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Abstract

In this work we investigate a generic method able to extract information on molecular organiza-

tion in biological samples from polarized Second Harmonic Generation (SHG) microscopy, without

the need to infer an a priori model for the molecular orientational distribution. The mean ori-

entation of this distribution, as well as its first and third orders of symmetry, are estimated by

monitoring SHG intensity signals under a varying incident polarization. We introduce in particular

a reduction of the problem to a 2D approach appropriate to the microscopy geometry. This method

permits to retrieve determining information which is not available in the traditional model-oriented

methods, as illustrated in molecular order imaging in collagen fibrils. The precision of the param-

eters estimation is evaluated by a Monte Carlo analysis, based on the Poisson noise statistics of

the measured signal.
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I. INTRODUCTION

Second Harmonic Generation (SHG) microscopy, since its first development [1–3] and

its introduction in bio-imaging [4–6], is now widely used to image ordered bio-molecular

assemblies in complex samples. Coherent SHG occurring naturally in non-centrosymmetric

structures such as collagen [3], skeletal muscles [4] and microtubules [6], is today exploited as

a functional contrast [7, 8], possibly in conjunction with other nonlinear optical signatures [9],

with the ultimate goal of developing diagnostics of pathological effects related to tissues and

cell architecture. In addition to their unique imaging capabilities, nonlinear contrasts are

dependent on the incident light polarization state, providing an interesting way to probe

molecular orientation and order. Structural information, from membrane architecture and

proteins aggregates to biopolymers and tissue assemblies, is a key parameter in a large variety

of biological phenomena. Polarization sensitive imaging has been exploited a long time ago in

fluorescence [10, 11] and SHG [12] in ordered molecular samples. SHG polarization resolved

imaging has allowed retrieving molecular orientation and order information in molecular

materials [13, 14] and crystals down to the nanometric size [15], as well as collagen and

muscle structural quantitative information in tissues [16–21].

Deducing a structural information (molecular orientational order) from SHG polarization

resolved data in microscopy has been so far based on the use of a priori known models in the

orientation distribution of the probed system. Polarized SHG applied to collagen type I has

shown that its hexagonal crystalline structure can be reduced to an equivalent orientational

distribution with a cone surface shape [19–21], similar to what would be obtained from a

collection of active molecules assembled along the triple helix structure of the collagen pro-

tein. Many works have developed analyzes in this direction, using as an unknown parameter

the aperture of this cone to quantify molecular order in collagen assemblies. In complex

environments however such as tissues or micrometric assemblies of fibrils, much more com-

plex orientational behavior can be expected. It is delicate to infer a model in this case,

although tentative analyzes have been performed in this direction introducing an additional

disorder parameter in the surface cone aperture [19]. Adding unknown parameters which

are possibly correlated can however lead to ambiguous determinations. In addition these

parameters remain model-dependent and can lead to an over-interpretation of the retrieved

information. At last, the estimation quality of the parameters strongly depends on the noise
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level of the measurements [22].

In the interpretation of SHG polarized responses, the use of an a priori model ultimately

fails in giving a general picture of the measured molecular orientational distribution, pri-

marily because there is no possibility to validate this model. In this work, we propose a

generic approach capable of encompassing all available orientational information without

the need to rely on a specific model for the orientational distribution in the sample. Along

the same lines as what has been developed in the past for polarization analysis in poled

polymers doped by SHG active molecules [23], we base our approach on order parameters

related to symmetry properties of the molecular orientation distribution function in a sam-

ple. This general model includes possible geometries that are not of cylindrical symmetry,

which was not accessible in the previously developed cone models for collagen. It also gives

general information on the shape of the orientational distribution with estimated parameters

which are model-independent. We develop this model in a 2D approach that is adapted for

the SHG microscopy geometry, and apply it to the quantitative imaging of molecular order

parameters in assemblies of isolated collagen fibrils. A numerical model based on Monte

Carlo analysis is furthermore implemented to quantify empirically the estimation precision

on these parameters, assuming signals limited by Poisson noise.

II. MOLECULAR DISTRIBUTION

A. Reduction of the molecular orientational 3D distribution to a 2D distribution

A polarized Second Harmonic Generation signal from an ensemble of molecules excited

in a focal volume originates from the radiation of a macroscopic nonlinear induced dipole

P2ω, resulting from the orientational average of molecular nonlinear induced dipoles p2ω:

P2ω = N

∫
Ω

p2ωf(Ω)dΩ (1)

with N the molecular density. f(Ω) defines the molecular angular distribution function

with Ω = (θ, φ, ψ) the Euler angles set defining the molecular orientation. This function

models the molecular scale organization of a sample in the macroscopic laboratory frame,

and describes the probability to find a molecule oriented along Ω. It is normalized such as∫
Ω
f(Ω)dΩ = 1.
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The nonlinear molecular induced dipole originates from the coupling between the molec-

ular nonlinear susceptibility tensor β and the incoming fundamental field Eω at the ω fre-

quency:

p2ωi =
∑
jk

βijkE
ω
j E

ω
k (2)

with i, j, k in the molecular frame (x, y, z).

