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Abstract

Chaput, Manivel and Perrin proved in [CMP09] a formula describ-
ing the quantum product by Schubert classes associated to cominus-
cule weights in a rational projective homogeneous space X . In the case
where X has Picard rank one, we link this formula to the stratification
of X by P -orbits, where P is the parabolic subgroup associated to the
cominuscule weight. We deduce a decomposition of the Hasse diagram

of X , i.e the diagram describing the cup-product with the hyperplane
class.

1 Introduction

Let G be a semisimple algebraic group over C, B be a Borel subgroup and
T ⊂ B a maximal torus. We denote by Φ the set of roots of G with respect to
T , Φ+ the subset of positive roots with respect to B, ∆ = {α1, . . . , αn} the
subset of simple roots and W the Weyl group of G. A fundamental weight ω
is said to be minuscule if |〈α∨, ω〉| ≤ 1 for all α ∈ Φ, where α∨ is the coroot
of α. It is said to be cominuscule if it is minuscule for the dual root system.
Fundamental weights will be denoted ω1, . . . , ωn, with the same order as in
the notation of [Bou68].

Let Q ⊃ B be a parabolic subgroup of G and denote by X the ho-
mogeneous space G/Q. In [CMP09], Chaput, Manivel and Perrin proved a
formula describing the quantum product in X by special Schubert classes as-
sociated to cominuscule weights. These classes correspond to the elements of
the image of Seidel’s representation π1(G

ad) → QH∗(G/Q)×loc [Sei97], where
Gad = G/Z(G) and QH∗(G/Q)×loc is the group of invertible elements in the
small quantum cohomology ring QH∗(G/Q) localized in the quantum param-
eters. Before stating this result, we introduce some notation for the quantum
cohomology of X.

The quantum cohomology ring QH∗(X) of a homogeneous variety X =
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G/Q is a deformation of its cohomology ring. Consider the parameter ring

Λ =




∑

β

aβq
β

∣∣∣∣∣∣
β ∈ H+

2 (X,Z), aβ ∈ Z



 ,

where the sums are finite, H+
2 (X,Z) denotes the set of effective cycles in

H2(X,Z) and the qβ are formal parameters such that qβqβ
′

= qβ+β′

. As a Z-
module, the quantum cohomology ring QH∗(X) is isomorphic to H∗(X,Z)⊗Z

Λ. Moreover, it admits a ring structure defined by the quantum product ⋆,
which is a deformation of the cup-product. A precise definition for the
quantum product can be found in [FP97]. The group H2(X,Z) contains
Φ∨/Φ∨

Q, where Φ∨ denotes the coroot lattice of G and Φ∨
Q the coroot lattice

of Q, hence positive coroots can be seen as effective classes β ∈ H+
2 (X,Z).

Now let I be the set of vertices of the Dynkin diagram of G corresponding
to cominuscule weights. If i ∈ I , let vi be the shortest element of the Weyl
group W such that viω

∨
i = w0ω

∨
i , where ω∨

i is the fundamental coweight
associated to i and w0 is the longest element of W . Then the quantum
product in X by the Schubert class σvi Poincaré dual to the Schubert cycle
[Xviw0 ] is given by the following formula :

Theorem 1 ([CMP09, Thm.1]). For all w ∈W and for all i ∈ I, we have :

σvi ⋆ σw = qηQ(ω∨

i −w−1(ω∨

i ))σviw,

where ηQ : Φ∨ → Φ∨/Φ∨
Q is the natural surjection.

The aim of this paper is to relate the above theorem to a stratification
of X = G/Q by Pi-orbits when Q is a maximal parabolic and Pi is the
maximal parabolic associated to the weight ωi. In Section 2, we recall some
well-known facts about parabolic orbits and we describe the parabolic orbits
associated to cominuscule weights in the classical Grassmannians. Then in
Section 3, we explain the link between Thm. 1 and the stratification by
parabolic orbits in X. We deduce in Section 4 a decomposition of the Hasse
diagram of the classical Grassmannians.
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2 Parabolic orbits

In 2.1 we recall some classical facts about parabolic orbits in (generalized)
flag varieties, and in 2.2, we give a more explicit description of parabolic
orbits associated to cominuscule weights in the classical Grassmannians.
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2.1 Parabolic orbits in generalized flag varieties

A generalized flag variety is a variety of the form X = G/Q, where G is
a semisimple algebraic group, B a Borel subgroup and Q ⊃ B a parabolic
subgroup. Now consider a second parabolic subgroup P ⊃ B. We call
P -orbits or parabolic orbits the orbits of X under the action of P by left
multiplication. Here are some elementary properties of parabolic orbits,
which can be found in [Per02, Sec. 2.1] :

Proposition 1. 1. Every P -orbit can be written as PwQ/Q with w ∈W .

2. The P -orbits are smooth and locally closed, indexed by the double cosets
WP \W/WQ, where WP and WQ denote the Weyl groups associated to
P and Q. Moreover, they define a stratification of X :

X =
⊔

WPwWQ∈WP \W/WQ

PwQ/Q.

3. The P -orbits are B-stable, hence they are a union of Schubert cells :

PwQ/Q =
⋃

(wP ,wQ)∈WP×WQ

BwPwwQQ/Q.

