
HAL Id: hal-00690386
https://hal.science/hal-00690386v1

Preprint submitted on 23 Apr 2012 (v1), last revised 13 Dec 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Invariant distributions and scaling limits for some
diffusions in time-varying random environments

Yoann Offret

To cite this version:
Yoann Offret. Invariant distributions and scaling limits for some diffusions in time-varying random
environments. 2012. �hal-00690386v1�

https://hal.science/hal-00690386v1
https://hal.archives-ouvertes.fr


Invariant distributions and scaling limits for some diffusions

in time-varying random environments

Yoann Offret

Institut de Recherche Mathématique de Rennes, Université de Rennes 1,

Campus de Beaulieu, 35042 Rennes Cedex, France

Yoann.Offret@univ-rennes1.fr

Abstract. We consider a family of one-dimensional diffusions, in dynamical Wiener mediums, which are ran-

dom perturbations of the Ornstein-Uhlenbeck diffusion process. We prove quenched and annealed convergences

in distribution and under weighted total variation norms. We find two kind of stationary probability measures,

which are either the standard normal distribution or a quasi-invariant measure, depending on the environment, and

which is naturally connected to a random dynamical system. We apply these results to the study of a model of

time-inhomogeneous Brox’s diffusions, which generalizes the diffusion studied by Brox (1986) and those inves-

tigated by Gradinaru and Offret (2011). We point out two distinct diffusive behaviours and we give the speed of

convergences in the quenched situations.
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1 Introduction

Random walks (RWs) in random environments (REs) and their continuous-time counterparts, the diffu-

sions in random environment, pave the way for the study of a multitude of interesting cases, which have

been tackled since the 70’s in a large section of the literature.

Concerning the genesis of the theory, we allude to [1, 2], as regards the discrete-time situation, and

to [3, 4, 5], as regards the continuous-time one. For more recent refinements and generalizations, we

refer to [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and for a general review of the topic, we refer to [16].

Here we investigate one-dimensional diffusions evolving in dynamical Wiener mediums, which has

some common features with those studied in [4, 17]. We give, under weighted total variation norms,

quenched and annealed diffusive scaling limits, may depend on the environment, and thus which are not

always normal distributions. We also give the speeds of convergence under the quenched distributions.

In addition, we bring out a phase transition phenomenon, which is the analogue in RE, to a particular

situation considered in [17].

RWs in dynamical REs has been widely and intensively considered in the past few years under

several assumptions. Initially, space-time i.i.d. REs has been introduced and studied in [18, 19, 20].

Further difficulties arise when the fluctuations of the REs are i.i.d. in space and Markovian in time,

case addressed in [21, 22], and major one arise when we consider space-time mixing REs, case recently

studied in [23, 24, 25]. However, continuous-time diffusions in time-varying random environment has

been sparsely investigate. Nevertheless, we can mention [26, 27, 28, 29] concerning the homogenization

of diffusions in time-dependent random flows.
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1.1 The Wiener space

Introduce the space

Θ :=
{

θ ∈ C(R;R) : θ(0) = 0 and lim
|x|→∞

x−2 θ(x) = 0
}

(1.1)

endowed by the standard σ -field B generated by the Borel cylinder sets. It is classical that there exists

a unique probability measure W on (Θ,B) such that {θ(±x) : θ ∈ Θ,x ≥ 0} are two independent

standard Brownian motions. The probability distribution W is called the Wiener measure. We denote

by {Sλ : λ > 0} the scaling transformations on Θ defined by

Sλ θ(⋆) :=
θ(λ⋆)√

λ
. (1.2)

Note that Θ is naturally endowed with a structure of separable Banach space, such that B coincide with

the Borel σ -field BΘ.

1.2 Brox’results

In [4], Brox make sense to solution of the informal diffusion equation

dXt = dBt −
1

2
θ ′(Xt)dt, (1.3)

where θ ∈ Θ and B is a standard one-dimensional Brownian motion independent of (Θ,B,W ). De-

noting by Pθ the quenched distribution of such solution, the author shows that there exits a family

of measurable functions {bh : h > 0} on (Θ,B) such that, for W -almost surely θ ∈ Θ, the following

convergence holds in probability

Xt

(log t)2
−b1

(
S(log t)2θ

)
=

Xt −blog t(θ)

(log t)2

Pθ−−→
t→∞

0. (1.4)

The Wiener measure being invariant under the scaling transformations, if we denote by b̂1 the distribu-

tion of b1 under W , and by P̂ the annealed distribution (the expectation of Pθ under W ), the following

convergence holds in distribution
Xt

(log t)2

(d)−−→
t→∞

b̂1. (1.5)

The key to prove these results is a to take full advantage of the representation of X in terms of a one-

dimensional Brownian motion changed in scale and time, and of the invariance of the Brownian motions

B and θ under the scaling transformations Sλ . The author prove that the diffusion is localized in the

valleys of the potential θ , which are themselves characterized by b1.

1.3 Phase transition in a 2-stable deterministic environment

Furthermore, set W (x) := |x|1/2 and consider, for any β ∈R, the particular time-inhomogeneous singular

stochastic differential equation studied in [17] and which is given by

dYt = dBt −
1

2

W ′(Yt)

tβ
dt. (1.6)

The authors show in [17] the existence of a pathwise unique strong solution and prove diffusive and

subdiffusive scaling limits in distribution, depending on the position of β with respect to 1/4. More

precisely, they prove that
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Yt√
t

(d)−−→
t→∞





N (0,1), when β > 1/4,

k−1
c e

−
[

x2

2
+W(x)

]

dx, when β = 1/4,

(1.7)

and
Yt

t2β

(d)−−→
t→∞

k−1
u e−W(x) dx, when β < 1/4, (1.8)

kc and ku being two normalization positive constants. In fact, to obtain the results in (1.7), they study

the diffusion equation

dZt = dBt −
1

2

[
Zt + e−rt W ′(Zt)

]
dt. (1.9)

This process is naturally related to equation (1.6) by setting r := β − 1/4, via a well chosen scaling

transformation taking full advantage of the scaling property of the Brownian motion B and of the de-

terministic scaling property of the potential W . For more details we refer to [17]. We can expect to get

similar results by replacing W in (1.6) by a typical Brownian path θ ∈ Θ, a 2-stable random process, and

this is one of the main objects of this article.

The paper is organized as follows: in Section 2, we first introduce a diffusion equation in moving

Wiener potential, which generalizes equation (1.9). Then we state our main results and we give the

general strategy of the proofs. In Section 3, we apply these results to a model of time-inhomogeneous

Brox’s diffusions. This is a generalization of equation (1.6) and (1.3) and we get similar asymptotic

behaviours as in (1.7). Thereafter, in Section 4, we prove existence, uniqueness and nonexplosion for

the diffusion in time-dependent random environment that we consider (Theorem 2.1). In Section 5, we

prove that this process is a strongly Feller diffusion, which satisfies the lower local Aronson estimate

and a kind of cocycle property (Theorem 2.2). In Section 6, we prove some convergence results in order

to prove Theorems 2.3 and 2.4 in the two last Sections.

2 Model and statement of results

2.1 Diffusions in a fluctuating Ornstein-Uhlenbeck potential

In the present paper, we study Brownian motions dynamics, in time-dependent Wiener mediums, given

by the underlying dynamical random environment

{
Ttθ(x) := Set/2 θ(x) = e−t/4 θ

(
et/2x

)
: θ ∈ Θ, t,x ∈ R

}
. (2.1)

The family {Tt : t ∈ R} is a one-parameter group of transformations leaving invariant W and such

that, under this probability measure, {Ttθ(x) : t ∈R} is a stationary Ornstein-Uhlenbeck process having

N (0,x) as stationary distribution. Moreover, it can be proved that the dynamical system (Θ,B,W ,(Tt)t∈R)
is ergodic (see Proposition 6.5).

We consider, for any r ∈ R, the diffusion process Z, solution of the informal stochastic differential

equation driven by a standard Brownian motion B, independent of (Θ,B,W ),

dZt = dBt −
1

2
∂xVθ (t,Zt)dt, Zs = z ∈R, t ≥ s ≥ 0, θ ∈ Θ, with Vθ (t,x) :=

x2

2
+e−rt Ttθ(x). (2.2)

Note that when θ is equal to W , defined in (1.6), Ttθ in (2.2) is simply equal to θ and equation (2.2) is

nothing but equation (1.9). The diffusion process Z can be seen as a Brownian motion immersed in the

random time-varying potential {Vθ (t, ·) : t ∈ R}, as well as an Ornstein-Uhlenbeck diffusion process,

whose potential is perturbed by the dynamical Wiener medium {e−rt Ttθ : t ∈ R}. Moreover, one can
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see Z as a distorted Brownian motion, whose drift is a Gaussian field {Γ(t,x) : t,x ∈ R} having mean

function mΓ and covariance function CΓ (here a Dirac measure) given by

mΓ(t,x) =− x

2
and CΓ(t,x;s,z) =

1

4
e
−
[
r(t+s)+ |t−s|

4

]

δ (et/2x− es/2z). (2.3)

We need to give a correct sense to solution of equation (2.2). Formally, we can see Z as the diffusion

process, whose conditional infinitesimal generator, given the environment θ ∈ Θ, is

Lθ := Lθ ,t +
∂

∂ t
:=

[
1

2
eVθ (t,x) ∂

∂x

(
e−Vθ (t,x) ∂

∂x

)]
+

∂

∂ t
. (2.4)

The domain and the socalled generalized domain of Lθ are defined by

D(Lθ ) :=
{

F ∈ C1 : e−Vθ ∂xF ∈ C1
}

and D(Lθ ) :=
{

F ∈ W
1,∞
loc : e−Vθ ∂xF ∈ W

1,∞
loc

}
(2.5)

where C1 and W
1,∞
loc denote the space of real continuous functions F(t,x) on [s,∞)×R such that the

partial derivatives ∂tF and ∂xF (in the sense of distributions) exist and are respectively continuous func-

tions and locally bounded functions. This kind of diffusion operators, with distributional drift, has been

already study in [30, 31] in the case where the coefficients of the stochastic differential equation do not

depend on time. Rigorously speaking, a weak solution to equation (2.2) is a solution to the martingale

problem related to (Lθ ,D(Lθ )).