Writing this dipole in the macroscopic frame (X, Y, Z) and averaging over orientation

angles (Eq. 1) results in a macroscopic dipole:

P 2ω
I =

∑
JK

χ
(2)
IJKE

ω
JE

ω
K (3)

where χ
(2)
IJK are the tensorial components of the macroscopic nonlinear susceptibility χ(2)

with I, J,K in the (X, Y, Z) frame (Fig. 1a), and:

χ
(2)
IJK = N

∫
Ω

βIJK(Ω)f(Ω)dΩ (4)

where βIJK(Ω) are the molecular susceptibility components expressed in the (X, Y, Z) frame:

βIJK(Ω) =
∑
ijk

βijk(I · i)(J · j)(K · k)(Ω) (5)

with (I · i) the transformation matrix components between the (x, y, z) and the (X, Y, Z)

frames.

Note that Eq. 4, which relates molecular scale to macroscopic scale properties, is based

on a purely additive model. Accounting for molecule-molecule interactions and molecular

packing in dense media [24, 25] is often accounted for by a phenomenological tensorial

local field correction factor [26], compatible with this additive approach. In what follows,

we implicitly embed this correction factor inside the expression of χ
(2)
IJK , meaning that all

molecular order interpretations need to be modulated by the existence of possible local

interactions in the medium.

In what follows we consider the case of molecules of one-dimensional symmetry, there-

fore only (θ, φ) are required to define its orientation (Fig. 1a), and f(Ω) can be rewritten

f(θ, φ). This assumption on the molecular structure is generally made for the investigation

of SHG polarized signals from biomolecular assemblies has been shown to be appropriate in

collagen [27]. It can be nevertheless generalized to more complex symmetries by introducing
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the appropriate β tensor structure. The consequence of multipolar molecular symmetries

on the determination of molecular order information is discussed in Section V.

Polarization-resolved SHG consists in rotating the incident fundamental polarization in

the sample plane (X, Y ), the Z axis defining the propagation direction. Assuming a negligi-

ble nonlinear coupling in the Z direction, which is generally the case in samples investigated

by nonlinear microscopy imaging [28, 29], the only accessible information is restricted to a

projection in the (X, Y ) 2D plane. The projectors (I · i) with I = X, Y thus only contain

terms such as sin θ cosφ or sin θ sinφ and Eq. 4 can be rewritten in a general form which

demonstration is detailed in Appendix A:

χ
(2)
IJK = N

∫ 2π

0

∫ π

0

β∗
IJK(φ)f(θ, φ) sin

4 θdθdφ (6)

with β∗
IJK(φ), defined in Appendix A, encompassing the sum over the microscopic coefficients

βijk and the φ dependence of its macroscopic projection.

FIG. 1. a) Geometry of the SHG polarized microscopy. (X,Y ) is the sample plane, Z is the

direction of propagation of the fundamental beam. α is the angle of the incident polarization

E relative to X. In one-dimensional symmetry molecules, (θ, ϕ) defines the orientation of the

molecular axis m in the (X,Y, Z) frame. b) Orientation of the 2D distribution (ϕ0) represented in

a grey shape. ϕ is the orientation of the molecular axis m relative to X in the sample plane. c)

Example of a 3D molecular distribution f(θ, ϕ) (left) and its modified shape when read by a SHG

polarized contrast f(θ, ϕ) sin4 θ (right).

Due to the 2D constraint of the problem in the plane of polarization, we introduce a new
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distribution function P (φ) which only depends on φ, orientation of the molecule projection

in the (X, Y ) plane (Fig. 1b):

P (φ) =
∫ π

0
f(θ, φ) sin4 θdθ (7)

Eq. 7 shows that the relevant distribution function which is effectively read-out in a po-

larized SHG process is of the form f(θ, φ) sin4 θ, a function which emphasizes the role of

molecules close to the (X, Y ) plane compared to out-of plane ones, as depicted in Fig. 1c. In

addition, the 2D distribution P (φ) can be used to define the effect of molecular orientation

on the polarization resolved SHG signals, using only the molecules orientation information

φ in the (X, Y ) sample plane. P (φ) is not a geometrical projection of the 3D distribution

function f(θ, φ) in the (X, Y ) frame, but is rather a horizontal sectioning of the 3D molec-

ular distribution imposed by the SHG contrast (Fig. 1c). The macroscopic SHG tensor

components in the (X, Y ) plane can finally be written:

χ
(2)
IJK = N

∫ 2π

0

β∗
IJK(φ)P (φ)dφ (8)

Thereafter we develop the polarization resolved SHG response of the 2D molecular dis-

tribution P (φ). In the sample plane, this function can be decomposed on basis of circular

functions, appropriate to its 2D geometry:

P (φ) = p0 + p1 cos(φ− φ0)

+
∑

n≥2 pn cos(n(φ− φ0))

+
∑

n≥2 qn sin(n(φ− φ0))

(9)

The (pn, qn) order terms in Eq. 9 are the signature of different orders of symmetry of the

P (φ) function, n=0 being representative of its isotropic contribution, and even/odd n orders

terms being representative of its even/odd orders of symmetry. Moreover, high symmetry

orders are representative of more defined angular details. φ0 is the mean orientation, in the

sample plane, of the first order term n=1 (Fig. 1b), introduced as a reference orientation

angle of the 2D distribution function. Therefore there is no need to introduce a q1 parameter.