We denote by WQ the set of minimal length representatives of cosets in
W/WQ, which inherits the Bruhat order of W . Let us describe the double
cosets indexing parabolic orbits :

Proposition 2. Let E = WPwWQ be a double coset in WP\W/WQ. Then
E ∩ WQ contains unique minimal and maximal elements wmin and wmax.
Moreover, it is equal to the interval [wmin, wmax] for the Bruhat order in
WQ.

Proof. This statement is an exercise (without proof) in [Bou68, Chap. 4, §
1]. Here we give a geometric proof.

Let O be the P -orbit indexed by E . By Item 3 of Prop. 1, we have

O =
⋃

w′∈E

Cw′ ,

where Cw′ = Bw′Q/Q is the Schubert cell associated to w′. Hence the
closure O of O satisfies

O =
⋃

w′∈E

Xw′ ,

where Xw′ = Cw′ is the Schubert variety associated to w′. Moreover, O
being B-stable, irreducible and closed, it is a Schubert variety Xwmax with
wmax ∈WQ. It follows that wmax is in E ∩WQ, and by definition w′ ≤ wmax

for each w′ ∈ E ∩WQ.
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Similarly, the double coset E ′ := WQw
−1WP admits a unique maximal

element w̃ ∈WQ. Then wmin := w̃ is a unique minimal element in E ∩WQ.
Let us now prove that E ∩WQ is the interval [wmin, wmax]. From the

definition of wmin and wmax, it is already clear that E ∩WQ is contained in
the aforementioned interval. Moreover, the Schubert cell Cwmin

is contained
in all Schubert cells Cw′ for w′ ∈ E ∩WQ. The boundary O\O being closed
and B-stable, it is a union of Schubert varieties Xwi

, and we may write :

O \ O =

r⊔

i=1

Xwi

for some wi ∈ WQ. Let Cw′ be a Schubert cell in Xwmax = O, where
w′ ∈ WQ. It means that w′ ∈ [1, wmax]. The cell Cw′ lies in O if and only
if Cw′ 6⊂ Xwi

, i.e w′ 6∈ [1, wi] for each 1 ≤ i ≤ r. In particular, we get that
wmin ∈ [1, wmax] \

⋃
1≤i≤r [1, wi].

Now let w′ be any element in [wmin, wmax] ⊂ WQ. If there existed an i
such that w′ ∈ [1, wi], then since wmin ≤ w′, we would have wmin ∈ [1, wi],
which is impossible. Hence w′ ∈ [1, wmax] \

⋃r
i=1 [1, wi], which means that

w′ ∈ E ∩WQ as required.

In particular, we see that parabolic orbits correspond to sub-intervals of
WQ. The next result describes them as the total space of a vector bundle
over another generalized flag variety.

First of all, consider the Levi decomposition P = L⋉U , where L is a Levi
subgroup and U is the unipotent radical of P . If O is a P -orbit associated
to a double coset WPwminWQ, then we define the following subset of the set
∆ of simple roots of G :

Kwmin
=

{
s ∈ ∆(P ) | w−1

minswmin ∈ ∆(Q)
}
,

where for any parabolic subgroup R ⊂ G, ∆(R) ⊂ ∆ is such that the associ-
ated reflections, together with B, generate R. Denote by Rwmin

the parabolic
subgroup of L generated by Kwmin

and B ∩ L. We have the following geo-
metric description of parabolic orbits :

Theorem 2 ([Mit08], Thm. 1.1). Let O be the P -orbit associated to a
double coset WPwminWQ, where P is a parabolic subgroup associated to a
cominuscule weight. Then there exists a representation Vwmin

of Rwmin
such

that O ∼= L×Rwmin
Vwmin

and the map O → L/Rwmin
is a vector bundle.

Remark 1. • An analogous result is proved in [Per02, Prop. 5].

• Note that if P is not associated to a cominuscule weight, we still have
a locally trivial map with affine fibers, but it is no longer a vector
bundle, as stated at the end of the proof of [Per02, Prop. 5]. For
instance, take X = Q3

∼= OG(1, 5) ⊂ P4 the 3-dimensional quadric
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and P = Pω2 . The open orbit O is Q3 \ P1. The fibration O → P1 is
locally trivial, the fibers are 2-dimensional affine spaces, but a simple
calculation shows that the transition maps are quadratic.

A consequence of Thm. 2 is that the cohomology ring of the parabolic
orbit O and of the generalized flag variety L/Rwmin

are isomorphic (see
[Ful84, Chap. 3]), which will help us to find decompositions of the Hasse
diagrams in Section 4.

2.2 Parabolic orbits associated to cominuscule weights in the

classical Grassmannians

For us, a classical Grassmannian will be a homogeneous space X = G/Q,
where G is of type An, Bn, Cn or Dn and Q is a maximal parabolic subgroup
of G. In type An, it corresponds to the usual Grassmannians G(m,n + 1)
for 1 ≤ m ≤ n, while in type Cn, we get the symplectic Grassmannians
IG(m, 2n) with 1 ≤ m ≤ n. Finally, in type Bn (resp. in typeDn), we obtain
the odd orthogonal (resp. even orthogonal) Grassmannians OG(m, 2n + 1)
(resp. OG(m, 2n)), where 1 ≤ m ≤ n. In type Dn, we furthermore exclude
the case where m = n − 1, since it corresponds to a variety with Picard
number two.

