zc < |:Z] and F[%]’n(é?) < H F]g )(0) <e ¢ .
k=1 k=1

Then we deduce the first point by taking 0 < A < ¢. Assume that W(F > 1) > 0. Note that if
F'is bounded W-a.s. the second point of the lemma. is obvious. Moreover, when F' is unbounded
with positive probability, it is not difficult to see that there exist 0 <k <n, ¢ >1and L > 1
such that

Epllog(F)] <k and Ey[lps] > L7L

Once again, the ergodic theorem allow us to obtain the second point since, for W-almost all
0 € © and all integer n sufficiently large,
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Proposition 7.6. Assume that r = 0. For all « € (0,1) there exists A > 0 such that, for all
families {v 1 t > 0} of random distribution on R over (0, B, W) satisfying

i o (17 )

t—o00

=0 W-a.s., (7.42)

the following discrete-time convergences hold:

‘ plOg(HV;_(H)P[t}(G) — v (0)Py(0)llv)

lim su <=\ W-a.s. (7.43)
t—00 t
and + 0 0
1 P (T7MO) — v ()P (TH0
o L ORI T OB ON) (g
t—o0

Proof. We prove only (L44)) since the proof of ([Z43]) follows the same lines and employs the
same arguments. Let 0 < p < 1 be and, following Proposition [[.4] write that, for all § € ©,,
t>0andje{0, -, [t]+1},
v Pyg(T~190) — v Py (T196) |,
< 20 (1= )7 (O)Ljig + By g O 15 o175 o
[t]-1

+2(1 = &)y (O 1<y D P BITF710). (7.45)
k=0

Since log B € LY(0, B,W), the ergodic theorem allows us to see that, for all n > 0,

log[B(T*+1¢ =
lim og| B( ) =0 and limsupe ™ Z PPB(T7F19) =0 W-as.

Besides, one can see by using Lemma [[.3] that there exist L > 1 and £ > 0 such that

lim e ™ B[,

n—o0 [L n

Therefore, we deduce from ([Z45]) the exponential convergence ((T.44]). O

L (0)=0 and lim e (1 — €)in1. (0) =0.

n—00 [L]vn

8 Proof of Theorem

Theorem will be a consequence of Propositions and In the sequel, we introduce, for
any operator P acting on Mg, F € {U,, V,}, the subordinated norm

I1P||F := sup{[|uPr : p € Mp, [lpr <1}

8.1  Ezxponential weak ergodicity and quasi-invariant measure

Proposition 8.1. Assume that r = 0. For all a« € (0,1) there exists A > 0 such that, for all
vi,va € M1y,
1 Pi(0) — 1o P (0
g 198 (11 PA0) = 22PO) )

t—o00 t

< =X W-as. (8.1)

Furthermore, there exists a unique (up to a W-null set) random probability measure p over
(©,B,W) on R such that, for all o € (0,1) there exists A > 0 such that, for all v € My,

. log ([vP(T-40) — polluv..)
lim sup

t—o00 t

< =X W-a.s. (8.2)
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Moreover, for all t >0,
po € Miu, and pePi(0) = ppe W-a.s. (8.3)
Proof. By using relation (ZI2) we can write P;(0) = P (0) Py (T116) and we get
1 Pi(8) = v2Pu(0)llyr, < 1Py (8) — v2Pig(0) s, | Py (TH0) o, (8.4)
Moreover, by using Propositions and [l and the ergodic theorem, we obtain

y log(supg<y<1 [[Pu(T"0)]u,,)
11m

n—o0 n

=0 W-as. (8.5)

Besides, a direct application of Proposition gives that there exists A > 0, independent of v
and 15, such that

o sup 22 11 Po(8) = 1oP(6)])

n—00 n

We deduce inequality (81) from ([6]), (85) and (84). Furthermore, one can see by using again
Propositions [Z.0] and [.J] and similar arguments that

< -\ W-as. (8.6)

> Pyt (T7710) = vPu(T7"0) 1, < 00 W-aus.

n=0

We obtain that, for W-almost all § € ©, {vP,(T~"0) : n > 0} is a Cauchy sequence in the
separable Banach space My,. We get that there exist A > 0 and a random probability measure
po € My, such that, for all v € M 7,

1 P, (T7"0) —
o sup 22U PT6) = ol

n—00 n

< -\ W-as. (8.7)