Definition 2.1. A continuous stochastic process {Zt : t ≥ s} defined on a given filtered probability space
is said to be a weak solution to equation (2.2) if Zs = z and if there exists an increasing sequence of
stopping time {τn : n ≥ 0} such that, for all n ≥ 0 and F ∈ D(Lθ ),

F(t ∧ τn,Zt∧τn)−
∫ t∧τn

s
Lθ F(u,Zu)du, t ≥ s, (2.6)

is a local martingale, with
τe := sup

n≥0

inf{t ≥ s : |Zt | ≥ n}= sup
n≥0

τn. (2.7)

A weak solution is global when the explosion time satisfies τe =∞ a.s. and we said that the weak solution
is unique if all weak solutions have the same distribution.

We are now able to state our first result.

Theorem 2.1. For all r ∈ R, θ ∈ Θ, s ≥ 0 and z ∈ R, there exists a unique global weak solution Z to
equation (2.2). Moreover, there exists a standard Brownian motion B such that, for all F ∈ D(Lθ ),

F(t,Zt) = F(s,z)+
∫ t

s
Lθ F(u,Zu)du+

∫ t

s
∂xF(u,Zu)dBu, t ≥ s. (2.8)

Since the one-dimensional equation (2.2) is not time-homogeneous, there are not simple conditions

which characterized the nonexplosion as in [4, 30, 31]. Therefore, the main difficulty is to construct Lya-

punov functions in order to prove the nonfiniteness of the explosion time (see Proposition 4.2). Existence

and uniqueness are obtained by considering the equivalent one-dimensional stochastic differential equa-

tion with random continuous coefficients (4.3) (see Proposition 4.1), which is naturally connected to

equation (2.2), via the pseudo-scale function Sθ defined in (4.1). This method is a generalization in the

time-inhomogeneous setting of that employed in [4, 31, 30] and which uses the effective scale function.

4



2.2 Strong Feller property, cocycle property and lower local Aronson estimate

In the following, we denote by Ps,z(θ) the distribution of the weak solution of equation (2.2), called the

quenched distribution, which existence is stated in Theorem 2.1. We introduce the canonical process

{Xt : t ≥ 0} on the space of continuous functions from [0,∞) to R, endowed with its natural Borel σ -

field F , and we denote by Pθ (s,z; t,dx) and Ps,t(θ), the probability transition kernel and the associated

Markov kernel defined, for all measurable nonnegative function F on R by

Ps,t(θ)F(z) := Es,z(θ) [F(Xt)] =
∫

R

F(x)Pθ (s,z; t,dx). (2.9)

Theorem 2.2. For all r ∈ R and θ ∈ Θ, {Ps,z(θ) : s ≥ 0, z ∈ R} is a strongly Feller continuous family.
Moreover, the time-inhomogeneous semigroups {Ps,t(θ) : t ≥ s ≥ 0, θ ∈ Θ} satisfy

Ps,s+t(θ) = P0,t(e
−rs Tsθ) and P0,s+t(θ) = P0,s(θ)P0,t(e

−rs Tsθ). (2.10)

Besides, Pθ (s,z; t,dx) admits a density pθ (s,z; t,x), which is measurable with respect to (θ ,s, t,z,x) on
Θ×{t > s ≥ 0}×R

2, and which satisfies the lower local Aronson estimate: for all θ ∈ Θ, T > 0 and
compact set C ⊂ R, there exists M > 0 such that, for all 0 ≤ s < t ≤ T and z,x ∈C,

pθ (s,z; t,x) ≥ 1√
M(t − s)

exp

(
−M

|z− x|2
t − s

)
. (2.11)

The idea is to study the equivalent stochastic differential equation (4.3) and to prove a similar theo-

rem (see Theorem 5.1) by using standard technics.

Besides, the transition density being measurable with respect to θ , we can define the annealed dis-

tribution P̂s,z and the associated Markov kernel P̂s,t as

P̂s,z := EW [Ps,z] :=
∫

Θ
Ps,z(θ)W (dθ) and P̂s,t := EW [Ps,t ] :=

∫

Θ
Ps,t(θ)W (dθ). (2.12)

We point out that {P̂s,t : t ≥ s ≥ 0} is no longer a semigroup and that the canonical process is not a

Markov process under the annealed distribution P̂s,z. Moreover, in the light of (2.10), we can assume

without loss of generality that s = 0 in (2.2) and we set

Pz(θ) := P0,z(θ), Pθ(z; t,dx) = Pθ (0,z; t,dx), pθ (z; t,x) = pθ (0,z; t,x),

Pt(θ) := P0,t(θ) and P̂t := P̂0,t . (2.13)

Furthermore, we can see that the case where r = 0 is of particular interest since relation (2.10) can be

written in this situation

Ps,s+t(θ) = Pt(Tsθ) and Ps+t(θ) = Ps(θ)Pt(Tsθ). (2.14)

Roughly speaking, the diffusion equation (2.2) is time-homogeneous in distribution since from the scal-

ing property W is (Tt)-invariant. The relation (2.14) is called the cocycle property and it induces (see

[32] for a definition) a random dynamical system (RDS) over (Θ,B,W ,(Tt)) on the set M of signed

measures on R, by setting, for all ν ∈ M ,

νPt(θ)(dx) :=

∫

R

Pθ (z; t,dx)ν(dz) =

(∫

R

pθ (z; t,x)ν(dz)

)
dx. (2.15)

Note that the set of probability measure on R, denoted by M1, is invariant under this RDS.
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2.3 Quasi-invariant and stationary probability measures

To state our next important results, we need to introduce some additional notations and definitions. We

said that µ is a random probability measure on R, over (Θ,B,W ), if µθ ∈ M1 for W -almost surely

θ , and if θ 7−→ µθ (A) is measurable for all Borel set A. For such random probability measure µ , we

introduce the probability measure µ̂ defined by

µ̂ := EW [µ ] :=

∫

Θ
µθ W (dθ). (2.16)

Let Uα and Vα be the functions on R defined by

Uα(x) := exp

(
α

x2

2

)
and Vα(x) := exp(|x|α ). (2.17)

The Uα -total variation norm and the Vα -total variation norm of ν ∈ M are defined as in [33] by

‖ν‖Uα := sup
| f |≤Uα

|ν( f )| and ‖ν‖Vα := sup
| f |≤Vα

|ν( f )|, (2.18)

the supremum being taken on the set of bounded measurable functions f on R. Note that if ν ∈M1 then

‖ν‖Uα and ‖ν‖Vα are nothing but ν(Uα) and ν(Vα). In addition, we set

MUα := {ν ∈ M : ‖ν‖Uα < ∞}, MVα := {ν ∈ M : ‖ν‖Vα < ∞},
M1,Uα = M1 ∩MUα and M1,Vα = M1 ∩MVα . (2.19)

Theorem 2.3. Assume that r = 0. There exists a random probability measure µ on R over (Θ,B,W ),
unique up to a W -null set, such that, for all t ≥ 0,

µθ Pt(θ) = µTt θ W -a.s. (2.20)

Moreover, for all α ∈ (0,1), the quasi-invariant measure satisfies

µθ ∈ M1,Uα W -a.s. and µ̂ ∈ M1,Vα . (2.21)

Furthermore, there exists λ > 0 such that, for all ν ∈ M1,Uα and ν̂ ∈ M1,Vα ,

limsup
t→∞

log
(
‖νPt(θ)−µTt θ‖Uα

)

t
≤−λ W -a.s. (2.22)

and
lim
t→∞

∥∥∥ν̂P̂t − µ̂
∥∥∥

Vα

= 0. (2.23)

Linear RDSs has been studied in an extensive body of the literature. The dynamics (in particular the

Lyapunov exponents) in the case where the discrete-time linear RDS acts on a finite dimensional space

(the case of infinite products of random matrices) has been well understood for a long time, for instance

in [34, 35], whereas the situation where the general linear RDS acts on a separable Banach space has

been newly studied in [36].

Our goal in Theorem 2.3 is to obtain a quasi-invariant probability measure for the random Markov

kernels Pt(θ) and to give convergence results in the separable Banach space MUα (exponential conver-

gence) and MVα . We need a kind of random Perron-Frobenius theorem, which has been, for example,

obtained in [37] for infinite products of nonnegative matrices, and more recently in [38] for infinite

products of stationary Markov kernels over a compact set.
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However, the Markov operators that we consider act on the infinite dimensional space M and are

defined over the noncompact set R. To overcome this problem, we need to see that Uα and Vα are Foster-

Lyapunov functions (see Propositions 6.2 and 6.3). More precisely, we show that Lyapunov exponents

can be chosen independently of the environment θ , while keeping a control on the expectation of the

Uα -norm and the Vα -norm. The classical method to construct Foster-Lyapunov functions for Markov

kernels is to construct Lyapunov functions for the infinitesimal generators (see Lemma 6.1 and 6.2).

Nonetheless, we stress that neither Uα nor Vα belong to the generalized domain D(Lθ ) and we need

to approximate uniformly these functions by functions of this domain, while keeping a control on the

expectation under the Wiener measure. This is possible by using the Hölder continuity of Brownian

paths (see Proposition 6.1).

Then, we use the explicit bound on convergence of time-inhomogeneous Markov chains (see Propo-

sition 6.4), obtained from [33], via coupling constructions, Foster-Lyapunov conditions and the cocycle

property, together with the ergodicity of the underlying dynamical system (Θ,B,W ,(Tt)t∈R). We point

out that the Aronson estimate (2.11) is necessary to the coupling constructions.

