
HAL Id: hal-00690317
https://hal.science/hal-00690317

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on arithmetic constraint propagation
Arnaud Malapert, Jean-Charles Régin

To cite this version:
Arnaud Malapert, Jean-Charles Régin. A note on arithmetic constraint propagation. 2012. �hal-
00690317�

https://hal.science/hal-00690317
https://hal.archives-ouvertes.fr

CNRS Internal Report I3S/RR-2012-03-FR

A note on arithmetic constraint propagation

Arnaud Malapert and Jean-Charles Régin
I3S CNRS – Université Nice-Sophia Antipolis

{arnaud.malapert,jean-charles.regin}@unice.fr

Résumé

Nous nous intéressons à la résolution de pro-
blèmes de grandes tailles contenant principalement des
contraintes arithmétiques comme des problèmes de plus
court chemin. Nous montrons qu’un simple modèle PPC
n’est pas compétitif avec des algorithmes ou contraintes
spécialisés. Ce phénomène est causé par le mécanisme
de propagation de contraintes qui détermine l’ordre dans
lequel les contraintes sont révisées. Fort de cette obser-
vation, nous proposons de modifier la propagation pour
intégrer certaines idées cruciales, mais simples, des al-
gorithmes spécialisés. Nous montrons l’intérêt de cette
idée sur des problèmes de plus court chemin et nous
questionnons sa généralisation à travers des expériences
sur d’autres problèmes. Nous analysons aussi la dyna-
mique du phénomène de propagation et constatons que
le nombre de variables traitées plusieurs fois dans une
même phase de propagation est faible.

Abstract

We consider the resolution by constraint program-
ming of large problems, i.e. involving millions of con-
straints, which mainly imply arithmetic constraints, like
shortest path problems or other related problems. We
show that a simple constraint programming model is
not competitive with dedicated algorithms (or dedicated
constraints). This mainly comes from the propagation
mechanism, i.e. the ordering along which the constraints
are revised. Thus, we propose a modification of this
propagation mechanism integrating the main ideas of
the dedicated algorithms. We give some experiments
for the shortest path problem and more general problems
which confirms the robustness of our approach. Last, we
give some results showing that only a few variables are
considered more than once during a propagation step.

1 Introduction

The shortest path problem (SPP) is a component
of more general problems, like resource constrained
shortest path or scheduling (PERT/CPM) problems.

It consists in finding a path between a source node s to
each node v of a directed graph which minimizes the
sum of the lengths of its constituent arcs. The SPP
is efficiently solved by the labeling method combined
to one of the two well-known strategies for selecting
the next variable to scan proposed by Bellman-Ford-
Moore [2] and Dijkstra [6]. In order to solve general
problems, we first compare the performance of con-
straint programming (CP) to dedicated algorithms. In
fact, we will show that the design of a simple model
competitive with the dedicated algorithms is not obvi-
ous. This lack of efficiency caused by the propagation
of constraints will lead us to modify the propagation
mechanism. Then, we will study the effects of our
modification on radio link frequency assignment prob-
lems. Last, we will report results on the number of
times a variable is considered within a single propaga-
tion step.

2 Labeling method and CP

The labeling method and constraint programming
have some strong similarities for solving the SPP.
Let G = (X, A) be a directed graph where each arc
(u, v) ∈ A has a length l(u, v), and let s be a node of
X. The problem is to compute for every node v ∈ X
the shortest path distance from the source node s to
nodes v.

Labeling method The labeling method for solv-
ing the SPP is defined as follows [5]. For ev-
ery node v, the method maintains its distance la-
bel d(v), its parent p(v) and its status S(v) ∈
{unreached, labeled, scanned}. The initialization con-
sists in fixing these values for every node as follows:
v, d(v) = ∞, p(v) = null, and S(v) = unreached.
The first step consists in setting the source as follows:
d(s) = 0 and S(s) = labeled. Then, the scan opera-

tion is applied in order to label nodes until all nodes
have a scanned status. After a scan operation, some
unreached and scanned nodes may become labeled. If
there is no negative cycle, the labeling method termi-
nates and the parents define a correct shortest path
tree and d(v) is the shortest path distance from s to v
for each node v.