We start by giving the list of cominuscule weights, including the excep-
tional cases :

Type Classical Grassmannians Cominuscule weights

An G(m,n + 1) 1 ≤ m ≤ n ωi (1 ≤ i ≤ n)

Bn OG(m, 2n + 1) 1 ≤ m ≤ n ω1

Cn IG(m, 2n) 1 ≤ m ≤ n ωn

Dn OG(m, 2n) 1 ≤ m ≤ n, m 6= n− 1 ω1, ωn−1, ωn

E6 E6/Pj 1 ≤ j ≤ 6 ω1, ω6

E7 E7/Pj 1 ≤ j ≤ 7 ω7

In the following sections, following Thm. 2, we describe the parabolic or-
bits associated to the above cominuscule weights for classical Grassmannians.
We will not treat the exceptional cases in general since in these examples,
flags and Schubert varieties are not so easily described. We will only men-
tion the case of the Cayley plane E6/P1 in Section 4. However, it would
probably be possible to get similar results for all exceptional cases, using the
description of flags introduced by Iliev and Manivel in [IM05] for type E6

and by Garibaldi in [Gar01] for type E7.
We will denote by Pωi

the maximal parabolic subgroup containing the
Borel subgroup B and associated to the cominuscule fundamental weight ωi.
In 2.2.1, we give a geometric description of the Pωi

-orbits, whereas in 2.2.2,
we give a combinatorial description of the double cosets indexing them.
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2.2.1 Geometric description of parabolic orbits

First we need to recall the characterization of the flag stabilized by the Borel
subgroup B in each of the classical types :

Type An : B is the stabilizer of a (uniquely defined) complete flag

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ En+1 = Cn+1,

the element Ei being an i-dimensional subspace of Cn+1.

Type Bn : B is the stabilizer of a type Bn complete isotropic flag

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · ⊂ E2n ⊂ E2n+1 = C2n+1,

where the vector spaces E1, . . . , En are isotropic and for each
1 ≤ i ≤ n, we have En+i = E⊥

n+1−i.

Type Cn : B is the stabilizer of a type Cn complete isotropic flag

0 = E0 ⊂ E1 ⊂ · · · ⊂ En ⊂ En+1 ⊂ · · · ⊂ E2n = C2n,

where the Ei’s are isotropic and for each 0 ≤ i ≤ n, we have
En+i = E⊥

n−i.

Type Dn : B is the stabilizer of a type Dn complete isotropic flag

0 = E0 ⊂ . . . ⊂En−2
⊂
⊂

En

E′
n

6=
⊂

⊂
En+1⊂ . . . ⊂ E2n = C2n

where the vector spaces E1, . . . , En−2 are isotropic, En is a type
1 maximal isotropic subspace, E′

n a type 2 isotropic subspace,
En+1 = (En∩E

′
n)

⊥ and for each 1 ≤ i ≤ n−1, En+1+i = E⊥
n−1−i.

Now we prove that P -orbits associated to cominuscule weights in the
classical Grassmannians can be described by the relative position of their
elements with respect to a certain partial flag associated to the cominuscule
weight defining P . In the following proposition, the unique complete flag
stabilized by the Borel subgroup will be denoted as above .

Proposition 3. 1. If X = G(m,n+ 1) and P = Pωi
for 1 ≤ i ≤ n, then

the P -orbits are the

Od := {Σ ∈ X | dim(Σ ∩ Ei) = d} ,

for max(0, i +m− n− 1) ≤ d ≤ min(m, i).
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2. a) If X = OG(m, 2n+ 1) with m < n and P = Pω1 , then the P -orbits
are

O0 :=
{
Σ ∈ X | Σ 6⊂ E⊥

1

}
,

O1 :=
{
Σ ∈ X | Σ ⊂ E⊥

1 and Σ 6⊃ E1

}
,

O2 := {Σ ∈ X | Σ ⊃ E1} .

b) If X = OG(n, 2n + 1) and P = Pω1 , then the P -orbits are

O0 := {Σ ∈ X | Σ 6⊃ E1} ,

O1 := {Σ ∈ X | Σ ⊃ E1} .

3. If X = IG(m, 2n) and P = Pωn , then the P -orbits are the

Od := {Σ ∈ X | dim(Σ ∩ En) = d}

for 0 ≤ d ≤ m.

4. a) If X = OG(m, 2n) with m < n− 1 and P = Pω1 , then the P -orbits
are defined as in case 2a.

b) If X = OG(m, 2n) with m < n−1 and P = Pωn−1 , then the P -orbits
are the

Od :=
{
Σ ∈ X | dim(Σ ∩ E′

n) = d
}

for 0 ≤ d ≤ m.

c) If X = OG(m, 2n) with m < n− 1 and P = Pωn , then the P -orbits
are defined as in case 4b, with E′

n replaced by En.

d) If X = OG(n, 2n) ∼= OG(n − 1, 2n − 1) and P = Pω1 , then the
P -orbits are defined as in case 2b.

e) If X = OG(n, 2n) and P = Pωn−1 , then the P -orbits are the

Od :=
{
Σ ∈ X | dim(Σ ∩E′

n) = 2d+ ǫ′
}

for 0 ≤ d ≤ ⌊n−1
2 ⌋, where ǫ′ = 0 if n is odd and 1 if n is even.

f) If X = OG(n, 2n) and P = Pωn , then the P -orbits are defined as
in case 4e, with E′

n replaced by En and ǫ′ replaced by ǫ := 1− ǫ′.