The qn≥2 terms quantify the orientation of the n order terms with respect to the X axis.

Therefore qn≥2 are also signatures of the absence of a symmetry axis in the distribution

function.
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Since SHG, in the dipolar approximation used here, is only sensitive to non-centrosymmetric

contributions of a distribution function up to the third order of symmetry [30, 31], only

the orders 1 and 3 of the distribution function P (φ) in Eq. 9 contribute to the SHG re-

sponse. For this reason, the 2D orientational distribution function P (φ) can be reduced to

a truncated P̃ (φ) function, which is no longer considered as a probability function:

P̃ (φ) = p1 cos(φ− φ0)

+p3 cos(3(φ− φ0))

+q3 sin(3(φ− φ0))

(10)

The information present in P̃ (φ) is therefore the relative non-centrosymmetric contribution,

of first and third orders, to the complete molecular angular distribution P (φ).

B. Single molecule polarized SHG response

Assuming molecules of one-dimensional symmetry along a z direction in the sample plane

(Fig. 1b), βijk possesses a single non vanishing component βzzz in the molecular frame,

denoted β in what follows. In the 2D molecular distribution, the z axis is oriented with

an angle φ relative to the macroscopic axis X. Denoting α the angle of the incident linear

polarization E relative to X, the amplitudes of the molecular nonlinear induced dipole along

the X and Y axes are therefore proportional to:

p2ωX = E2
0β cosφ cos2(α− φ)

p2ωY = E2
0β sinφ cos2(α− φ)

(11)

with E0 the amplitude of incoming fundamental field.

The polarization dependence of the total SHG intensity I(α), measured without the use

of any analyzer, can be written, in the plane wave approximation, as:

I = IX + IY = |p2ωX |2 + |p2ωY |2 (12)

Therefore:

I(α) = E4
0β

2 cos4(α− φ) (13)

The cos4(α−φ) function can be decomposed on the basis circular functions cos(n(α−φ))

with n = 0, 2, 4, which leads to:

I(α) = a0 + a1 cos(2(α− φ)) + a2 cos(4(α− φ)) (14)
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with

a0 = 3E4
0β

2/8

a1 = E4
0β

2/2

a2 = E4
0β

2/8

(15)

C. Polarized SHG response in a 2D angular distribution

The nonlinear response from an ensemble of molecules requires calculating the orien-

tational averaged of single molecule’s nonlinear induced dipoles (Eq. 1). The polarization

dependence of the total SHG intensity can then be written, in the plane wave approximation,

as a quantity proportional to the macroscopic expression |P 2ω
X |2 + |P 2ω

Y |2. Introducing P̃ (φ)

in Eq. 8, and using the methodology developed in Appendix B, it can be shown that simi-

larly as the single molecule case, this function is decomposed on the basis circular functions

cos(n(α− φ0)) and sin(n(α− φ0)) with n = 0, 2, 4:

I(α) = a0 + a1 cos(2(α− φ0)) + a2 cos(4(α− φ0))

+b1 sin(2(α− φ0)) + b2 sin(4(α− φ0))
(16)

with

a0 =
A
16
(5p21 + p23 + q23)

a1 =
A
4
(p21 + p1p3) a2 =

A
8
p1p3

b1 =
A
4
p1q3 b2 =

A
8
p1q3

(17)

where A = N2E4
0π

2β2.

This development shows that the total SHG intensity can be decomposed in a simple

Fourier decomposition, in a similar manner as already introduced in previous works [22, 32],

with coefficients depending on the orders of the P̃ (φ) function. Due to the coherent nature of

the SHG process, this dependence is however not a pure linear combination of the p1, p3, q3

orders, but rather a nonlinear mixing which prevents the simple resolution of an inverse

problem. In the most general situation, all the orders can be however determined as a

unique solution, as long as the first order p1 does not vanish. Indeed in the case of a pure

third order distribution (p1 = 0), only a0 does not vanish and the total intensity will be

a constant function of α, the distribution function exhibiting in this case a 2π/3 invariant
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rotation while the fundamental electromagnetic field exhibits a π invariant rotation, making

impossible any signal modulation. This property has been previously exploited in octupolar

molecular media to obtain polarization-independent nonlinear responses [30, 33].