Function scan(v)
for each (v, w) ∈ A do

if d(v) + l(v, w) < d(w) then
d(w)← d(v) + l(v, w) ;
S(w)← labeled ;
p(w)← v ;

S(v)← scanned ;

The Bellman-Ford algorithm maintains the set of la-
beled nodes as a FIFO queue: the next node to scan is
removed from the head of the queue whereas labeled
nodes are added to the tail of the queue. The Dijkstra
algorithm selects the labeled node v with the minimum
value d(v), but is restricted to positive lengths.

Constraint propagation On the other hand, con-
straint programming associates a filtering algorithm
filter(C) to each constraint C, which aims at re-
ducing the domain of its variables by removing incon-
sistent values, i.e. values which can not belong to a
solution of the constraint. filter(C) returns the set
of variables that have been modified by the filter. Af-
ter each modification of the domain of a variable, all
constraints involving this variable need to be recon-
sidered, because new domain reductions are possible.
This process is repeated until no modification occurs
which necessarily happens because domains are finite.
The function filter(Q) applies this mechanism called
constraint propagation.

Function filter(Q)
while Q 6= ∅ do

/* pick y in Q and remove y from Q */
for each constraint C involving y do

M ← filter(C) ;
if ∃x ∈M/D(x) = ∅ then return false;
Q← Q ∪M ;

return true;

The conclusion of studies [8, 3, 1] about the vari-
able/constraint revision ordering for arc consistency
algorithms is that: the “variable oriented propagation”
is preferable to the “constraint oriented propagation”
; the best strategy is to select a variable with the min-
imum domain size. The variable oriented propagation
selects successively variables whose domain have been
modified and applies the filtering algorithms of all the

constraints involving this variable. The constraint ori-
ented propagation considers the constraints in turn in-
dependently of the variables, like in the classical AC-3
algorithm. Note that a similar study on labeling meth-
ods lead to the same conclusion [7].

3 Shortest path model

In this section, we describe a simple constraint pro-
gramming model for the shortest path problem. For
each node v ∈ X, let d(v) be a positive unbounded
integer variable with the exception of d(s) which is
equal to 0. For each arc (u, v) ∈ A, we state the con-
straint d(v) ≤ d(u) + l(u, v) which applies the bound
consistency rather than arc consistency. Therefore,
the maximum value of the domain of d(v) after the
initial propagation is the shortest path distance from
s (no search algorithm is needed).
At first glance, we can simulate Bellman-Ford algo-
rithm by using a FIFO Q and Dijkstra algorithm by
selecting a variable of Q with the minimum domain
size (because minimum values of the domains are 0
and maximum values represent the distance from s).
In fact, this assumption is false for almost all existing
solvers because of the initialization of the constraints,
i.e. the first call to their filtering algorithms. Most
solvers add a constraint at the end of the propagation
of the current subproblems as explained below.

4 Modifying the constraint propagation

Constraint initialization Most solvers handle only
modifications between two successive calls of the same
filtering algorithm. This information (called delta do-
mains or waiting list) can be used to speed up the
filtering algorithm. However, its management is com-
plex because other variables/constraints can be prop-
agated between the modification of the domain of a
variable and the propagation of the variable. For in-
stance, filter(C) usually considers the current do-
mains when the constraint C is initialized, but the
constraint C can be propagated more than once for
the same modifications if some variables involved in C
are also in Q. Thus, the solver can apply filter(C)
for modifications that are prior to the initialization of
the constraint and this is not reasonable. So, most of
the solvers postpone the initialization of a constraint
until the propagation of the current subproblems ter-
minates.
This method has some consequences that can be em-
phasized for the shortest path problem in Figure 1. A
CP solver will successively add a constraint and propa-
gate the already defined problem when a modification
occurs. The constraints will be added or filtered in