Proof. The parabolic subgroup P is the stabilizer of the following partial
flags :

• Ei in case 1 ;

• E1 ⊂ E⊥
1 in cases 2, 4a and 4d ;

• En = E⊥
n in cases 3, 4c and 4f ;
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• E′
n = E′

n
⊥ in cases 4b and 4e.

Hence the dimensions of the intersections with each element of these par-
tial flags are constant on the P -orbits, and conversely, the sets where these
dimensions are constant are exactly the P -orbits.

We conclude the section by giving in each classical type an explicit de-
scription of the fibration introduced in Thm. 2. In the following result, the
orbits Od are the ones defined in Prop. 3.

Proposition 4. 1. If X = G(m,n+ 1) and P = Pωi
for 1 ≤ i ≤ n, then

the fibrations are the

Od → G(d,Ei)×G(m− d,Cn+1/Ei)
Σ 7→ (Σ ∩Ei,Σ/(Σ ∩ Ei))

2. a) If X = OG(m, 2n+1) with m < n and P = Pω1 , then the fibrations
are the

Od → OG(m− ǫ, E⊥
1 /E1)

Σ 7→
[
Σ ∩E⊥

1

]

where ǫ = 1 if d = 0, 2 and ǫ = 0 if d = 1.

b) If X = OG(n, 2n + 1) and P = Pω1 , then the fibrations are the

Od → OG(m− 1, E⊥
1 /E1)

Σ 7→
[
Σ ∩E⊥

1

]

3. If X = IG(m, 2n) and P = Pωn , then the fibrations are the

Od → F(d, n −m+ d;En)
Σ 7→

(
(Σ ∩ En) ⊂ (Σ⊥ ∩ En)

)

4. a) If X = OG(m, 2n) with m < n−1 and P = Pω1 , then the fibrations
are defined as in case 2a.

b) If X = OG(m, 2n) with m < n − 1 and P = Pωn−1 , then the
fibrations are

Od → F(d, n −m+ d;E′
n)

Σ 7→
(
(Σ ∩ E′

n) ⊂ (Σ⊥ ∩ E′
n)
)

c) If X = OG(m, 2n) with m < n−1 and P = Pωn , then the fibrations
are defined as in case 3.

d) If X = OG(n, 2n) ∼= OG(n − 1, 2n − 1) and P = Pω1 , then the
fibrations are defined as in case 2b.
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e) If X = OG(n, 2n) and P = Pωn−1 , then the fibrations are

Od → G(2d + ǫ′, E′
n)

Σ 7→ Σ ∩ E′
n

where ǫ′ = 0 if n is odd and 1 if n is even.

f) If X = OG(n, 2n) and P = Pωn , then the fibrations are defined as
in case 4e, with E′

n replaced by En and ǫ′ replaced by ǫ := 1− ǫ.

Proof. We only describe Cases 1, 2a, 3 and 4f with n even. The other cases
are very similar.

1. Since Od = {Σ ∈ X | dim(Σ ∩ Ei) = d}, the map is well defined.
Moreover, the fiber at a pair (Σ1,Σ2) ∈ G(d,Ei)×G(m− d,Cn+1/Ei) is

{
Σ1 ⊕ Σ′ | dimΣ′ = m− d,Σ′ = Σ2 mod Ei

}
∼= CdimΣ2×dimEi = C(m−d)i.

2a) For d = 0, the fiber over Σ1 ∈ OG(m− 1, E⊥
1 /E1) is

{
Σ′ ⊕ L | Σ′ = Σ1 mod E1, L ⊂ Σ⊥

1 \E⊥
1 , L isotropic

}

∼=CdimΣ1×dimE1 × CdimΣ⊥
1 −dimΣ1−dimL−1 = C2n−m.

For d = 1, the fiber over Σ1 ∈ OG(m,E⊥
1 /E1) is

{
Σ′ | Σ′ = Σ1 mod E1

}
∼= CdimE1 dimΣ1 = Cm.

Finally, for d = 2, the map is an isomorphism.
3. The fiber over (Σ1 ⊂ Σ2) ∈ F(d, n −m+ d;En) is

{
Σ1 ⊕ Σ′ | dimΣ′ = m− d,Σ′ = Σ⊥

2 mod En,Σ
′ ⊂ Σ⊥

1 isotropic
}

∼=CdimΣ′(dimEn−dimΣ1)−
dimΣ′(dimΣ′

−1)
2 = C(m−d)(n−d)− (m−d)(m−d−1)

2 .

4f) We assume n is even. The fiber over Σ1 ∈ G(2d,En) is

{
Σ1 ⊕ Σ′ | dimΣ′ = m− 2d,Σ′ = Σ⊥

1 mod EnΣ
′ ⊂ Σ⊥

1 ,Σ
′ isotropic

}

∼=CdimΣ′2− dimΣ′(dimΣ′
−1)

2 = C(n−2d)2− (n−2d)(n−2d−1)
2 .

Remark 2. In Thm. 2, the fibrations for parabolic orbits are described com-
binatorially. Tedious but straightforward calculations show that these fibra-
tions are indeed the same as those described in the above proposition.
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2.2.2 Combinatorial description of parabolic orbits

We begin by recalling the description of the elements of the Weyl group
in type An (respectively in types Bn, Cn and Dn) as permutations (resp.
signed permutations) of {1, . . . , n}. We do not have such a description in
the exceptional cases.