We deduce [B2) from ([B7) in the same way as we obtain (8I]) from (80). Finally, (83) is a

consequence of (82) and the cocycle property since

Muy .. Mugs . Mu,
poPr(0) "= lim vPy(T_0)P(0) =" lim VP s(T_(s40)T0) = g,y W-as.
S$—00 S§—00
O
8.2 Annealed convergences
Proposition 8.2. For all a € (0,1) and v € My y,,
fie My, and lim 0P, — fil|y, = 0. (8.8)
t—00
Proof. Let 0 < p < 1 be and apply Proposition to see that, for all 0 < u <1,
P,(0)Vo <(p+1)Voy+ By and PyV, < pVy+ By W-as. (8.9)

We get from the latter inequality and ([B3) that pure(Va) < ppo(Va) + Bg W-a.s. and, by taking
the expectation of the last inequality, we obtain the left hand side of (B8]). Besides, since the
Wiener measure is (7})-invariant, we can see that

1P = tllv, = IEw[PPU(T0) = iy, Ive
< Ew([#P(T710) — prg0llva]. (8.10)
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Moreover, the relation ([83]) and the cocycle property ([ZI2]) allow us to write
P(T710) = Py(T10) Py (6) and o Ppy (0) = pury, -

Then similar arguments as for the proofs of ([82) and (8] hold and we get that

lim ([2P(T716) — iz, 0llv,
< lim [|2Py (T7190) — pollv | Py O)lve, =0 W-as. (8.11)

Furthermore, by using ([89]) and the cocycle property, it is not difficult to see that

IwPT10)]lv, < (p+ 1) (plIvllv, + 3 #* BT 0)) + By

and |[pzyy0llve < (0 + Dllpoll + Bo-

Noting that the two previous bounds belong to L!(©,B,W) (see Proposition [Z.3]) and are in-
dependent of ¢t > 0, the dominate convergence theorem applies and we deduce from (RII]) and

(BI0) the right hand side of (8. O

9 Proof of Theorem 2.4

Recall that under P, () (see Proposition ATl {Sy(t, X;) : ¢ > 0} is a solution of the SDE ({.0),
with a = 1. Moreover, since r > 0, we can see by using (LH]) that

t—o00

z 2
lim Sy(t,z) = S(x) ::/ e’ dy, tli)m Hy(t,z) = S (z),
0 o
. oo 1 . o
tlgglo og(t,x) =S50S (x) and tlgglo dy(t,z) =0,

uniformly on compact sets. Following [2I, Lemma 4.5] and denoting by I' the standard normal
distribution, {Sy(t, X;) : t > 0} is asymptotically time-homogeneous and S,I'-ergodic. According
to the cited Lemma, if in addition {Sp(¢, X;) : t > 0} is bounded in probability, it converges in
distribution towards S.I':

(V2 >0, 3R >0, supP(0)(1S(t, X,)| > R) < ¢) = lim Sy(t, Xy) )
—00

>0

ST

We shall prove that {X; : ¢ > 0} is bounded in probability, which shall imply the boundedness
in probability of {Sy(t, X;) : t > 0}. By using Proposition [[.2] we can find 0 < p < 1, L > 0,
B:0 —[1,00) and k, ¢,p > 0 such that, for all 0 <u <1,

Py(0)Uy < LUy + By, PyUq < pUo+ By and By <k exp [cHE(0)]  W-as.
Then relations ([ZI0) and the ergodic theorem allow us to write that, for all ¢ > 0,

[]—1
sup || Py(t, z,dz) ||y, < sup L< AU, (2) + k Z P exp [ce Tpme(TmH)]) + By
>0 >0

< L<pUa(z) + ﬁp exp | sup (ce_rpmHg(Tmﬂ))]) + By < oo W-as.

m>0
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Thereafter, the Markov inequality implies that

; Py(t, z,d )
supPL(0)(1X,| > B) < Rezo |1 Folt: 2, d7) o

W-a.s.
o Ua(R) e

Therefore, we get that {X; : ¢ > 0} is bounded in probability and since

lim inf Sy(t,x) = oo,
\x\linoo %IZIO 6( CU) >

we obtain also the boundedness in probability of {Sy(t, X;) : t > 0}. We deduce that [21, Lemma

4.5] applies and this completes the proof. ]
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