2

that order: C1, C2, C3, C4, C5, C6 (v1 is reduced), C2
(v2 is reduced), C4, C7, C8, C9 (v1 is reduced), C2 (v2
is reduced), C4, C10, C11, C12 (v1 is reduced), C2, and
C4. The labeling method will insert s in the queue.
Constraints C1, C3, C5, C8, C11 will be considered from
s. They add nodes v1, v2, v3, v4, v5 to the queue. Then,
v1 is extracted; C2 is filtered; v2 is extracted; C4 is
filtered; v3 is extracted; C6 is filtered (adding v1);
C7, C9, C10, C12 are filtered; v1 is extracted, C2 is fil-
tered (adding v2); v2 is extracted and C4 is filtered.
We can note that less constraints are reconsidered by
the labeling method. More precisely, constraints C2
and C4 are considered twice by the labeling method
and four time by the CP solver.

s

v1 v2 v3 v4 v5

10
C1

10
C3

7
C5

6
C8

5
C11

1 C2 8 C4 7 C7 6 C10

1 C6 1 C9 1 C12

Figure 1: Example of shortest path problem.

In order to prevent this issue, we implement a mecha-
nism which does not need to wait until the end of the
propagation for adding a new constraint. In this case,
the initialization is separated from the propagation.
On the contrary, the immediate propagation calls fil-
ter(Q) as soon as a modification occurs during the
initialization.

Parent checking heuristic The Bellman-Ford algo-
rithm can be improved by using the parent checking
heuristic which consists in scanning a node v only if
its parent p(v) is not in the queue Q. For shortest
path problems, the presence of the parent of a node v
in the queue Q will necessarily lead to a new modifi-
cation of d(v). Even though it is not always true for
constraint propagation, we will evaluate a variant of
the constraint propagation mechanism where the prop-
agation of a variable is postponed if its parent belong
to the queue Q.

5 Experimental results

We report here experimental results for several vari-
ants of the constraint propagation mechanism of
the Choco solver (http://choco.mines-nantes.fr)
which is an open source java library. Let P** and
_** denote the variants with and without the parent
checking heuristic respectively. Let *F* and *D* de-
note the variants where the next variable is selected

according to FIFO or min-domain strategies. Let **_
and **S denote the variants with immediate propaga-
tion and separated initialization. Note that the naive
implementation of min-domain and parent checking
heuristics is linear in the number of variables in Q.

Shortest path problem We discuss here the results
for SPP reported in Table (a) on four categories of
random graphs with 2000 nodes and approximately
2 millions of constraints. The categories D and SD
define complete and semi-complete directed acyclic
graph (DAG) with positive lengths and 20% of ad-
ditional arcs. In a semi-complete DAG, indegrees and
outdegrees of half of the nodes are equal to one. Each
additional arc creates a cycle with a positive length.
The categories DN and SDN differ from D and SD by
the presence of negative lengths (but no negative cy-
cle). The rows #v and t correspond to the number of
propagated variables and the propagation time given
in seconds respectively.
The min-domain strategy is more efficient than the
FIFO, and the separation of the initialization and the
propagation is worthwhile. Combining min-domain
with the separation of the initialization and the prop-
agation perfectly simulate Dijkstra algorithm even in
presence of negative lengths. Therefore, the solver
propagates each variable only once which is the mini-
mal possible number of propagated variables (because
all variables are modified at least once). However, this
combination is often a little bit more time consuming
than with the FIFO strategy because of the size of Q
with the exception of the category DN.
The parent checking heuristic provides a small im-
provement for *F_ and postpones approximately 1%
of the propagated variables. However, it significantly
slows down the propagation for *FS, because of the
size of Q leads to postpone approximately 135% of the
propagated variables (some variables are postponed
more than once). We have also evaluated other vari-
ants of the parent checking heuristic (an ancestor is in
the queue, several parents . . .), but the results were
quite similar. Finally, these results clearly show that
the parent checking heuristic is almost useless.