In type A, the Weyl group is W = Sn, and we denote w ∈ W as w =
(a1, . . . , an) where {1, . . . , n} = {a1, . . . , an}, which means that w(i) = ai.

In types Bn and Cn, the Weyl group is W = Sn⋉Zn
2 , and we denote w ∈

W as w = (b1, . . . , bn), where bi = ai or −ai and {1, . . . , n} = {a1, . . . , an},
which means that w(i) = ai if bi = ai and w(i) = ai if bi = −ai.

Finally, in type Dn, the Weyl group is W = Sn ⋉ Zn−1
2 , and we denote

elements of W as in the previous case, with the additional condition that
the number of negative parts −ai should be even.

We can now state a proposition describing, for all the classical types, the
double coset Ed ∈WP \W/WQ indexing the P -orbit Od defined in Prop. 3 :

Proposition 5. 1. If X = G(m,n+ 1) and P = Pωi
for 1 ≤ i ≤ n, then

Ed = {w ∈W | # {1 ≤ j ≤ m | w(j) ≤ i} = m− d} .

2. a) If X = OG(m, 2n + 1) with m < n and P = Pω1 , then

E0 = {w ∈W | ∃1 ≤ j ≤ m,w(j) = −1}

E1 = {w ∈W | ∄1 ≤ j ≤ m,w(j) ∈ {1,−1}}

E2 = {w ∈W | ∃1 ≤ j ≤ m,w(j) = 1} .

b) If X = OG(n, 2n + 1) and P = Pω1 , then

E0 = {w ∈W | ∃1 ≤ j ≤ m,w(j) = −1}

E1 = {w ∈W | ∃1 ≤ j ≤ m,w(j) = 1} .

3. If X = IG(m, 2n) and P = Pωn , then

Ed = {w ∈W | # {1 ≤ j ≤ m | w(j) > 0} = d} .

4. a) If X = OG(m, 2n) with m < n− 1 and P = Pω1 , then Ed is defined
as in case 2a.

b) If X = OG(m, 2n) with m < n− 1 and P = Pωn−1 , then

Ed = {w ∈W | # {j ≤ m | w(j) > 0} = d,w(j) 6= n,−n ∀j ≤ m}

∪ {w | # {j ≤ m | w(j) > 0} = d− 1,∃j ≤ m,w(j) = −n}

∪ {w | # {j ≤ m | w(j) > 0} = d+ 1,∃j ≤ m,w(j) = n} .
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c) If X = OG(m, 2n) with m < n− 1 and P = Pωn , then Ed is defined
as in case 3.

d) If X = OG(n, 2n) ∼= OG(n − 1, 2n − 1) and P = Pω1 , then Ed is
defined as in case 2b.

e) If X = OG(n, 2n) and P = Pωn−1 , then

Ed =
{
w ∈W | # {j | w(j) > 0} = 2d+ ǫ′ − 1 and ∃j, w(j) = −n

}

∪
{
w ∈W | # {w(j) > 0} = 2d+ ǫ′ + 1 and ∃j, w(j) = n

}
,

where ǫ′ = 0 if n is odd and 1 if n is even.

f) If X = OG(n, 2n) and P = Pωn , then

Ed = {w ∈W | # {j | w(j) > 0} = 2d+ ǫ} ,

where ǫ = 1− ǫ′.

Proof. The arguments for each case being similar, we only prove the propo-
sition in Case 4b, which is a little more complicated than the others.

Here the Weyl groups are W = Sn ⋉ Zn−1
2 , WP = Sn−1 ⋉ Z2 and

WQ = Sm × (Sn−m ⋉ Zn−m−1
2 ). We will denote elements of W as signed

permutations w = (b1, . . . , bn) as in the beginning of the section.
The action of WQ on the right permutes the m first entries b1, . . . , bm of

w on one hand, and the n −m last entries bm+1, . . . , bn on the other hand,
and changes the sign of these last entries while keeping the total number
of minus signs even. Hence the minimal length representatives of classes in
W/WQ are of the form :

w =
(
u1 < · · · < ul,−zm−l < · · · < −z1, v1 < · · · < vn−m−1, (−1)m−lvn−m

)
,

where 0 ≤ l ≤ m, {ui} ∪ {zr} ∪ {vj} = {1, . . . , n} and vn−m−1 < vn−m.
Moreover, the action of WP on the right permutes the n − 1 values

1, . . . , n − 1 and exchanges n − 1 and n while changing their signs. Hence
the minimal length representatives of double cosets in WP \W/WQ are of the
form :

w0 = id or wd = (1 < · · · < d− 1 < n,−n+ 1 < · · · < −n+m− d, v) ,

where 1 ≤ d ≤ m and

v =
(
d < · · · < n−m+ d− 2, (−1)m−d(n −m+ d− 1)

)
.

Now it is enough to prove that all elements of the set Ed defined in the
statement of the proposition are in the same double coset as wd.
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First suppose w ∈W is such that # {j ≤ m | w(j) < 0} = d and w(j) 6=
n,−n for all j ≤ m. Using the action of WQ on the right, we see that w is
in the same double coset as

w1 =
(
a1 < · · · < ad,−bm−d < · · · < −b1, c1 < · · · < cn−m−1, (−1)m−dn

)
.