III. ESTIMATION OF ORDER PARAMETERS

A. Principle of the estimation of the order parameters

As mentioned above, the non linear expression of the Fourier coefficients a0, a1, a2, b1, b2 as

functions of the unknown parameters A, p1, p3, q3 makes impossible an analytical resolution

of the inverse problem. In a polarization resolved measurement, A is not relevant since it is

a pure magnitude factor. The measurement being not absolute, a normalization is necessary

and for this reason we chose to estimate three remaining parameters: the ratios p = p3/p1,

q = q3/p1 (called ”order parameters” in what follows), and φ0. The distribution function

becomes therefore a more simple expression:

P̃ (φ) = cos(φ− φ0) + p cos(3(φ− φ0))

+q sin(3(φ− φ0))
(18)

The SHG intensity I(α), which depends on the mean orientation φ0 and the (p, q) param-

eters, will be written I(w(p, q), φ0, α) with w(p, q) = (a0, a1, a2, b1, b2), the measured Fourier

coefficients of Eq. 16, which depend only on p and q. A typical experimental measure-

ment leads to intensity values Iexp(αi) for m regularly spaced measurement angles αi with

i = 1..m, with m high enough to allow the unambiguous determination of the Fourier coeffi-

cients of Eq. 16. To retrieve the φ0 and (p, q) information, a minimization can be performed

of the mean square error between the measured intensity Iexp(αi) and the model intensity

I(w(p, q), φ0, αi). In practice, we implement a minimization procedure on the Fourier co-

efficients of the intensities. A minimization is separately performed on the φ0 parameter

since it appears as a pure phase parameter in Eq. 16. For each φ0, the estimation operation

consists in finding the couple (p, q) which minimizes the error function:

E(w(p, q), φ0) = ||wexp(φ0)− w(p, q)||2 (19)

where wexp(φ0) is the set of Fourier coefficients measured on the experimental SHG intensity

artificially rotated by a φ0 angle.
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B. Experimental setup

The nonlinear polarimetric microscope used in this work has been described in previous

works [28]. The excitation light source is a tunable Ti:Sapphire laser that delivers 150 fs

pulses at a repetition rate 80 MHz. The incident wavelength is set at 800nm for SHG

with a typical averaged power of a few mWs at the sample plane. The laser beam is

reflected by a dichroic mirror and focused on the sample by a high Numerical Aperture

(NA) objective (× 40, NA 1.15). The backward emitted signal is collected by the same

objective and directed to an avalanche photodiode. The total intensity is collected without

any analyzer. Previous works have shown that using no analyzer can lead to misleading

interpretation in case of polarization distortions by the sample [34], therefore in the present

case we preliminary verify that the sample does not exhibit such distortions following the

methodology developed in [34]. Images are performed by scanning the sample with two

galvanometric mirrors. The linear polarization of the incident laser beam is continuously

rotated in the sample plane by an achromatic half wave plate mounted on a step rotation

motor at the entrance of the microscope. For each value αi of the polarization angle relative

to X (in total 32 angles between 0◦ and 180◦), a SHG image is recorded. At last, polarization

distortions (dichroism and ellipticity) originating from the mirrors reflection are preliminarily

characterized following a calibration procedure described previously [28]. The ellipticity is

found to be close to 20◦ (with a dichroism factor close to 0), which is seen to induce a

negligible bias in the estimation of the p and q parameters. At last, the polarization mixing

effects induced by the high numerical aperture at both excitation and collection steps can be

ignored in a first approximation for nonlinear dipoles principally lying close to the sample

plane [28, 29], therefore the planar approximation used above to calculate the SHG intensity

radiation can be considered as valid.

C. Results

As an illustration of the technique, polarization resolved SHG experiments have been

performed on fibrils of collagen type I of submicrometric diameters, coated on a glass sub-

strate following a procedure already established [35]. The choice of this biological model

is motivated by the fact that the fibrils are quite isolated from each other and not embed-
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ded in a dense tissue, which might distort polarization properties by scattering or birefrin-

gence [34, 36]. The structure of collagen type I fibrils is furthermore well known and has

been studied previously by polarization resolved SHG imaging [19–21].

The usually proposed model supposes that collagen fibrils or larger fibrils are made

of SHG active one-dimensional molecules oriented along a triple helix structure of given

pitch angle and period [19], which confers to them an averaged orientation distribution

function lying along a cone surface. In this work we only assume that molecules are of

one-dimensional geometry, without any further hypothesis on the orientational model. This

allows in particular to address the question of distribution functions distortions in fibrils

assemblies which are not necessary of cylindrical symmetry. At last, the macroscopic orien-

tation of single fibrils can be directly visualized from the SHG image, which allows direct

comparison with the obtained estimated orientation parameter for φ0.