Furthermore, let us denote by {Ut : t ≥ 0} the canonical process on the space Ξ of continuous

functions from [0,∞) to Θ, endowed with its natural σ -field G , and introduce the Markov kernels Πθ ,z

on (Ξ×Ω,G ⊗F ), and the probability measure µ on (Θ×R,B⊗B(R)), respectively defined by the

product and disintegration formula

Πθ ,z := δ{Ttθ :t≥0}⊗Pz(θ) and µ(dω ,dx) := W (dω)µω (dx). (2.24)

Then we can see that {(Ut ,Xt) : t ≥ 0} is a time-homogeneous Markov process under Πθ ,z such that µ

is an invariant initial distribution. This process is called the skew-product Markov process (see [39, 40]

for the discrete-time situation). By applying standard results on general time-homogeneous Markov

processes (see for instance [41]) we deduce that for all F ∈ L1(Θ×R,µ), z ∈ R and W -a.s. θ ∈ Θ,

lim
t→∞

1

t

∫ t

0
F(Uτ ,Xτ)dτ =

∫

Θ×R

F(ω ,x)µ(dω ,dx), Πθ ,z-a.s. (2.25)

Moreover, we note that equation (2.21) provides some information on the tails of µθ and µ̂ . Especially,

one can see that for all α ∈ (0,1), there exists a random variable C : Θ −→ (0,∞) and Ĉ > 0 such that,

for all R ≥ 0,

µθ ((R,∞))≤Cθ exp

(
−α

R2

2

)
W -a.s. and µ̂((R,∞))≤ Ĉ exp(−Rα) . (2.26)

Theorem 2.4. Assume that r > 0. For all z ∈ R and for W -almost surely θ ∈ Θ, the following conver-
gence holds under Pz(θ),

lim
t→∞

Xt
(d)
= N (0,1). (2.27)

Here the space-time mixing environment is, contrary to Theorem 2.20, asymptotically negligible and

the diffusion behaves, in long time, has the underlying Ornstein-Uhlenbeck process. Since the cocycle

property (2.14) is no longer satisfied, we loss the structure of linear RDS. To prove this result, we

use once-again Proposition 6.4 but we also need to apply [17, Lemma 4.5] to the equivalent stochastic

differential equation with random continuous coefficients (4.3). Following the terminology used in [17],

it is not difficult to see that this equation is asymptotically time-homogeneous and S∗Γ-ergodic, with

S the scale function of the Ornstein-Uhlenbeck diffusion process having Γ ∼ N (0,1) as stationary

distribution and S∗Γ the pushforward distribution of Γ by S. As they mention in [17], the main difficulty

to apply this lemma is usually to show the boundedness in probability. To this end, we need to use again

the Foster-Lyapunov functions Uα and Vα .
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3 Application to time-inhomogeneous Brox’s diffusions

3.1 Associated models

We turn now to our main application, the study of the socalled time-inhomogeneous Brox’s diffusion.

We consider, for any β ∈R, the informal stochastic differential equation driven by a standard Brownian

motion B, independent of the environment (Θ,B,W ),

dYt = dBt −
1

2

θ ′(Yt)

tβ
dt, Yu = y ∈ R, t ≥ u > 0, θ ∈ Θ. (3.1)

A solution to equation (3.1) is, in the same manner as in definition 2.1, the diffusion whose conditional

generator, given θ ∈ Θ, is

Lθ :=

[
1

2
eθ (x)/tβ ∂

∂x

(
e−θ (x)/tβ ∂

∂x

)]
+

∂

∂ t
, (3.2)

with domain

D(Lθ ) :=
{

F(t,x) ∈ C1 : e−θ (x)/tβ

∂xF(t,x) ∈ C1
}
. (3.3)

As for equation (2.2), where we can assume without loss of generality that s = 0, we can assume that

u = 1 in equation (3.1). Moreover, as in (1.9), we assume that β = r − 1/4 and we define, for all

continuous functions ω on [1,∞) and all measurable function G on [1,∞)×R, Φe(ω)(t) := ω(et)/et/2

and E G(t,x) := G(et ,et/2x). It is a simple calculation to see that E : D(Lθ ) −→ D(Lθ ) is a bijection

and that Lθ = E ◦Lθ ◦E −1. In the same way as in [17, Proposition 2.1 and Section 2.2.1] we deduce

that {Yt : t ≥ 1} is a weak solution to equation (3.1) if and only if {Zt := Φe(Yt) : t ≥ 0} is a weak

solution to equation (2.2). Then a direct application of Theorem 2.1 gives that for all θ ∈ Θ, there

exists a unique irreducible strongly Feller diffusion process solution to equation (3.1). Let Qy(θ) be its

quenched distribution and denote by {Rt(θ) : t ≥ 1}, the time-inhomogeneous semigroup associated to

{Xt/
√

t : t ≥ 1} under Qy(θ), and by Q̂y and {R̂t : t ≥ 1} there annealed counterparts.

3.2 Associated asymptotic behaviours

The following two corollaries are the analogous of Theorems 2.3 and 2.4. We recall that Sλ , λ > 0,

defined in (1.2), denote the standard scaling transformations on the Wiener space.

Corollary 3.1. Assume that β = 1/4. For all α ∈ (0,1) there exists λ > 0 such that, for all ν ∈ M1,Uα

and ν̂ ∈ M1,Vα ,

limsup
t→∞

log

(∥∥∥νRt(θ)−µS√t θ

∥∥∥
Uα

)

log t
≤−λ W -a.s. (3.4)

and
lim
t→∞

∥∥∥ν̂R̂t − µ̂
∥∥∥

Vα

= 0. (3.5)

Corollary 3.2. Assume that β > 1/4. For all y ∈ R and for W -almost surely θ ∈ Θ, the following
convergence holds under Qy(θ),

lim
t→∞

Xt√
t

(d)
= N (0,1). (3.6)

The scaling limits (3.4), (3.5) and (3.6) are to be compared with the two convergences presented in

(1.7) (the deterministic situation studied in [17]) and convergences (1.4) and (1.5) (the random time-

homogeneous situation considered in [4]). These results have some commons features with those pre-

sented in [17] and [4] and also with those presented in [10, 19, 11, 20, 26, 27, 28, 29] concerning the
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quenched central limit theorem (3.6). There is still a phase transition phenomenon for β = 1/4 and

we obtain distinct quenched and annealed scaling limits for the critical point. Moreover, we are more

accurate concerning the speed of convergence, which is polynomial here, and exponential in Theorem

2.3.

Nevertheless, the case where β < 1/4 seems to be out of range of the present technics. In fact, we

wait a stronger localization phenomenon and a subdiffusive behaviour of order t2β log2(t) when β ≥ 0

and an almost sure convergence when β < 0 (which can seen as a generalization and mixture of results

presented in (1.4), (1.5) and (1.8)). Note that in the case where β < 0 equation (3.1) is (via a simple

change of time) a damped stochastic differential equation in random environment. Furthermore, some

methods elaborated in this paper can be used to study a similar interesting situation where we replace

the Brownian environment θ in (3.1) by an another self-similar process. These situations are object of

some works in progress. The case of a multiplicative noise or similar equations in higher dimension

seems to be more difficult.

4 Proof of Theorem 2.1

Theorem 2.1 will be a direct consequence of Propositions 4.1 and 4.2.

4.1 Equivalent SDE and martingale problem

We introduce an auxiliary stochastic differential equation, which is naturally connected to equation (2.2).

Let S and H be the functions on Θ×R
2 defined by

Sθ (t,x) :=

∫ x

0
eVθ (t,y)dy = e−t/2

∫ et/2x

0
exp

(
e−tz2

2
− e−(

t
4
+r)θ(z)

)
dz and Sθ (t,Hθ (t,x)) = x. (4.1)

Recall that the time-dependent random potential V is defined in (2.2) and note that H is well defined

since the socalled pseudo-scale function x 7−→ Sθ (t,x) is an increasing bijection of R. Moreover, by

using the second representation of Sθ , obtained by the change of time z := et/2y, we can see that Sθ (t,x)
and Hθ (t,x) are continuously differentiable with respect to (t,x) ∈ R

2 and we can set

σθ (t,x) := (∂xSθ )(t,Hθ (t,x)) and dθ (t,x) := (∂tSθ )(t,Hθ (t,x)). (4.2)

Then we can consider, for any θ ∈ Θ, the stochastic differential equation with continuous coefficients

and driven by a standard Brownian motion B, independent of (Θ,B,W ),

dZt = σθ (t,Zt)dBt +dθ (t,Zt)dt, Zs = z ∈R, t ≥ s ≥ 0. (4.3)

Remark that, for all (θ ,s, t,x) ∈ Θ×R
3,

Sθ (s+ t,x) = S(e−rsTsθ )(t,x), Hθ (s+ t,x) = H(e−rsTsθ )(t,x)

σθ (s+ t,x) = σ(e−rsTsθ )(t,x) and dθ (s+ t,x) = d(e−rsTsθ )(t,x). (4.4)

Let C1,2 be the space of continuous functions F(t,x) on [s,∞)×R such that ∂tF , ∂xF and ∂ 2
xxF exist and

are continuous functions and denote by Lθ the generator of (4.3) given by

Lθ := Lθ ,t +
∂

∂ t
:=

[
σ 2

θ (t,x)

2

∂ 2

∂x2
+dθ (t,x)

∂

∂x

]
+

∂

∂ t
. (4.5)

Note that Sθ and Hθ induce two bijections from the space of measurable functions on [s,∞)×R into

itself, inverse to each other, by setting

Sθ F(t,x) := F(t,Sθ (t,x)) and Hθ F(t,x) := F(t,Hθ (t,x)). (4.6)
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By restriction, we get that Sθ and Hθ induce bijections

Sθ : C1,2 −→ D(Lθ ), Hθ : D(Lθ )−→ C1,2 and

Sθ : W
1,2,∞
loc −→ D(Lθ ), Hθ : D(Lθ )−→ W

1,2,∞
loc , (4.7)

where W
1,2,∞
loc denote the Sobolev space of continuous functions F(t,x) on [s,∞)×R, such that the

partial derivatives ∂tF , ∂xF , ∂t(∂xF) and ∂ 2
xxF exist and are locally bounded functions. Moreover, the

infinitesimal generators Lθ and Lθ are equivalent. More precisely, they satisfy

Sθ
−1 ◦Lθ ◦Sθ = Lθ . (4.8)

Proposition 4.1. For all r ∈R, θ ∈ Θ, s ≥ 0 and z,z ∈R such that z := Sθ (s,z), the process {Zt : t ≥ s}
is a weak solution to equation (2.2) if and only if {Zt := Sθ (t,Zt) : t ≥ s} is a weak solution (up to the
explosion time τe) to the stochastic differential equation (4.3). Furthermore, there exists a unique weak
solution (Z,B) and, for all G ∈ W

1,2,∞
loc ,

G(t,Zt) = G(s,z)+
∫ t

s
Lθ G(u,Zu)du+

∫ t

s
∂xG(u,Zu)σθ (u,Zu)dBu, s ≤ t < τe. (4.9)

Proof. Assume that Z be a weak solution to equation (4.3). By using the Ito formula, Z solves the

martingale problem related to (Lθ ,C
1,2). Therefore, Zs = z and there exists an increasing sequence of

stopping time {τn : n ≥ 0} such that, for all n ≥ 0 and G ∈ C1,2,

G(t ∧ τn,Zt∧τn)−
∫ t∧τn

s
Lθ G(u,Zu)du, t ≥ s,

is a local martingale, with

τe := sup
n≥0

inf{t ≥ s : |Zt | ≥ n}= sup
n≥0

τn.