Radio link frequency assignment problem The RL-
FAP model contains variables (6000 in average) with
enumerated domains and constraints which enforce
either the arc consistency either the bound consis-
tency. the top Table (b) gives the results obtained
during the initial propagation. Variants with parent
checking does not show any improvement even if 13%
and 89% of the propagated variables were respectively
postponed when using PF_ and PFS. The rows %v,
%r and t respectively correspond to the percentage of

3

F _FS _D_ _DS PF_ PFS PD_ PDS

D #v 10516 7551 9164 1999 10343 7480 9164 1999
t 16.4 3.2 14.7 4.8 16.3 12.2 3.4 5.6

SD #v 10231 7888 9164 1999 10091 7772 9164 1999
t 6.9 1.8 6.4 2.7 6.8 5.5 1.9 3.3

DN #v 13916 7177 12506 1999 13732 7146 12506 1999
t 19.1 12.0 17.1 6.0 18.8 13.5 16.1 6.7

SDN #v 13021 7328 11885 1999 12867 7291 11885 1999
t 7.6 1.7 7.1 2.7 7.6 5.2 2.1 3.4

(a) Results for shortest path problems

F _FS _D_ _DS

%v 101 92 99 84
%r 5 2 4 1
t 0.67 0.78 0.70 3.30

F _D_

%�v %�r %�v %�r

SAT 30.1 1.5 28.6 0.1
UNSAT 4.6 0.5 1.9 0.1

(b) RLFAP: initial propagation and shaving

propagated variables relatively to the number of vari-
ables, the percentage of reentrant variables relatively
to the number of propagated variables, and the propa-
gation time given in seconds. **S reduces the number
of propagated and reentrant variables but it does not
pass on computation time, especially for _DS. The
ratio of reentrant variables represents the maximum
improvement obtained by another variable ordering
strategies. Indeed, the propagation mechanism can
be improved if we reduce the number of time a vari-
able is propagated during the same step. Each variable
which is modified at least once during a propagation
must be extracted from Q, because it is necessary to
study the consequences of its modification. Therefore,
a “perfect” propagation would consider, in the best
case, only once each modified variable. This prelimi-
nary results should still be confirmed on other prob-
lems.
The bottom Table (b) gives the results of the shav-
ing restricted to the bounds of the domains.Note that
**S is useless during the shaving process because con-
straints are already initialized. The rows %�v and %�r
respectively correspond to the perthousand of propa-
gated and reentrant variables. Computation times are
not mentioned because the solver was heavily instru-
mented. The results are grouped by answer (550000
SAT, 130000 UNSAT), but SAT answers with only one
single propagated variable were ignored. The num-
ber of propagated variables is slightly reduced by us-
ing _D_, especially for the UNSAT answers. How-
ever, the number of reentrant variables is really low
which corresponds to a very small possible improve-
ment using another variable ordering. The experiment
confirms the observations from [4]: less variables are
propagated when the answer is UNSAT than when it
is SAT.

6 Conclusion

We have showed that CP solvers must be modified in
order to be competitive with the best algorithms for

solving shortest path problems. We have identified
the modifications of propagation that are efficient for
simple but large problems like SPP or RLFAP. Unfor-
tunately, we have also showed that only a few variables
are considered twice during a propagation which limits
further improvements for the considered problems.

References

[1] T. Balafoutis and K. Stergiou. Exploiting con-
straint weights for revision ordering in AC algo-
rithms. In Proc. of ECAI-2008-W31, 2008.

[2] R. Bellman. On a Routing Problem. Quarterly of
Applied Mathematics, 16:87–90, 1958.

[3] F. Boussemart, F. Hemery, and C. Lecoutre. Re-
vision ordering heuristics for the CSP. In Proc. of
CPAI 2004, pages 29–43, 2004.

[4] F. Boussemart, F. Hemery, C. Lecoutre, and
M. Samy-modeliar. Contrôle statistique du pro-
cessus de propagation de contraintes. In Proc. of
JFPC 2011, pages 65–74, 2011.

[5] B.V. Cherkassky, A.V. Goldberg, and T. Radzik.
Shortest paths algorithms: Theory and experimen-
tal evaluation. Math. Program., 73:129–174, 1996.

[6] E.W. Dijkstra. A note on two problems in connec-
tion with graphs. Num. Math., 1:269–271, 1959.

[7] Y. Dinitz and R. Itzhak. Hybrid bellman-ford-
dijkstra algorithm. Technical Report CS-10-04,
Ben-Gurion University of the Negev, 2010.

[8] R.J. Wallace and E.C. Freuder. Ordering heuristics
for arc consistency algorithms. In Proc. of Cana-
dian AI 1992, pages 163–169, 1992.

4