A typical SHG image from collagen fibrils depicted in Fig. 2a shows elongated fibrils

of various diameters and lengths, averaged intensities and orientations. For each pixel of

this image, the mean orientation of the molecular distribution φ0, as well as the p and q

order parameters are estimated by minimization of the E(w(p, q), φ0) estimator introduced

in Eq. 19, using sampling values of 10◦ between 0◦ and 180◦ for φ0, and 0.02 between -3 and

3 for (p, q). The chosen range values for (p, q) is specific to collagen (see section V), and

can be adapted for other type of samples. As can be observed in Fig. 2b, the obtained φ0

values are in good agreement with the macroscopic orientation of the fibrils in the sample

plane, supporting the fact that molecules orient on average along a main fibril direction

(note that φ0 = 0◦ and φ0 = 180◦ are equivalent angles, therefore leading to a mixture of

these two values in the image of horizontal fibrils). The p and q order parameters images are

represented in Fig. 2c,d, and also as histograms in Fig. 2e,f. Note that we chose to represent

the images (Fig. 2a-d) with a threshold of 60 photons/pixel (SHG signal summed over all

32 incident polarizations) in order to depict the large population of fibrils and intensities

available in this sample. The threshold intensity chosen to represent the histograms (150

photons/pixel) is higher since a high signal to noise ratio is required to analyze the data

with sufficient precision (see Section IV).

The averaged value of p obtained over the whole image is -0.47, which means that the

first and third order contributions to the angular distribution function P̃ (φ) are pointing

11



120

140

160

180

300

400

 0(°)

10µm 20

40

60

80

100

b)10µm

100

200

a) 10µm 20

2

3

0

1

b)10µm

0

a)

p q

-1

0

1

2

-1

0

10µm
-3

-2
10µm

-3

-2

c) d)

<p>= 0 47 <q>=0 007
e) f)

g)

<p>= 0.47 <q>=0.007

g)

FIG. 2. a) SHG Intensity image of isolated Collagen type I fibrils coated on the sample plane

surface. The intensity scale is the sum of SHG signals over the 32 incident polarizations (threshold:

60 photons/pixel). b-d) Images of the parameters obtained from a Fourier decomposition of the

intensity polarization dependence: b) ϕ0 (degrees); c) p; d) q. e) histogram of p on the whole

image; f) histogram of q on the whole image. For the histograms the threshold of the analyzed

pixels is 150 photons/pixel. g) polar representation of the truncated distribution function P̃ (ϕ)

deduced from the averaged p and q values obtained over the whole image.

towards opposite directions. This value leads to a depression in the truncated distribution in

its center, represented in Fig. 2g, meaning that there are more SHG-active molecules on the

side of the distribution than in its center. The two-lobes of this distribution are separated by

an angular aperture of about 50◦, which is also close to the cone half aperture angle found

in previous works on dense collagen structures, assuming a cone surface shape [19, 21]. This

result provides a direct evidence that the traditionally assumed distribution shape of cone

surface can be considered as valid in ordered collagen structures, which would be otherwise

impossible to verify. Third, the averaged value of q close to 0 means that the first and
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third order contributions functions exhibit the same averaged orientation, supporting the

fact that the global angular distribution function exhibits an axis of symmetry (in 3D, this

would correspond to a cylindrical symmetry).

In order to visualize the distribution function obtained locally in collagen fibrils, a small

image section is selected and represented in Fig. 3a. This image contains different popula-

tions : isolated collagen fibrils of different orientations, and an overlap between fibrils. In

the regions where collagen fibrils are clearly isolated, the truncated distribution function

P̃ (φ) is globally oriented in the direction of the fibrils, with a two-lobes shape resembling

the averaged distribution function (Fig. 3c). In a region where the two fibrils intersect, the

distribution function shows more pronounced fine lobes at a larger aperture angle. This dis-

tribution could be interpreted as the result of a higher disorder, although it is not possible

to discriminate between a molecular origin for this disorder (change of chemical composition

and helix structures in collagen) and a microscopic scale disorder made of a different fibrils

orientations. Nevertheless this example illustrates the potential of this method to provide

a direct visualization of the local disorder in a collagen fibrils sample. Using a pure cone

surface model as usually inferred would not be able to provide this level of information, since

it is not sensitive to pure distribution shape changes.

IV. ESTIMATION ACCURACY

A. Monte-Carlo simulations

The accuracy of the estimation of the order parameters is studied assuming that mea-

surements are limited by Poisson noise, which is verified in the present case. To quantify

the accuracy of the method, Monte-Carlo experiments have been performed. A polarization

resolved signal is created using Eqs. 16 and 17, for a chosen set of parameters φ0, p1, p3 and

q3, and furthermore introducing Poisson noise to the signal. The values of the parameters

have been chosen to be close to the averaged ones found experimentally. From this signal,

the parameters φ0 and (p, q) are then estimated following the same methodology as previ-

ously described on experimental data. 2000 realizations are executed for several levels of

noise (varying the SHG total intensity from 10 photons to 160 photons, summed over all 32

incident polarization angles). For each level of noise the mean value and the variance of the
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FIG. 3. a) SHG image of a selected region of Fig. 2. b) Corresponding image of p. c) Polar

representation of the averaged distribution function P̃ (ϕ) obtained from the retrieved (ϕ0, p, q)

parameters on three regions of interest represented as white rectangles in the SHG image. These

functions are obtained using the average of the retrieved parameter within the region of interest

(only active pixels are used): 1 (p = -0.4, q = 0.04, ϕ0 = 8◦); 2 (p = -0.98, q = 0.04, ϕ0 = 42◦);

and 3 (p = -0.38, q = 0.01, ϕ0 = 80◦). The error of estimation on the parameters produces an

error bar on the angular distribution which is smaller than the thickness of the line used to draw

the distribution function, therefore it is not represented here.