We deduce from relation (4.8) that {Zt := Hθ (t,Zt) : t ≥ s} is a weak solution to (2.2) since Zs = z, for

all n ≥ 0 and F ∈ D(Lθ ), G := Hθ F ∈ C1,2, and

F(t ∧ τn,Zt∧τn)−
∫ t∧τn

s
Lθ F(u,Zu)du = G(t ∧ τn,Zt∧τn)−

∫ t∧τn

s
Lθ G(u,Zu)du.

A similar reasoning allow us to show that if Z is a weak solution to equation (2.2) then {Zt := Sθ (t,Zt) :

t ≥ s} is a weak solution to equation (4.3). Moreover, equation (4.3) has continuous coefficients σθ and

dθ and is strictly elliptic (that is σθ > 0) and we deduce, by using classical arguments of localization

(see, for instance, [42, p. 250-251]), that there exists a unique weak solution (Z,B). Furthermore, by

using the classical Ito-Krylov formula (see, for instance, [43, Chapter 10] or [44, p. 134]), we obtain

(4.9).

4.2 Chain rules

To construct Lyapunov functions for the infinitesimal generator Lθ we need to give the associated chain

rules. For all θ ∈ Θ and ϕ ∈W
1,∞
loc (the space of real continuous functions such that the partial derivatives

in the sense of distributions exist and are locally bounded functions) define

Fϕ
θ (t,x) :=

∫ x

0
exp
[
e−rt Ttθ(y)

]
ϕ(t,y)dy ∈ D(Lθ ). (4.10)

By standard computations, we get the following chain rules
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Lθ ,tF
ϕ
θ (t,x) =

1

2
exp
[
e−rt Ttθ(x)

](
∂xϕ(t,x)− xϕ(t,x)

)
, (4.11)

and

∂tF
ϕ

θ (t,x) =
x

2
exp
[
e−rt Ttθ(x)

]
ϕ(t,x)− 1

2
Fϕ

θ (t,x)+
∫ x

0
exp
[
e−rt Ttθ(y)

](
∂tϕ(t,y)− y

2
∂xϕ(t,y)

)
dy

−
(

1

4
+ r

)∫ x

0
exp
[
e−rt Ttθ(y)

](
e−rt Ttθ(y)

)
ϕ(t,y)dy. (4.12)

4.3 Nonexplosion

Proposition 4.2. For all r ∈ R, θ ∈ Θ, s ≥ 0 and z ∈ R, the explosion time of any weak solution Z to
equation (2.2) is infinite a.s.

Proof. Let 0 < α < 1/2 and Uα be the function defined in (2.17) and set

Uθ (t,x) := 1+

∫ x

0
exp
[
e−rt Ttθ(y)

]
U ′

α(y)dy ∈ D(Lθ ).

We shall prove that Uθ is a Lyapunov function, in the sense that, for all T > 0, there exists λ > 0 such

that, for all 0 ≤ t ≤ T and x ∈R,

LθUθ (t,x) ≤ λUθ (t,x) and lim
|x|→∞

inf
0≤t≤T

Uθ (t,x) = ∞. (4.13)

Note that, since θ is continuous and lim|x|→∞ θ(x)/x2 = 0, the second relation in (4.13) is clear. More-

over, by using (4.11) and (4.12), we can see that

Lθ ,tUθ (t,x) =−α(1−α)

(
1− 1

(1−α)x2

)
x2 exp

[
e−rtTtθ(x)

]
Uα(x) (4.14)

and

∂tUθ (t,x) =
α

2
x2 exp

[
e−rt Ttθ(x)

]
Uα(x)− (Uθ (t,x)−1)−

∫ x

0

αy2

2
exp
[
e−rt Ttθ(y)

]
U ′

α(y)dy

−
∫ x

0

(
1

4
+ r

)
exp
[
e−rt Ttθ(y)

](
e−rt Ttθ(y)

)
U ′

α(y)dy. (4.15)

We can see that for x sufficiently large

−α(1−α)

(
1− 1

(1−α)x2

)
+

α

2
< 0. (4.16)

Then we get from (4.14) that there exist L1 > 0 and a compact set C such that, for all 0 ≤ t ≤ T and

x ∈ R,

Lθ ,tUθ (t,x)+
α

2
x2 exp

[
e−rt Ttθ(x)

]
Uα(x)≤ L11C(x) ≤ L1Uθ (t,x). (4.17)

Besides, can see that there exists L2 > 0 such that, for all 0 ≤ t ≤ T and y ∈R,

αy2

2
+

(
1

4
+ r

)
≥ αy2

4
−L2 (4.18)

We deduce from (4.18), (4.17) and (4.15) that (4.13) is satisfied with λ := L1 +L2. By using a classical

argument (see for instance [42, Theorem 10.2.1]), we can complete the proof.
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5 Proof of Theorem 2.2

We show that it suffices to prove the analogous theorem for diffusion equation (4.3).

Theorem 5.1. For all r ∈ R and θ ∈ Θ, {Ps,z(θ) : s ≥ 0, z ∈ R} is a strongly Feller continuous family.
Moreover, the time-inhomogeneous semigroups {Ps,t(θ) : t ≥ s ≥ 0, θ ∈ Θ} satisfy

Ps,s+t(θ) = P0,t(e
−rsTsθ) and P0,s+t(θ) := P0,s(θ)P0,t(e

−rsTsθ). (5.1)

Besides, Pθ (s,z; t,dx) admits a density pθ (s,z; t,x), which is measurable with respect to (θ ,s, t,z,x) on
Θ×{t > s ≥ 0}×R

2, and which satisfies the lower local Aronson estimate: for all θ ∈ Θ, T > 0 and
compact set C ⊂ R, there exists M > 0 such that, for all 0 ≤ s < t ≤ T and z,x ∈C,

pθ (s,z; t,x) ≥ 1√
M(t − s)

exp

(
−M

|z− x|2
t − s

)
. (5.2)

Indeed, let Ps,z(θ) be the distribution of the solution to equation (4.3) and denote by Pθ (s,z; t,dx) and

by Ps,t(θ) the associated transition kernels and Markov kernels. Firstly, assume that {Ps,z(θ) : s ≥ 0, z ∈
R} is strongly Feller continuous. One get by using Proposition 4.1 that, for all bounded measurable

function F on [0,∞)×R, t ≥ s ≥ 0 and z ∈R,

Es,z(θ)[F(t,Xt)] = Es,Sθ (s,z)(θ)[F(t,Hθ (t,Xt))].

Since Sθ is continuous on R
2, we deduce that {Ps,z(θ) : s ≥ 0, z ∈R} is also strongly Feller continuous.

Secondly, assume that {Ps,t(θ) : t ≥ s ≥ 0} satisfies relations (5.1). We get from (4.4) and Proposition

4.1 that, for all nonnegative function F on R, s, t ≥ 0 and z ∈ R,

Ps,s+t(θ)F(z) = Ps,s+t(θ) [F(Hθ (s+ t,⋆))] (Sθ (s,z))

= P0,t(e
−rsTsθ)

[
F(H(e−rsTsθ )(t,⋆))

]
(S(e−rsTsθ )(0,z)) = P0,t(e

−rsTsθ)F(z).

By using the Markov property, we obtain relations (2.14). Finally, if Pθ (s,z; t,dx) admits a measurable

density pθ (s,z; t,x) which satisfies the lower local Aronson estimate (5.2). Once again, Proposition 4.1

applies and gives that Pθ (s,z; t,dx) admits a density p such that

pθ (s,z; t,x) = pθ (s,Sθ (s,z); t,Sθ (t,x))e
Vθ (t,x).

Since Sθ is a locally Lipschitz function, we deduce that pθ (s,z; t,dx) is also measurable and satisfies

(2.11). This completes the proof, excepted for Theorem 5.1.

Proof. Since equation (4.3) is strictly elliptic (σθ > 0) and has continuous coefficients, it is classical (see

for instance [42, Corollary 10.1.4]) that its unique weak solution is a strongly Feller continuous diffusion,

which admits transition densities pθ (s,z; t,x) measurable with respect to (s, t,z,x)∈ {t > s ≥ 0}×R
2 for

each θ ∈ Θ. Moreover, we can see that relations (5.1) are direct consequences of the Markov property

and (4.4). We need to prove the measurability of p on Θ×{t > s ≥ 0}×R
2 and the lower local Aronson

estimate (5.2). To this end, set for all δ ≥ 0,

Pδ ,θ (s,z; t,dx) := Ps,z(θ)(Xt ∈ dx, τδ (s)> t) = P
(δ )
s,z (θ)(Xt ∈ dx, τδ > t)

with

τδ (s) := inf{t ≥ s : |Xt | ≥ δ}∧T.
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Here P
(δ )
s,z (θ) denotes the distribution of the truncated diffusion process, whose coefficients are given on

[s,∞)×R by

d(δ )
θ (t,x) := dθ (t ∧T,(x∧δ )∨−δ ) and σ

(δ )
θ (t,x) := σθ (t ∧T,(x∧δ )∨−δ ).

It is not difficult to see that the fundamental solution p(δ )θ of the associated partial differential equation

(PDE) satisfies the global Aronson estimates. Indeed, even if the associated partial differential operator

is not of divergence form, we can see that it is equivalent to a uniformly elliptic divergence type operator,

with bounded coefficients, employing the change of scale defined on [s,∞)×R by

k(δ )θ (t,x) :=
∫ x

0

1

(σ
(δ )
θ (t,y))2

exp

(
2

∫ y

0

d(δ )
θ (t,z)

(σ
(δ )
θ (t,z))2

dz

)
dy.

Therefore the results in [45] apply and we deduce that the fundamental solution q(δ )θ of the associated

PDE satisfies the global lower local Aronson estimate. Since k(δ )θ is locally Lipschitz and

p(δ )θ (s,z, t,x) = q(δ )θ (s,k(δ )θ (s,z), t,k(δ )θ (t,x))∂xk(δ )θ (t,x),

it is the same for p(δ )θ . Then, following exactly the same lines as the proof of [46, Theorem II.1.3] in the

time-homogeneous situation, we can prove that, for all 0 < η < 1, there exists M > 0 such that, for all

0 ≤ s < t ≤ T , |z| ≤ ηδ ,|x| ≤ ηδ and |t − s| ≤ (ηδ )2,

p(δ )θ (s,z, t,x) ≥ 1√
M(t − s)

exp

(
−M

|x− z|2
t − s

)
.