Using (several times) the action of the simple reflections s1, . . . , sn−1 of WP

on the left (which together permute the values from 1 to n− 1), we deduce
that w1 is in the same double coset as

w2 = (1 < · · · < d,−n+ 1 < · · · < −n+m− d, v) ,

where v =
(
d+ 1 < · · · < n−m+ d− 1, (−1)m−dn

)
. Then applying the

simple reflection sn ∈WP on the left, we get

w3 = (1 < · · · < d < n,−n+ 2 < · · · < −n+m− d, v) ,

where v =
(
d+ 1 < · · · < n−m+ d− 1, (−1)m−d+1(n− 1)

)
.

Finally, using the action of the simple reflections s1, . . . , sn−1 of WP on
the left, we obtain the element w4 = wd, which proves that w is in the same
double coset as wd.

The reasoning in the two other situations (# {j ≤ m | w(j) > 0} = d− 1
and ∃j ≤ m,w(j) = −n on one hand, # {j ≤ m | w(j) > 0} = d + 1 and
∃j ≤ m,w(j) = n on the other hand) being very similar, this concludes the
proof.

Definition 1. Let w ∈W be an element of the Weyl group. Then w belongs
to one of the double cosets Ed defined in the statement of the proposition and
we define the integer d(w) := d.

3 Link between P -orbits and quantum product

Here we describe the link between Thm. 1 and parabolic orbits for homoge-
neous spaces X = G/Q, where Q is a maximal parabolic subgroup. Since Q
is maximal, we have Φ∨/Φ∨

Q
∼= Z. Hence for each w ∈W , we may define an

integer
δ(w) := ηQ(ω

∨
i − w−1(ω∨

i )).

In the following sections, we will prove that the loci where δ(w) is constant
correspond to the double cosets E indexing P -orbits. For classical Grass-
mannians, this proves that for every w ∈ WQ, δ(w) equals the integer d(w)
introduced in Definition 1.
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3.1 The integer δ(w) is constant on parabolic orbits.

We start by proving that δ is constant on the double cosets E = WPwWQ.
Consider w′ ∈ E . From the definition of E , it follows that w′ can be written
as wPwwQ for some wP ∈WP and wQ ∈WQ. Denote by ωi the cominuscule
weight defining P . Reflections associated to the simple roots will be denoted
by sl for 1 ≤ l ≤ n.

If l 6= i, we have

sl(ω
∨
i ) = ω∨

i − (αl, ω
∨
i )α

∨
l = ω∨

i ,

hence
w−1
P (ω∨

i ) = ω∨
i . (1)

Now consider e := ηQ(w
−1(ω∨

i )). Then by definition of ηQ,

w−1(ω∨
i ) = eα∨

m +
∑

p 6=m

cpα
∨
p ,

where the cp are some coefficients. But if l 6= m, we have

sl(α
∨
m) = α∨

j − (αl, α
∨
m)α∨

l .

Similarly, for p 6= m and l 6= p,m :

sl(α
∨
p ) = α∨

p − (αl, α
∨
p )α

∨
l ,

and if p 6= m and l = p :
sp(α

∨
p ) = −α∨

p .

Hence if we apply the reflection sl for l 6= m, the coefficient of α∨
m does not

change. We conclude that ηQ

(
w−1
Q w−1ω∨

i

)
= ηQ

(
w−1ω∨

i

)
. Using Equation

(1), we obtain
ηQ(w

−1
Q w−1w−1

P ω∨
i ) = ηQ(w

−1ω∨
i ).

3.2 The integer δ(w) changes on different parabolic orbits.

It is enough to prove that if w′ ∈ E ′ ∩WQ is a successor of w ∈ E ∩WQ

for the Bruhat order in WQ, where E and E ′ are two different P -orbits, then
δ(w′) > δ(w).

Since w and w and w′ do not belong to the same P -orbit, we know that

w′ = sα0w for some positive root α0 ∈ Φ+ \
(
Φ+
P ∩ Φ+

Q

}
. Indeed, if α ∈ Φ+

P ,

then the reflection sα is in WP , hence stabilizes E and if α ∈ Φ+
Q, then w′ = w

in W/WQ. Moreover, we have lQ(w
′) = lQ(w) + 1, where lQ is the length

function of WQ.
We set LQ(w) :=

{
α ∈ Φ+ \Φ+

Q | w(α) ∈ Φ−
}
. There exists β0 ∈ Φ+ \

Φ+
Q such that w(β0) = α0. Indeed, if it were not the case, then for all

13



α ∈ LQ(w
′), we would have sα0w(α) ∈ Φ− and w(α) 6= α0, hence w(α) ∈ Φ−

and α ∈ LQ(w). This would mean that lQ(w
′) ≤ lQ(w), which is absurd.

Let us now compute δ(w′) :

δ(w′) = ηQ
(
ω∨
i − w−1sα0(ω

∨
i )
)
= δ(w) + (α0, ω

∨
i )ηQ

(
w−1α∨

0

)
.

Since α0 ∈ Φ+ \ Φ+
P , we have (α0, ω

∨
i ) > 0. Moreover, w(β0) = α0 implies

w−1(α∨
0 ) = β∨0 , and ηQ(β0) > 0 since β0 ∈ Φ+ \ Φ+

Q. Finally δ(w′) > δ(w)
as required.

We conclude that the loci

{
w ∈WQ | δ(w) = d

}

coincide with the sets E ∩WQ.