φ0 and (p, q) parameters are calculated. These results are reported in Fig. 4. As expected,

the variances of the estimated parameters are seen to decrease linearly with the number of

photons. Moreover, stronger variances values are observed for the q parameter. This can

be due to the fact that the determination of q relies on a set of equations (Eq. 17) which

contains some redundancies, contrary to p. Overall this result provides indication on the

level of signal to reach in order to estimate the order parameters with a reasonable quality.

It is for instance visible that the total number of photon should be above 150 to reach a good

estimation precision with variances below 0.05, for all parameters in the situation considered

here.

B. Experimental accuracy

To give a quantitative picture of the experimental accuracy and compare it to predic-

tions from Monte Carlo simulations, seven experiments were performed on a same region
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of the collagen type I fibrils sample, using identical experimental conditions. A fibril with

orientation φ0 ∼ 45◦, lying in the middle of Fig. 2, is chosen to evaluate the (φ0, p, q)

parameters for each of its pixels (in total 78 pixels are analyzed) and for each experiment.

The variance of these parameters is calculated for each pixel based on their seven estimated

values. This procedure allows a direct calculation of the parameters’ variance, avoiding

any dependence on possible sample heterogeneities within the same collagen fiber. For each

pixel, the variance of the φ0 and (p, q) parameters is determined as well as the corresponding

total number of photons, defined as the average of the total number of photons measured

over the seven experiments. Although this procedure does not permit to explore a large

range of total number of photons and is based on a small number of measurements, it

gives a rough idea of the experimental accuracy of the parameters. To represent the global

behavior of a given parameter in Fig. 4, the variances obtained for all 78 measured pixels

are grouped by intensity ranges (of [0-10] photons, [10-20] photons, etc.) and averaged for

each range. The obtained variances are seen to lie globally close to values expected from

the Monte-Carlo simulation, which emphasizes the role of Poisson noise in our measurement.

FIG. 4. Variances of the p, q and ϕ0 parameters as functions of the total number of photon

(summed over the 32 incident polarizations). Circles: p, squares: q, triangles: ϕ0. Dashed lines:

Monte-Carlo simulations using the initial parameters p = -0.4, q = 0, ϕ0 = 45◦. Continuous lines:

experimental variances measured over seven experiments performed for a same region of interest,

on a fibril of orientation ϕ0 ∼ 45◦ relative to X. Each point represents the average of the variances

obtained in a range of photon number: [0-10] photons, [10-20] photons, etc.
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V. INTERPRETATION OF THE ORDER PARAMETERS

It is possible to relate the obtained p and q parameters to the models used previously

in the literature, using their definition in terms of Fourier decomposition coefficients of the

molecular distribution.

A. Relation between order parameters and an explicit molecular distribution func-

tion

In a 2D molecular orientational distribution model where P (φ) is a priori assumed, the

pn and qn parameters of the Fourier decomposition of P (φ) are defined as:

pn =
∫ 2π

0
P (φ) cos(nφ)dφ

qn =
∫ 2π

0
P (φ) sin(nφ)dφ

(20)

We first consider the case of a f(θ, φ) distribution made of a 3D cone filled with molecules

with a total angular aperture 2ψ0, lying in the (X, Y ) plane along the X axis (we choose

here φ0 = 0 for simplification). In this situation, the corresponding 2D function P (φ) can

be approximated by:

P (φ) =
1

2ψ0

Rect[φ,−ψ0, ψ0] (21)

with the Rect function defines as 1 for −ψ0 ≤ φ ≤ ψ0 and 0 elsewhere. This leads to:

pn =
sin(nψ0)

πnψ0

; qn = 0 (22)

When ψ0 → 0 (small cone apertures) then pn → 1/π, and when ψ0 → π/2 (large aper-

tures) then p2n+1 →
(−1)n

(2n+1)π2/2
, therefore p = p3/p1 → −1/3, which fixes a lower limit of the

measurable p parameter in this case.

We then consider the case of a cone surface distribution where the molecules only lie on

the surface of a cone of angular aperture 2ψ0. This situation is specifically used to explore

molecular order in collagen based samples. In this case:

P (φ) ≃
1

2
(δ[φ− ψ0] + δ[φ+ ψ0]) (23)

which leads to:

pn = 1
π
cos(nψ0); qn = 0 (24)
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When ψ0 → 0 then pn → 1/π, and when ψ0 → π/2 then p2n+1 → 0. Furthermore, for

ψ0 = π/2 − ϵ, then p2n+1 ≃ 1
π
(−1)n(2n + 1)ϵ and thus p = p3/p1 ≃ −3. In this case, the

minimum expected value for p is therefore lower than for a filled cone distribution.