Since p ≥ pδ we deduce that p satisfies (5.2) by taking δ sufficiently large. It remains to prove the

measurability of p. Since (θ, t,x) 7−→σθ (t,x) and (θ , t,x) 7−→ dθ (t,x) are continuous on Θ×R
2, we can

apply [42, Theorem 11.1.4] and we deduce that, for all bounded continuous function G on the canonical

space Ω, (θ ,s,z) 7−→ Es,z(θ)[G] is continuous on Θ× [0,∞)×R. Then we can see that, for all bounded

measurable function F on R, (θ ,s,z, t) 7−→Es,z(θ)[F(Xt)] is measurable on Θ×{t > s≥ 0}×R. Indeed,

assume that F is L-lipschitz. We can write, for all compact set K of the canonical space Ω,

|Es,z(θ)[F(Xt)]−Es0,z0
(θ0)[F(Xt0)]| ≤ LPs,z(θ)(Ω\K)+LEs,z(θ)[1K |Xt −Xt0 |]

+ |Es,z(θ)[F(Xt0)]−Es0,z0
(θ0)[F(Xt0)]|.

By letting (s,z,θ , t) −→ (s0,z0,θ0, t0) and by using the tightness of the family of probability measure

{Ps,z(θ) : s ≥ 0, z ∈ R, θ ∈ Θ} we get the continuity and we deduce our claim since any measurable

bounded function is the pointwise limit of a sequence of lipschitzian functions. Therefore, we can

define the measure ν on the product measurable space Θ×R
4 by setting, for all B ∈ B and Ik ∈ B(R),

k ∈ {1, · · · ,4},

ν

(
B×

4

∏
k=1

Ik

)
:=
∫

B×(∏3
k=1 Ik)

Pθ (s,z, t, I4)1t>s≥0 W (dθ)dsdz dt

By standard results on disintegration of measures, the Radon-Nykodym derivative of ν with respect to

W (dθ)dsdz dt dx, which is nothing but pθ (s,z, t,x), is measurable.
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6 Preliminaries of Theorems 2.3 and 2.4

6.1 Uniform affine approximations of the environment

In the following, set for all γ ∈ (0,1/2) and θ ∈ Θ,

Hγ(θ) := sup
n≥0

‖θ+‖γ ,n +‖θ−‖γ ,n

L(n)
, Θγ := {0 < Hγ < ∞}, (6.1)

with, for all n ≥ 0 and x ∈ R,

‖θ±‖γ ,n := sup
n≤x<y≤n+1

|θ(±y)−θ(±x)|
|y− x|γ and L(x) :=

√
1+ log(1+ |x|). (6.2)

In addition, denote for all ε > 0 by Aγ ,ε(θ) (see figure 1 below) the piecewise linear approximation of θ ,

associated to the subdivision Sγ ,ε := {xn,k : n ∈Z, 0 ≤ k ≤ mn}, defined by mn := h−1
n :=

[
L1/γ(n)ε−1

]
+

1 ∈N, xn,k := n+k hn and x−n,k :=−xn,k. Then introduce the random affine approximation Wγ ,ε defined,

for all θ ∈ Θγ by

Wγ ,ε (θ) := Aγ ,ηγ,ε (θ )(θ), with ηγ ,ε(θ) :=

(
ε

Hγ(θ)

)1/γ

, (6.3)

and set

∆γ ,ε(θ)(x) := θ(x)−Wγ ,ε (θ)(x) and Dγ ,ε(θ) := sup
x∈R

∣∣W ′
γ ,ε(θ)(x)

∣∣
L1/γ(x)

. (6.4)

Figure 1: Affine approximation of a typical Brownian path θ

Proposition 6.1. For all γ ∈ (0,1/2), Θγ is (Tt)-invariant and there exists α > 0 such that

EW

[
exp(αH2

γ )
]

:=
∫

Θ
exp
(
αH2

γ (θ)
)
W (dθ) < ∞. (6.5)

Moreover, for all ε > 0 and θ ∈ Θγ ,

sup
x∈R

|∆γ ,ε(θ)(x)| ≤ ε and Dγ ,ε(θ)≤ ε
(

1+
(
ε−1Hγ(θ)

)1/γ
)
. (6.6)

Proof. Clearly Hγ : Θ → [0,∞] is a seminorm and to get inequality (6.5) it suffices to apply the Fernique

theorem presented in [47]. We need to check that Hγ < ∞ W -a.s. By using the Hölder continuity of the

Brownian motion on compact sets, the seminorm defined on Θ by N(θ) := ‖θ+‖γ ,1 + ‖θ−‖γ ,1 is finite
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a.s. Moreover, by using the Fernique theorem and the Markov inequality, we deduce that there exists

c,β > 0 such that, for r sufficiently large,

F(r) := W ({N ≥ r})≤ EW [exp(βN2)]e−βr2 ≤ ce−βr2

.

Besides, the random variables (θ 7→ ‖θ+‖γ ,n +‖θ−‖γ ,n), n ≥ 0, being i.i.d. by using the Markov prop-

erty, we get that

lim
h→∞

W ({Hγ ≤ h}) = lim
h→∞

∞

∏
n=0

(1−F (hL(n))) ≥ lim
h→∞

∞

∏
n=0

(
1− c

nβh2

)
= 1.

Fernique’s theorem applies and we deduce (6.5). The fact that Θγ is (Tt)-invariant is obtained by noting

that, for all θ ∈ Θ and t ∈ R,

Hγ(Ttθ)≤ 2e[(γ− 1
2)

t
2 ]
(
et/2 +1

)
sup
n≥0

[
L
(
(n+1)et/2 +1

)

L(n)

]
Hγ(θ).

Furthermore, let ε > 0, n ≥ 0 and x,y ∈R be such that n ≤ x,y ≤ n+1 and |y−x| ≤ hn, where hn denotes

the step of the subdivision Sγ ,ε defined in Figure 1. We can see that

|θ±(y)−θ±(x)| ≤ L(n)Hγ(θ) hγ
n ≤ Hγ(θ)εγ

and, when |y− x|= hn, we get

|θ±(y)−θ±(x)|
|y− x| ≤ L(n)Hγ(θ)|y− x|γ−1 ≤ Hγ(θ)εγ h−1

n ≤ Hγ(θ)εγ
(

ε−1L1/γ(n)+1
)
.

Therefore, we obtain that

sup
x∈R

∣∣θ(x)−Aγ ,ε(θ)(x)
∣∣ ≤ Hγ(θ)εγ and sup

x∈R

∣∣A′
γ ,ε(θ)(x)

∣∣
L1/γ(x)

≤ Hγ(θ)εγ−1(1+ ε).

Replacing in the two last inequalities ε by ηγ ,ε(θ), defined in (6.3), we deduce the proposition.

6.2 Random Foster-Lyapunov drift conditions

6.2.1 For the infinitesimal generators

Let ϕ be a twice continuously differentiable function from [1,∞) into itself such that, ϕ(v) = 1 on [1,2],
ϕ(v) = v on [3,∞) and ϕ(v)≤ v on [0,∞). In the sequel, we set

Fγ ,ε
θ (t,x) := 1+

∫ x

0
exp
[
e−rt Tt∆γ ,ε(θ)(y)

]
U ′

α(y)dy ∈ D(Lθ ) (6.7)

and

Gγ ,ε
θ (t,x) := 1+

∫ x

0
exp
[
e−rt Tt∆γ ,ε(θ)(y)

]
G′

α(y)dy ∈ D(Lθ ), with Gα(x) := ϕ(Vα(x)). (6.8)

Here we use Gα = ϕ(Vα) in (6.8) instead of Vα because V ′
α do not belong to W

1,∞
loc (there is a singularity

in 0) contrary to U ′
α in (6.7).

Lemma 6.1. For all r ∈ R, α ∈ (0,1), γ ∈ (0,1/2), T > 0 and λ > 0, there exists ε > 0 such that, for
all 0 < ε < ε , there exist a random variable B : Θ −→ [1,∞) and p,k,c > 0 such that, for all θ ∈ Θγ ,
0 ≤ t ≤ T and x ∈ R,

Lθ F γ ,ε
θ (t,x)≤−λFγ ,ε

θ (t,x)+Bθ , with Bθ ≤ k exp
(
cH p

γ (θ)
)
. (6.9)
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Proof. The proof will be a consequence of the following two steps.

Step 1. For all 0 < δ < 1 and R ≥ 1, there exists ε1 > 0 such that, for all 0 < ε < ε1 and 0 < ℓ < 1,
there exist a map R1 : Θ −→ [R,∞) and c1 > 0 such that, for all θ ∈ Θγ , 0 ≤ t ≤ T and |x| ≥ R1(θ),

Lθ ,tF
γ ,ε
θ (t,x) ≤−δα(1−α)x2Fγ ,ε

θ (t,x), with R1(θ)≤ c1

(
H

1
γ(1−ℓ)

γ (θ)∨1

)
. (6.10)

By using chain rule (4.11) we obtain that

Lθ ,tF
γ ,ε

θ (t,x) =
(
−α(1−α)x2 −αxe−rt (TtWγ ,ε (θ))

′(x)+α
)

exp
[
e−rt Tt∆γ ,ε(θ)(x)

]
x2Uα(x), (6.11)

which can be written

Lθ ,tF
γ ,ε
θ (t,x) =−α(1−α)

[
1− 1

(1−α)x2
+

e−rt (TtWγ ,ε(θ))
′(x)

(1−α)x

]
exp
[
e−rt Tt∆γ ,ε(θ)(x)

]
x2Uα(x).

(6.12)

Moreover, one can see by using the left hand side of (6.6) that

∣∣(TtWγ ,ε (θ))
′(x)
∣∣ ≤ ϕγ(t)Dγ ,ε (θ)L

1/γ (x), with ϕγ(t) := (1+ t/2)1/2γ et/4. (6.13)

In order to simplify our calculations, introduce

q := 1∨ e−rT and Ψ(ε) := exp[qε ]. (6.14)

Note that

Ψ−1(ε)Uα(x)≤ Fγ ,ε
θ (t,x) ≤ Ψ(ε)Uα(x). (6.15)

We can choose ε1 > 0 and D ≥ R such that

(
1− 1

(1−α)D2
− q

(1−α)D

)
Ψ−2(ε1)≥ δ . (6.16)

Then we deduce the left hand side of (6.10) by using (6.16), (6.15), (6.13), (6.12) and by setting, for any

0 < ε < ε1,

R1(θ) :=
[
ϕγ(T )Dγ ,ε(θ)cγ ,ℓ∨1

] 1
1−ℓ D

1
1−ℓ , with cγ ,ℓ := sup

|x|≥1

L1/γ (x)

|x|l < ∞. (6.17)

Furthermore, the right hand side is obtained by using the right hand side of (6.6) and by choosing c1

sufficiently large. This ends the proof of Step 1.