4 Decomposition of the Hasse diagram

In [CMP07], Chaput, Manivel and Perrin relate the quantum product by
the point class in minuscule varieties with a decomposition of their Hasse
diagram. The Hasse diagram H of a homogeneous space with Picard rank
one is the diagram of the multiplication by the hyperplane class h. More
precisely, its vertices are the Schubert classes σw for w ∈ WQ and σv and
σw are related by an arrow of multiplicity r if and only if σw appears with
multiplicity r in the cup-product σv ∪ h.

The results of previous sections enable us to find decompositions of the
Hasse diagram in the non-minuscule case, corresponding to the quantum
product by the Schubert classes σvi associated to cominuscule weights intro-
duced in the statement of Thm. 1.

Let O be a P -orbit of X. It is the union of the Schubert cells Cw ⊂ X for
all w in the associated double coset E . The set E ∩WQ being an interval (cf
Prop. 2), we denote it as E ∩WQ = [wmin, wmax]. From Thm. 1, we know
that O is a vector bundle over the generalized flag variety F := L/Rwmin

.
Here we state a result relating the Hasse diagrams of the parabolic orbit

O with a similar diagram for the flag variety F :

Proposition 6. Let ψ : O → F be the fibration, i : O →֒ X the natural
embedding and h the hyperplane class of X. Then :

1. There exists a class h′ ∈ H2(F ) such that i∗h = ψ∗h′ ;

2. The Hasse diagram of O is isomorphic to the diagram of the multipli-
cation by h′ in F .

Proof. 1. Since i∗h ∈ H2(O) ∼= H2(F ), there exists h′ ∈ H2(F ) such that
i∗h = ψ∗h′.
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2. There exists an isomorphism WF ∼= E ∩ WQ, where WF is the set
of minimal length representatives of WL/WRwmin

. Indeed, let CF
u be

a Schubert cell of F . Since ψ is a vector bundle, its inverse image
ψ−1(CF

u ) is a Schubert cell of X, which we denote by CX
φ(u), where

φ(u) ∈ WQ. Since CX
φ(u) ⊂ O, we have φ(u) ∈ E ∩WQ, and φ is the

desired isomorphism. It yields a correspondence between the vertices of
the Hasse diagram of O and those of the diagram of the multiplication
by the class h′ in F .

Now we study the correspondence between the edges of both diagrams.
Assume that

[Yw] ∪ h
′ =

∑

v

av[Yv],

where Yv denotes the Schubert variety of F associated to the element
v. This means that a generic hyperplane section of Yw is rationally
equivalent to the union of the Yv with multiplicities av. Let Yu be a
Schubert variety of F . Its inverse image ψ−1(Yu) is the closure in O
of the Schubert cell CX

φ(u), hence it is the intersection of O with the
Schubert variety Xφ(u).

Thus Xφ(w) ∩O is rationally equivalent to the union of the Xφ(v) ∩ O
with multiplicities av. As a consequence, if H is a generic hyperplane,
a section Xφ(w) ∩ O ∩ H is rationally equivalent to the union of the

Xφ(v) ∩ O ∩H with multiplicities av. If we consider the closure in O,
we deduce that Xφ(w) ∩ H is rationally equivalent to the sum of the
Xφ(v) with multiplicities av, plus a class Z supported in the boundary

O \ O. But such a class is rationally equivalent to the union of some
Schubert varieties Xu contained in O \O, with some multiplicities bu.
This rational equivalence stays true in the whole of X = G/PJ . Taking
cohomology classes, it means that

σφ(w) ∪ h =
∑

v

avσφ(v) +
∑

u

buσu.

Since the Schubert varieties Xu are contained in O \ O, the elements
u ∈ WQ are not contained E ∩ WQ. Hence they do not contribute
to the arrows of the Hasse diagram of O. This proves that the Hasse
diagram of O has the same arrows as the diagram of the multiplication
by the class h′ in F .

We may now conclude by combining the previous results to describe the
Hasse diagrams of the classical Grassmannians :

Theorem 3. 1. In types An, Cn, Dn, and in type Bn for odd orthogonal
Grassmannians OG(m, 2n + 1) with m 6= n − 1, if O is a parabolic
orbit associated to a cominuscule weight ωi, the Hasse diagrams HO
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and HF of O and the corresponding flag variety F described in Prop.
3 are isomorphic.

2. In type Bn for the odd orthogonal Grassmannian OG(n − 1, 2n + 1),
if we denote by O0, O1 and O2 the parabolic orbits associated to the
weight ω1 and F0, F1 and F2 the corresponding flag varieties, we have
HO0

∼= HF0 and HO2
∼= HF2, but HO1 corresponds to HF1 with the

multiplicities of the arrows doubled.

Proof. Since we want to apply Prop. 6, it is enough to compute the class
h′ ∈ H2(F ) introduced in the statement of this proposition. We use the same
notations.