The dependencies of p as a function of the cone half aperture ψ0 are represented in Fig. 5a

for the two models, filled cone and cone surface. From this figure one can draw several

observations. First, using p to determine ψ0 can lead to different solutions depending on the

model used, since the interpretation of ψ0 is model-dependent. In the present approach, a

cylindrical symmetry distribution is defined by one unique order parameter p, which is not

model-dependent and is representative of the accessible quantity from polarization dependent

SHG. Second, one can draw additional conclusions on the shape of the distribution, based

on the measurement of p and q. Indeed in the case where p takes large negative values

(typically p < −1/3), the 2D distribution function exhibits angularly a depression in its

center, which makes it resemble more a surface cone distribution than a filled cone. This

is illustrated in the polar representation of the P̃ (φ) distribution (Fig. 5b). Note that any

kind of hollow distribution in its center would lead to a similar behavior as observed for the

cone surface.

In the case of investigations on collagen, models of cone surfaces have been extensively

used and typical values found in the literature lie close to ψ0 ∼ 45 − 60◦ [17, 21], leading

to p ranging from -0.3 to -1.4, which is the range found in single isolated fibrils in our mea-

surements. The determination of p and q provides however here extra information which is

not accessible in approaches based on a priori supposed models, in particular by revealing

explicitly the hollow shape distribution and possible deviations from a cylindrical symmetry.

Finally, note that this whole derivation is based on the initial assumption that the angular

distribution is made of pure 1D molecules exhibiting a unique diagonal βzzz coefficient, which

has been shown to be robust in the case of collagen studies. Introducing a more complex

molecular symmetry in Eq. 5 would lead to a deviation of the p values deduced here, which

can be strong if significant off-diagonal molecular nonlinear coefficients arise. Along the

same line as previously developed approaches [16, 17, 19–21], the estimation of p therefore

relies on either an assumed or an a priori known molecular structure.

17



FIG. 5. a) Dependency of the p parameters as a function of the cone half aperture ψ0 for two

models of the molecular 2D distribution function P̃ (ϕ): filled cone (continuous line), cone surface

(dashed line). b) Different distributions P̃ (ϕ) represented as polar plots in the sample plane, for

p=0.5, 0, -1/3, -1, -3.

B. Relation between order parameters and microscopic tensorial coefficients

The structural parameters of molecular assemblies are often expressed in terms of their

microscopic tensorial nonlinear coefficients, which relate the molecular order information to

a crystallographic point of view. In the case of collagen, a C6 symmetry is assumed from

the known crystalline structure of this macromolecule [3]. Denoting 3 the high symmetry

axis of the C6 symmetry cylinder and (1, 2) its perpendicular plane, the collagen symmetry

is therefore reduced to two microscopic tensorial coefficients under non-resonant excitation

conditions: χ
(2)
333 and χ

(2)
311 = χ

(2)
322 (with all index permutation permitted in case of valid

Kleinman symmetry conditions). The ratio χ
(2)
333/χ

(2)
311, often used to characterize molecular

order in collagen, has been found to range between 0.8 and 2.6 [3, 16, 17, 19–21]. A relation

between χ
(2)
333/χ

(2)
311 and the aperture angle ψ0 of the equivalent cone surface model mentioned

above can be deduced from tensorial distribution expression similar to Eq. 4, leading to [21]:

tan2(ψ0) = 2
χ
(2)
311

χ
(2)
333

(25)

In the present analysis, the value found for p = −0.4 in isolated fibrils leads to χ
(2)
333/χ

(2)
311 =

1.85, which lies in the range of values previously found in tissues.
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VI. CONCLUSION

We have introduced a generic approach for the analysis of polarization dependent SHG

microscopy measurement, applied to molecular and biological structural imaging. This ap-

proach is based on a 2D derivation of the problem, accounting for the fact that the read-out

of the polarization information in the sample plane necessarily reduces the problem to the

investigation of an angular distribution function lying in this plane. We derived a simple way

to retrieve molecular order parameters from a Fourier decomposition of the SHG polariza-

tion responses, and showed their estimation precision as a function of the signal level, based

on a Poisson noise statistics. The obtained parameters, based on a circular decomposition

of the molecular distribution function, are shown to contain richer information than the

traditional model-oriented estimations. We illustrated the application of this new approach

for the imaging of molecular order in collagen type I fibrils, where order information can be

obtained at the microscopic scale without the need to infer a specific orientational model.
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Appendix A: From 3D to 2D expressions of the nonlinear SHG macroscopic re-

sponse

The expression of the macroscopic nonlinear SHG response is based on calculation of the

βIJK(Ω) molecular components expressed in the macroscopic frame (X, Y, Z). Assuming

molecules of one-dimensional symmetry along a z direction in the sample plane, βijk possesses

a single non vanishing component βzzz (denoted β) in the molecular frame. We denote (θ, φ)

the orientation of the z axis in the (X, Y, Z) frame. In the case the incident polarization

lies in the (X, Y ) plane, only four macroscopic coefficients need to be considered (index
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permutation are allowed):