Step 2. For all 0 < δ < 1 and R ≥ 1, there exists ε2 > 0 such that, for all 0 < ε < ε2, there exists a
constant R2 ≥ R such that, for all θ ∈ Θγ , 0 ≤ t ≤ T and |x| ≥ R,

∂tF
γ ,ε
θ (t,x) ≤ (1−δ )

α

2
x2Fγ ,ε

θ (t,x). (6.18)

By using chain rule (4.12) we get that

∂tF
γ ,ε

θ (t,x) =
α

2
x2 exp

[
e−rt Tt∆γ ,ε(θ)(x)

]
Uα(x)−

(
Fγ ,ε

θ (t,x)−1
)

−
(

1

4
+ r

)∫ x

0

(
e−rt Tt∆γ ,ε(θ)(y)

)
exp
[
e−rt Tt∆γ ,ε(θ)(x)

]
U ′

α(y)dy

−
∫ x

0

(
αy2

2

)
×
(

exp
[
e−rt Tt∆γ ,ε(θ)(x)

]
U ′

α(y)
)

dy.
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By integration by parts we obtain that

∂tF
γ ,ε

θ (t,x) =
α

2
x2 exp

[
e−rt Tt∆γ ,ε(θ)(x)

]
Uα(x)−

(
Fγ ,ε

θ (t,x)−1
)

−
(

1

4
+ r

)∫ x

0

(
e−rt Tt∆γ ,ε(θ)(y)

)
exp
[
e−rt Tt∆γ ,ε(θ)(x)

]
U ′

α(y)dy

− α

2
x2Fγ ,ε

θ (t,x)+
∫ x

0
Fγ ,ε

θ (t,y)αydy. (6.19)

Recall that q and Ψ are defined in (6.14) and note by using (6.15) and the right hand side of (6.6) that

∣∣∣∣
∫ x

0

(
e−rt Tt∆γ ,ε(θ)(y)

)
exp
[
e−rt Tt∆γ ,ε(θ)(x)

]
U ′

α(y)dy

∣∣∣∣ ≤ qεΨ2(ε)Fγ ,ε
θ (t,x) (6.20)

and ∣∣∣∣
∫ x

0
Fγ ,ε

θ (t,y)αydy

∣∣∣∣ ≤ Ψ2(ε)Fγ ,ε
θ (t,x). (6.21)

Therefore, we get from (6.21), (6.20), (6.19) and (6.15) that

∂tF
γ ,ε

θ (t,x) ≤
([

Ψ2(ε)−1
]α

2
x2 +

[
1+κqε

]
Ψ2(ε)

)
Fγ ,ε

θ (t,x), with κ := |r|+ 1

4
. (6.22)

Inequality (6.18) is then a simple consequence of (6.22) by taking ε2 > 0 and R2 ≥ R such that, for all

x ≥ R2, [
Ψ2(ε2)−1

]α

2
x2 +

[
1+qκε2

]
Ψ2(ε2)≤ (1−δ )

α

2
x2.

This completes the proof of Step 2.

We deduce Lemma 6.1 from (6.18) and (6.10). Indeed, we can choose 0 < δ < 1 and R ≥ 1 such

that (
δα(1−α)− (1−δ )

α

2

)
> 0 and

(
δα(1−α)− (1−δ )

α

2

)
R2 ≥ λ . (6.23)

We get the left hand side of (6.9) by using (6.23) and by setting ε := ε1 ∧ ε2 and

Bθ := sup
|x|≤R1(θ )∨R2,0≤t≤T

Lθ Fγ ,ε
θ (t,x), (6.24)

Moreover, by using inequalities (6.22), (6.15), (6.13) and (6.11), we can see that there exists C > 0 such

that

Lθ Fγ ,ε
θ (t,x) ≤C

(
1+Dγ ,ε(θ)|x|L1/γ (x)+ x2

)
Uα(x). (6.25)

Then it is not difficult to get the right hand side of (6.9) by taking p := 2/(γ(1− ℓ)), k,c sufficiently

large and by using (6.25), (6.24) and the right hand sides of (6.10) and (6.6). The proof of Lemma 6.1 is

done.

Lemma 6.2. For all r ∈ R, α ∈ (0,1), γ ∈ (α/2,1/2), T > 0, ε > 0 and λ > 0, there exist a random
variable B : Θ −→ [1,∞), k,c > 0 and 0 < p < 2 such that, for all θ ∈ Θγ , 0 ≤ t ≤ T and x ∈ R,

Lθ Gγ ,ε
θ (t,x)≤−λGγ ,ε

θ (t,x)+Bθ , with Bθ ≤ k exp
(
cH p

γ (θ)
)
. (6.26)

Proof. This proof uses similar ideas as the proof of Lemma 6.1 and we only give the main lines. Once

again, the proof will be a consequence of the following two steps.
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Step 1. For all 0 < δ < 1, R ≥ 1 and 0 < ℓ < 1, there exist R1 : Θ −→ [R,∞) and c1 > 0 such that, for
all θ ∈ Θγ , 0 ≤ t ≤ T and |x| ≥ R1(θ),

Lθ ,tG
γ ,ε
θ (t,x) ≤−α(1−δ )|x|α Gγ ,ε

θ (t,x), with R1(θ) ≤ c1

(
H

1
γ(1−ℓ)

γ (θ)∨1

)
. (6.27)

By using chain rule (4.11) we can see that, for all x ∈ {Vα > 3},

Lθ ,tG
γ ,ε
θ (t,x) =−α

(
1+

e−rt (TtWγ ,ε (θ))
′(x)

x
− α

|x|2−α
+

1−α

x2

)

× exp
[
e−rt Tt∆γ ,ε(θ)(x)

]
|x|α Gα(x).

Moreover, we can choose D ≥ 1 such that {Vα ≤ 3} ⊂ [−D,D] and

(
1− q

D
− α

D2−α

)
Ψ−2(ε)≥ (1−δ ).

By setting R1 as in (6.17) we can obtain Step 1.

Step 2. For all δ > 0 and R ≥ 1, there exists a constants R2 ≥ R such that, for all θ ∈ Θγ , 0 ≤ t ≤ T
and |x| ≥ R2,

∂tG
γ ,ε
θ (t,x) ≤

(α

2
+δ
)
|x|α Gγ ,ε

θ (t,x). (6.28)

By using chain rule (4.12) we can see that, for all x ∈ {Vα > 3},

∂tG
γ ,ε
θ (t,x) =

α

2
|x|α exp

[
e−rt Tt∆γ ,ε(θ)(x)

]
Vα(x)− (Gγ ,ε

θ (t,x)−1)

−
(

1

4
+ r

)∫ x

0

[
e−rt Tt∆γ ,ε(θ)(y)

]
exp
[
e−rt Tt∆γ ,ε(θ)(y)

]
G′

α(y)dy

− 1

2

∫ x

0
exp
[
e−rt Tt∆γ ,ε(θ)(y)

]
yG′′

α(y)dy.

Then we can deduce (6.28) by using similar methods as in the proof of (6.18).

We deduce Lemma 6.2 from (6.28) and (6.27) in the same manner as we get Lemma 6.1 from (6.18)

and (6.10). The main variation is that we need to choose ℓ in (6.27) such that p := α/(γ(1−ℓ))< 2.

6.2.2 For the Markov kernels

Proposition 6.2. For all r ∈ R, α ∈ (0,1), γ ∈ (0,1/2) and η ,τ ,T > 0, there exists a random variable
B : Θ −→ [1,∞) and k,c, p > 0 such that, for all κ > 0, θ ∈ Θγ , 0 ≤ s ≤ t ≤ T and x ∈ R,

Ps,t(θ)Uα (x)≤ (η +κ +1s≤t≤s+τ)Uα(x)+Bθ1x∈{Uα≤κ−1Bθ}, (6.29)

with
Bθ ≤ k exp

(
cH p

γ (θ)
)
.

Proof. Let 0 < ε < 1 be as in Lemma 6.1, λ > eq and 0 < ε < ε be such that e−λτ+2q ≤ η and e2qε ≤
η +1, where q is defined in (6.14). One can see by using Ito’s formula (2.8) that there exists a Brownian

motion W such that, under Ps,x,

eλt Fγ ,ε
θ (t,Xt) = eλsFγ ,ε

θ (s,x)+
∫ t

s
eλu (Lθ Fγ ,ε

θ +λFγ ,ε
θ )(u,Xu

)
du+

∫ t

s
eλu∂xFγ ,ε

θ (u,Xu)dWu. (6.30)
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Besides, we get from Lemma 6.1 there exist a random variable B : Θ −→ [1,∞), k,c, p > 0 such that, for

all θ ∈ Θγ , 0 ≤ s ≤ t ≤ T and x ∈ R,

Lθ Fγ ,ε
θ (t,x) ≤−λFγ ,ε

θ (t,x)+Bθ , with Bθ ≤ k exp
(
cH p

γ (θ)
)
.

Then one can see by taking the expectation in (6.30) and by using (6.15) that, for all θ ∈Θγ , 0≤ s≤ t ≤ T
and x ∈ R,

Ps,t(θ)Uα(x) ≤ e−λ(t−s)+2qεUα(x)+λ−1eqε Bθ ≤ (η +1s≤t≤s+τ)Uα(x)+Bθ .

Therefore, it follows that for all κ > 0,

Ps,t(θ)Uα(x) ≤ (η +κ +1s≤t≤s+τ)Uα(x)+Bθ1x∈{Uα≤κ−1Bθ }

and this ends the proof, excepted for Lemma 6.1.

Proposition 6.3. For all r ∈R, α ∈ (0,1), γ ∈ (α/2,1/2) and η ,τ ,T > 0, there exist a random variable
B : Θ −→ [1,∞), k,c > 0 and 0 < p < 2 such that, for all κ > 0, θ ∈ Θγ , 0 ≤ s ≤ t ≤ T and x ∈ R,

Ps,t(θ)Vα (x) ≤ (η +κ +1s≤t≤s+τ)Vα(x)+Bθ1x∈{Vα≤κ−1Bθ}, (6.31)

with
Bθ ≤ k exp

(
cH p

γ (θ)
)
.

Proof. The proof follows the same lines as the proof of Proposition 6.2 and we only give the main ideas.

Once again, by using Ito’s formula and Lemma 6.2, we can prove that there exist a random variable

B : Θ −→ [0,∞), k,c > 0 and 0 < p < 2 such that, for all θ ∈ Θγ , 0 ≤ s ≤ t ≤ T and x ∈ R,

Ps,t(θ)Gα (x)≤ (η +1s≤t≤s+τ)Gα(x)+Bθ , with Bθ ≤ k exp
(
cH p

γ (θ)
)
.

Moreover, since Gα ≤Vα and

Es,x(θ)
[
Vα(Xt)1{Vα(Xt)≥3}

]
=Es,x(θ)

[
Gα(Xt)1{Vα(Xt)≥3}

]
≤ (η +1s≤t≤s+τ)Gα(x)+Bθ ,

we obtain that

Ps,t(θ)Vα (x)≤ (η +1s≤t≤s+τ)≤ (η +1s≤t≤s+τ)Vα(x)+ (Bθ +3).

This is enough to complete the proof, excepted for Lemma 6.2.

6.3 Coupling method

6.3.1 Coupling construction

We said that C is a random (1,ε)-coupling set associated to the random Markov kernel P and the random

probability measure ν over (Θ,B,W ) on R, if ε : Θ −→ (0,1/2] is a measurable map, Cθ is a compact

set of R for W -almost surely θ ∈ Θ and

inf
z∈Cθ

Pθ(z;⋆) ≥ εθ νθ (⋆) W -a.s. (6.32)

Given a random (1,ε)-coupling set C associated to the random probability measure ν , we construct a

random Markov kernel P⋆ on R×R as follows. Let R and P be two random Markov kernels on R×R

satisfying, for all x,y ∈Cθ and A,B ∈ B(R),

Rθ (x,y;A×R) :=
Pθ(x;A)− εθ νθ (A)

1− εθ
, Rθ (x,y;R×A) :=

Pθ (y;A)− εθ νθ (A)

1− εθ
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and

Pθ (x,y;A×B) := (1− εθ )Rθ (x,y;A×B)+ εθ νθ (A∩B). (6.33)

Note that we can assume that P is a random coupling Markov kernel over P, in the sense that, for all

θ ∈ Θ, x,y ∈ R and A ∈ B(R),

Pθ (x,y;A×R) = Pθ(x;A) and Pθ (x,y;R×A) = Pθ(y;A). (6.34)

Then we define,

P⋆
θ (x,y;⋆) :=

{
Rθ (x,y;⋆), if (x,y) ∈Cθ ×Cθ ,
Pθ (x,y;⋆), if (x,y) /∈Cθ ×Cθ .

(6.35)

6.3.2 The Douc-Moulines-Rosenthal bound

In order to simplify our claims, we set

Pθ := P1(θ), Pθ(z;dx) := Pθ(0,z;1,dx), pθ (z,x) := pθ (0,z;1,x) T θ := T1θ (6.36)

and

Uα(x,y) :=
Uα(x)+Uα(y)

2
.

Moreover, we denote for any random function F : Θ −→ (0,∞), n ∈ N and j ∈ {0, · · · ,n},

F+
j,n(θ) := max

0≤n1<···<n j≤n−1

j

∏
k=1

F
(
e−rnk T nk θ

)
and

F−
j,n(θ) := max

1≤n1<···<n j≤n

j

∏
k=1

F
(

e−r(n−nk)T−nk θ
)
= F+

j,n

(
T−nθ

)
. (6.37)

Proposition 6.4. For all r ∈ R, α ∈ (0,1), γ ∈ (0,1/2) and ρ ∈ (0,∞), there exist a random variable
B : Θ −→ [1,∞), with log(B) ∈ L1(Θ,B,W ), and a random (1,ε)-coupling set C over (Θ,B,W ) on R

such that, for all θ ∈ Θγ and x,y ∈ R,

P⋆
θUα(x,y) ≤ ρUα(x,y)+Bθ1(x,y)∈Cθ×Cθ

and sup
(x,y)∈Cθ ×Cθ

RθUα(x,y) ≤
ρBθ

1− εθ
. (6.38)

Moreover, for all n ∈N, j ∈ {1, · · · ,n+1} and ν1,ν2 ∈ M1,

‖ν1Pn(θ)−ν1Pn(θ)‖Uα
≤ 2ρn

[
(1− ε)+j,n(θ)1 j≤n +B+

j−1,n(θ)
]
||ν1||Uα ||ν2||Uα

+2(1− ε)+j,n(θ)1 j≤n

n−1

∑
k=0

ρkB
(

e−r(n−k−1)T n−k−1θ
)
. (6.39)

Proof. Let η and κ be two positive constants such that ρ = η + 2κ and use Proposition 6.2 to obtain

B : Θ −→ [1,∞) and k,c, p > 0 such that, for all θ ∈ Θγ ,

PθUα ≤ (η +κ)Uα +Bθ1{Uα≤κ−1Bθ }, with Bθ ≤ k exp
(
cH p

γ (θ)
)
.

The same arguments as in the proof of [33, Proposition 11, p. 1660] applies and we can see that, for any

random Markov kernel P satisfying (6.34),

PθUα ≤ ρUα +Bθ1Cθ×Cθ
, with Cθ := {Uα ≤ κ−1Bθ}.
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We get that (6.38) is satisfied by setting Bθ :=
((

ρκ−1Bθ +Bθ

)
ρ−1

)
∨Bθ and by using (6.33). Besides,

we can see by using (6.5) that log(B) ∈ L1(Θ,B,W ) and thus similarly for log(B). Moreover, for all

θ ∈ Θγ , Cθ is a compact set and we deduce from the lower local Aronson estimate (2.11) that C is a

random (1,ε)-coupling set associated to the random probability measure ν defined, for all θ ∈ Θγ and

A ∈ B(R) by

εθ :=

(∫

R

inf
z∈Cθ

pθ (z,x)dx

)
∧ 1

2
> 0 and νθ (A) :=

∫
A infz∈Cθ

pθ (z,x)dx∫
R

infz∈Cθ
pθ (z,x)dx

.

Furthermore, we can write by using (2.14) that

Pn(θ) = P(θ) · · ·P(e−r(n−1)T n−1θ)

and therefore a direct application of [33, Theorem 8, p. 1656] gives (6.39).

6.4 Ergodicity and exponential stability of the RDS

6.4.1 Ergodicity

Proposition 6.5. The dynamical system (Θ,B,W ,(Tt)t∈R) is ergodic.

Proof. Introduce three measurable maps U± : Θ −→ Θ and St : Θ −→ Θ defined by

U±(θ) :=
(

s 7−→ e−s/4θ
(
± es/2

))
and St(θ) := (s 7−→ θ(s+ t)).

It is classical that the distribution of U± under the Wiener measure W , denoted by Γ, is the distribu-

tion of the stationary Ornstein-Uhlenbeck process having the standard normal distribution as stationary

distribution. This process is ergodic and as a consequence the dynamical system (Θ,B,Γ,(St)t∈R) is er-

godic (see for instance [48, Theorem 20.10]). Besides, it is a simple calculation to see that the following

diagram is commutative,

(Θ,B,W )
U±

//

Tt

��

(Θ,B,Γ)

St

��
(Θ,B,W )

U±
//

T−1
t

OO

(Θ,B,Γ)

S−1
t

OO

Let A ∈ B be such that T−1
t (A) = A, with t 6= 0. By using the commutativity of the previous diagram

and the ergodicity of the dynamical system (Θ,B,Γ,(St)t∈R), it follows that

S−1
t

(
U±(A)

)
=U± (T−1

t (A)
)
=U±(A) and Γ

(
U±(A)

)
= 0 or = 1.

Moreover, we can see that

U±(A) =
(
U±)−1 (

U±(A)
)

and
(
U+
)−1 (

U+(A)
)
∩
(
U−)−1 (

U−(A)
)
= A.

We conclude that W (A) = 0 or = 1 and the proof is finished.

6.4.2 Exponential stability

Lemma 6.3. Assume that r = 0 and let F as in (6.37) such that (log(F)∨0) ∈ L1(Θ,B,W ).

1. If W (F < 1) = 1 then, for all L ≥ 1, there exists λ > 0 such that

limsup
n→∞

eλn F±
[ n

L ],n
(θ) = 0 W -a.s.
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2. If W (F ≥ 1)> 0 then, for all η > 0, there exists L > 0 such that

limsup
n→∞

e−ηn F±
[ n

L ],n
(θ) = 0 W -a.s.

Proof. We prove the lemma only for F+ since the proof for F− is obtained replacing T by T−1. We set,

for all c ≥ 0 and k ≥ 1,

log
[
F(c)

k (θ)
]

:= log
[
F(T k−1θ)

]
1F(T k−1θ )≥c and F (c) := F(c)

1 .

Assume that W (F < 1) = 1. We can see that there exist 0 < c < 1 and ℓ > 0 such that

EW [1F≥c]< L−1 and EW

[
log
(
F(c))]<−ℓ.

By applying the ergodic theorem to the ergodic dynamical system (Θ,B,W ,T ) we obtain that, for

W -almost surely θ ∈ Θ and all integer n sufficiently large,

n

∑
k=1

1F(T k−1θ )≥c ≤
[n

L

]
and F+

[ n
L ],n

(θ)≤
n

∏
k=1

F(c)
k (θ)≤ e−ℓn.

Then we deduce the first point by taking 0 < λ < ℓ. Furthermore, assume that W (F ≥ 1)> 0. Note that

if F is bounded W -a.s. the second point of the lemma is obvious. Moreover, when F is unbounded with

positive probability, it is not difficult to see that there exist 0 < κ < η , c ≥ 1 and L ≥ 1 such that

EW

[
log
(
F(c))]< κ and EW [1F≥c]> L−1.

Once again, the ergodic theorem allow us to obtain the second point since, for W -almost surely θ ∈ Θ

and all integer n sufficiently large,

n

∑
k=1

1F(T k−1θ )≥c ≥
[n

L

]
and F+

[ n
L ],n

(θ) ≤
n

∏
k=1

F(c)
k (θ)≤ eκn.