βXXX(θ, φ) = β sin3 θ cos3 φ

βXY Y (θ, φ) = β sin3 θ cosφ sin2 φ

βY Y Y (θ, φ) = β sin3 θ sin3 φ

βY XX(θ, φ) = β sin3 θ cos2 φ sinφ

(A1)

Therefore that the βIJK coefficients (with (I, J,K) = (X, Y )) can be written in a general

way as:

βIJK(θ, φ) = β∗
IJK(φ) sin

3 θ (A2)

with β∗
IJK(φ) encompassing all φ dependence sinusoidal functions. Finally the macroscopic

nonlinear tensorial coefficients can be written:

χ
(2)
IJK=(X,Y ) = N

∫ 2π

0

∫ π

0
βIJKf(θ, φ) sin θdθdφ

= N
∫ 2π

0

∫ π

0
β∗
IJK(φ)f(θ, φ) sin

4 θdθdφ
(A3)

Appendix B: SHG response from an ensemble of molecules

In this part we derive the expression of the Fourier coefficients of the SHG intensity

polarization dependence for an ensemble of molecules. We consider a one-dimensional planar

molecule lying in the sample plane, its main nonlinear coefficient βzzz being denoted β. The

z axis is oriented with an angle φ relative to the macroscopic axis X. α the angle of the

incident linear polarization E relative to X. The amplitudes of the molecular nonlinear

induced dipole along the X and Y axes are proportional to:

p2ωX = E2
0β cosφ cos2(α− φ)

p2ωY = E2
0β sinφ cos2(α− φ)

(B1)

with E0 the amplitude of incoming fundamental field.

Using trigonometric formula, these expressions can be written as:

p2ωX = A0 +Ac cos(2α) +As sin(2α)

p2ωY = B0 + Bc cos(2α) + Bs sin(2α)
(B2)
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where

A0 = u cosφ

B0 = u sinφ

2Ac = u(cosφ+ cos(3φ))

2As = u(sinφ+ sin(3φ))

2Bc = u(− sinφ+ sin(3φ))

2Bs = u(cosφ− cos(3φ))

(B3)

with u = E2
0β/2

In the case of a distribution made of an ensemble of molecules, we introduce the expansion

of the molecular distribution on the basis of circular functions:

P (φ) = p0 + p1 cos(φ− φ0) +
∑

n≥2 pn cos(nφ− nφ0)

+
∑

n≥2 qn sin(nφ− nφ0)
(B4)

The coherent SHG intensity from this molecular distribution is deduced from its macro-

scopic nonlinear induced dipole, defined as the orientational average of the molecular non-

linear induced dipole:

I = |N⟨p2ωX ⟩|2 + |N⟨p2ωY ⟩|2 (B5)

with N the molecular density and ⟨...⟩ the orientational averaging operation defined as:

⟨A(φ)⟩ =

∫ 2π

0

A(φ)P (φ)dφ (B6)

This orientation averaging involves moments of the molecular distribution:

⟨cos(mφ)⟩ =

∫ 2π

0

cos(mφ)P (φ)dφ (B7)

which can further be written as:

⟨cos(mφ)⟩ = pmπ cos(mφ0)− qmπ sin(mφ0) (B8)

The same calculus is made for the sin moment:

⟨sin(mφ)⟩ = pmπ sin(mφ0) + qmπ cos(mφ0) (B9)

The different moments necessary for the calculation of the macroscopic nonlinear dipole are

simply:

⟨cos(φ)⟩ = p1π cos(φ0)

⟨sin(φ)⟩ = p1π sin(φ0)

⟨cos(3φ)⟩ = p3π cos(3φ0)− q3π sin(3φ0)

⟨sin(3φ)⟩ = p3π sin(3φ0) + q3π cos(3φ0)

(B10)
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Therefore:

⟨A0⟩ = up1π cosφ0

⟨B0⟩ = up1π sinφ0

2
π
⟨Ac⟩ = u[p1 cosφ0

+p3 cos(3φ0)− q3 sin(3φ0)]

2
π
⟨As⟩ = u[p1 sinφ0

+p3 sin(3φ0) + q3 cos(3φ0)]

2
π
⟨Bc⟩ = u[−p1 sinφ0

+p3 sin(3φ0) + q3 cos(3φ0)]

2
π
⟨Bs⟩ = u[p1 cosφ0

−p3 cos(3φ0) + q3 sin(3φ0)]

(B11)

The SHG intensity can finally be written as:

I(α) = a0 + a1 cos(2(α− φ0)) + a2 cos(4(α− φ0))

+b1 sin(2(α− φ0)) + b2 sin(4(α− φ0))
(B12)

with:

a0 =
A
16
(5p21 + p23 + q23)

a1 =
A
4
(p21 + p1p3) a2 =

A
8
p1p3

b1 =
A
4
p1q3 b2 =

A
8
p1q3

(B13)

where A = N2E4
0π

2β2.
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