Proposition 6.6. Assume that r = 0. For all α ∈ (0,1) there exists λ > 0 such that, for all families
{ν±

t : t ≥ 0} of random probability measure on R over (Θ,B,W ) satisfying

lim
t→∞

log(‖ν±
t ‖Uα )

t
= 0 W -a.s., (6.40)

the following forward and backward discrete-time convergences hold:

limsup
t→∞

log
(∥∥ν+

t (θ)P[t](θ)−ν−
t (θ)P[t](θ)

∥∥
Uα

)

t
≤−λ W -a.s. (6.41)

and

limsup
t→∞

log
(∥∥ν+

t (θ)P[t]
(
T−[t]θ

)
−ν−

t (θ)P[t]
(
T−[t]θ

)∥∥
Uα

)

t
≤−λ W -a.s. (6.42)

Proof. We prove only (6.42) since the proof of (6.41) follows the same lines by replacing T−1 by T . Let

0 < ρ < 1 be and, following Proposition 6.4, write that, for all θ ∈ Θγ , t ≥ 0 and j ∈ {0, · · · , [t]+1},

∥∥∥ν+
t P[t]

(
T−[t]θ

)
−ν−

t P[t]
(
T−[t]θ

)∥∥∥
Uα

≤ 2ρ [t]
[
(1− ε)−j,[t](θ)1 j≤[t]+B−

j−1,[t](θ)
]
||ν+

t ||Uα ||ν−
t ||Uα

+2(1− ε)−j,[t](θ)1 j≤[t]

[t]−1

∑
k=0

ρkB
(
T n−k−1θ

)
. (6.43)
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Since logB ∈ L1(Θ,B,W ), the ergodic theorem allows us to see that

lim
k→∞

log
[
B
(
T−k+1θ

)]

k
= 0,

and we get, for all η > 0,

limsup
n→∞

e−ηn

(
n−1

∑
k=0

ρkB
(
T−k+1θ

)
)

= 0 W -a.s.

Besides, one can see by using Lemma 6.3 that there exist L ≥ 1 and ℓ > 0 such that

lim
n→∞

e−ηn B−
[ n

L ],n
(θ) = 0 and lim

n→∞
eℓn (1− ε)−

[ n
L ],n

(θ) = 0.

Therefore we deduce from (6.40) the exponential convergence (6.42).

7 Proof of Theorem 2.3

Theorem 2.3 will be a consequence of Propositions 7.1 and 7.2.

7.1 Exponential weak ergodicity and quasi-invariant measure

Proposition 7.1. For all α ∈ (0,1) there exists λ > 0 such that, for all ν1,ν2 ∈ M1,Uα ,

limsup
t→∞

log(‖ν1Pt(θ)−ν2Pt(θ)‖Uα )

t
≤−λ W -a.s. (7.1)

Furthermore, there exists a unique (up to a W -null set) random probability measure µ over (Θ,B,W )
on R such that, for all α ∈ (0,1) there exists λ > 0 such that, for all ν ∈ M1,Uα ,

limsup
t→∞

log
(
‖νPt(T−tθ)−µθ‖Uα

)

t
≤−λ W -a.s. (7.2)

Moreover, for all t ≥ 0,
µθ ∈ M1,Uα and µθ Pt(θ) = µTt θ W -a.s. (7.3)

Proof. The cocycle property (2.14) allows us to write,

νPt(θ) = νP[t](θ)P{t}(T
[t]θ)

and we deduce that

‖ν1Pt(θ)−ν2Pt(θ)‖Uα
≤
(

sup
0≤u≤1

∥∥∥Pu(T
[t]θ)

∥∥∥
Uα

)∥∥ν1P[t](θ)−ν2P[t](θ)
∥∥

Uα
. (7.4)

Moreover, by using Proposition 6.2, (6.5) and the ergodic theorem, we get that

lim
n→∞

log
(
sup0≤u≤1 ‖Pu(T nθ)‖Uα

)

n
= 0 W -a.s. (7.5)

Besides, a direct application of Lemma 6.6 gives that there exists λ > 0, independent of ν1 and ν2, such

that

limsup
n→∞

log(‖ν1Pn(θ)−ν2Pn(θ)‖Uα )

n
≤−λ W -a.s. (7.6)
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We deduce inequality (7.1) from (7.6), (7.5) and (7.4). Furthermore, one can see by using Lemma 6.6

and similar arguments that

∞

∑
n=0

‖νPn+1(T
−n−1)θ)−νPn(T

−nθ)‖Uα < ∞ W -a.s.

We obtain that, for W -almost θ ∈Θ, {νPn(T−nθ) : n ≥ 0} is a Cauchy sequence in the separable Banach

space MUα . Then by using again Lemma 6.6 we get that there exist λ > 0 and a random probability

measure µθ ∈ MUα such that, for all ν ∈ M1,Uα ,

limsup
n→∞

log
(
‖νPn(T−nθ)−µθ‖Uα

)

n
≤−λ W -a.s. (7.7)

We deduce (7.2) from (7.7) in the same way as we obtain (7.1) from (7.6). Finally, we can see by using

(7.2) that

µθ Pt(θ)
MUα= lim

s→∞
νPs(T−sθ)Pt(θ)

MUα= lim
s→∞

νPt+s(T−(s+t)Ttθ)
MUα= µTt θ W -a.s.

7.2 Annealed convergences

Proposition 7.2. For all α ∈ (0,1) and ν̂ ∈ M1,Vα ,

µ̂ ∈ M1,Vα and lim
t→∞

∥∥∥ν̂P̂t − µ̂
∥∥∥

Vα

= 0. (7.8)

Proof. Let 0 < ρ < 1 be and apply Proposition 6.3 to write, for all 0 ≤ u ≤ 1,

Pu(θ)Vα ≤ (ρ +1)Vα +Bθ and PθVα ≤ ρVα +Bθ W -a.s. (7.9)

We get from the latter inequality and (7.3) that µT θ (Vα) ≤ ρµθ (Vα) +Bθ W -a.s. and by taking the

expectation of the last inequality, we obtain the left hand side of (7.8). Besides, since the Wiener

measure is (Tt)-invariant, we can write,

∥∥∥ν̂P̂t − µ̂
∥∥∥

Vα

≤ EW

[∥∥∥ν̂Pt(T
−[t]θ)−µT{t}θ

∥∥∥
Vα

]
. (7.10)

Moreover, by using (7.3) and the cocycle property we can see that

νPt(T
−[t]θ) = νP[t]((T

−[t])P{t}(θ) and µθ P{t}(θ) = µT{t}θ

and we get from (7.2) and (7.10) that

lim
t→∞

∥∥∥ν̂P̂t − µ̂
∥∥∥

Vα

≤ lim
t→∞

∥∥∥ν̂Pt(T
−[t]θ)−µT{t}θ

∥∥∥
Vα

≤ lim
t→∞

(
sup

0≤u≤1

‖Pu(θ)‖Vα

)∥∥∥ν̂P[t](T
−[t]θ)−µθ

∥∥∥
Vα

= 0 W -a.s. (7.11)

Furthermore, by using (7.9) and the cocycle property, it is not difficult to see that

∥∥∥νPt
(
T−[t]θ

)∥∥∥
Vα

≤ (ρ +1)

(
ρ‖ν‖Vα +

∞

∑
k=0

ρkB
(
T kθ

)
)
+Bθ

and

∥∥∥µT{t}θ

∥∥∥
Vα

≤ (ρ +1)‖µθ‖+Bθ .

Noting that the two previous bounds belong to L1(Θ,B,W ) (see Proposition 6.3) and are independent

of t ≥ 0, the dominate convergence theorem applies and we deduce from (7.11) the right hand side of

(7.8).

24



8 Proof of Theorem 2.4

Proof. First, recall that under Pz(θ) (see Proposition 4.1) {Sθ (t,Xt) : t ≥ 0} is a solution of the SDE

(4.3). Moreover, since r > 0, we can see by using (4.4) that

lim
t→∞

Sθ (t,x) = S(x) :=

∫ x

0
e

y2

2 dy, lim
t→∞

Hθ (t,x) = S−1(x) :=

∫ x

0
e

y2

2 dy,

lim
t→∞

σθ (t,x) = S′ ◦S−1(x) and lim
t→∞

dθ (t,x) = 0, (8.1)

uniformly on compact sets of R. Following [17, Lemma 4.5] and denoting by Γ the standard normal

distribution, it is not difficult to see that {Sθ (t,Xt) : t ≥ 0} is asymptotically time-homogeneous and

S∗Γ-ergodic. According to the cited Lemma, if in addition {Sθ (t,Xt) : t ≥ 0} is bounded in probability,

we can deduce the convergence in distribution towards S∗Γ:

(
∀ε > 0, ∃R > 0, sup

t≥0

Pz(θ)(|Sθ (t,Xt)| ≥ R)≤ ε

)
=⇒ lim

t→∞

(
Sθ (t,Xt)

(d)
= S∗Γ

)
. (8.2)

In fact, we shall prove that {Xt : t ≥ 0} is bounded in probability for W -a.s. θ ∈ Θ, which shall imply

the boundedness in probability of {Sθ (t,Xt) : t ≥ 0} for W -a.s. θ ∈ Θ. To this end, by using Proposition

6.2, we can find 0 < ρ < 1, L > 0, B : Θ −→ [1,∞) and k,c, p > 0 such that, for all 0 ≤ u ≤ 1,

Pu(θ)Uα ≤ LUα +Bθ , PθUα ≤ ρUα +Bθ and Bθ ≤ k exp
[
cH p

γ (θ)
]

W -a.s. (8.3)

Relations (2.10) and the ergodic theorem allow us to write that, for all t ≥ 0,

sup
t≥0

‖Pθ (t,x,dy)‖Uα
≤ sup

t≥0

L

(
ρ [t]Uα(x)+ k

[t]−1

∑
m=0

ρ [t]−m exp
[
ce−rpmH p

γ (T
mθ
]
)
+Bθ

≤ L

(
ρUα(x)+

k

1−ρ
exp

[
sup
m≥0

(
ce−rpmH p

γ (T
mθ)

)])
+Bθ < ∞ W -a.s.

Then the Markov inequality implies that

sup
t≥0

Px(θ)(|Xt | ≥ R)≤
supt≥0 ‖Pθ(t,x,dy)‖Uα

Uα(R)
W -a.s.

and we obtain the fact that {Xt : t ≥ 0} is bounded in probability. Moreover, since

lim
|x|→∞

inf
t≥0

Sθ (t,x) = ∞

we deduce the boundedness in probability of {Sθ (t,Xt) : t ≥ 0}. Therefore [17, Lemma 4.5] applies and

this completes the proof.
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