In type An, denote by S the tautological bundle on X and S1,S2 the
tautological bundles on F . We need to prove that i∗(detS) = ψ∗(detS1 ⊗
detS2), which is simply the consequence of the exact sequence

0 → ψ∗S1 → i∗S → ψ∗S2 → 0

since h = c1(detS) and h′ = c1(detS1 ⊗ detS2).
In type Bn for X = OG(m, 2n + 1) with m < n, we will prove for each

of the three P -orbits Od for d = 0, 1, 2 that i∗(detS) = ψ∗(detS1), where
S1 is the tautological bundle on F . Indeed, for d = 0, we have the exact
sequences

0 → Σ ∩ E⊥
1 → Σ → Σ/(Σ ∩ E⊥

1 ) → 0

0 → Σ′ → E⊥
1 /E1 → E⊥

1 /(Σ ∩ E⊥
1 ⊕ E1) → 0

0 → Σ ∩ E⊥
1 → Σ ∩ E⊥

1 ⊕ E1 → (Σ ∩ E⊥
1 ⊕ E1)/(Σ ∩ E⊥

1 ) → 0,

which give the following equalities of determinant bundles

det(Σ) = det(Σ ∩ E⊥
1 )⊗ det(Σ/(Σ ∩ E⊥

1 ))

det(Σ′) = det(Σ ∩ E⊥
1 ⊕ E1)

det(Σ ∩ E⊥
1 ⊕ E1) = det(Σ ∩ E⊥

1 )⊗ det((Σ ∩ E⊥
1 ⊕ E1)/(Σ ∩E⊥

1 )).

We conclude by using the fact that the quadratic form induces a duality

Σ/(Σ ∩E⊥
1 )× (Σ ∩E⊥

1 ⊕ E1)/(Σ ∩ E⊥
1 ) → C.

For d = 1, we use the same method, only replacing Σ ∩ E⊥
1 with Σ, and for

d = 2, the result follows from the exact sequence

0 → E1 → Σ → Σ/E1 → 0.

Now we have proved that i∗(detS) = ψ∗(detS1), it remains to relate their
first Chern classes with the classes h and h′ defined in the statement of Prop.
6. We always have c1(detS) = h, but there are two cases for c1(detS1) :

c1(detS1) =

{
h′ if m < n− 1

2h′ if m = n− 1.
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Indeed, OG(n − 1, 2n − 1) is projectively isomorphic to OG(n − 1, 2n − 2),
which is embedded in P(Vωn−1), where Vωn−1 is the half-spin representation.
Hence the hyperplane class h′ is equal to the first Chern class of the line bun-
dle associated to the weight ωn−1, while detS1 is the line bundle associated
to the weight 2ωn−1.

In type Bn for X = OG(n, 2n+1), we prove as in the non-maximal case
that i∗(detS) = ψ∗(detS1), c1(detS) = h and c1(detS1) = h′.

In type Cn, denote by S the tautological bundle on X and S1,S2 the
tautological bundles on F . Since h = c1(detS) and h′ = c1(detS1 ⊗ detS2),
we need to prove that i∗(detS) = ψ∗(detS1 ⊗ detS2), which is simply the
consequence of the exact sequences

0 → Σ ∩ En → Σ → Σ/(Σ ∩ En) → 0

0 → Σ⊥ ∩ En → En → En/(Σ
⊥ ∩ En) → 0.

In type Dn for X = OG(m, 2n) with m < n or for X = OG(n, 2n) with
P = Pω1 , the result is proven in an analogous way as in types Bn and Cn.
This leaves us with the case where X = OG(n, 2n) and P = Pωn or Pωn−1 .
Here we treat the case P = Pωn , the other being very similar. We use the
two exact sequences

0 → Σ ∩ En → Σ → Σ/(Σ ∩ En) → 0

0 → Σ ∩ En → En → En/(Σ ∩ En) → 0

and the duality Σ/(Σ ∩ En) × En/(Σ ∩ En) → C to prove that i∗(detS) =
ψ∗(detS1), with notations as before. Then we use the fact that h = c1(detS)
and h′ = c1(detS1).

Finally, we give some pictures illustrating Thm. 3. We start with a type
Cn example : the symplectic Grassmannian IG(2, 8) in Figure 1. There are
three orbits, two being vector bundles over the Grassmannian G(2, 4) and
another over the two-step flag variety F(1, 3; 4).

Figure 1: Pω4-orbits in IG(2, 8)

G(2, 4)

F(1, 3; 4)

G(2, 4)
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Figure 2: Pω1-orbits in OG(3, 9)

OG(2, 7)

OG(3, 7)

OG(2, 7)

Then we consider a type Bn example : the odd orthogonal Grassman-
nian OG(3, 9) in Figure 2. There are again three orbits. The first and last
are vector bundles over OG(2, 7). For the middle orbit, which is a vector
bundle over OG(3, 7), we see as expected that the multiplicity of all arrows
is multiplied by 2.

Finally, let us recall an exceptional example, computed in [CMP07] : the
Cayley plane X = E6/Pω1 = OP2 (see Figure 3). There are three Pω1 orbits.
Indeed, we know that a partial E6-flag associated to Pω1 simply consists in
a point p0 ∈ X. The Pω1-orbits are

O0 = {p ∈ X | p 6∈ line through p0}

O1 = {p ∈ X | p ∈ line through p0, p 6= p0}

O2 = {p0} .

We can also describe these orbits as vector bundles over generalized flag
varieties

O0 → Q8

O1 → S10

O2 → pt,

where Q8
∼= OP1 is the 8-dimensional quadric and S10 ∼= OG(5, 10) is the 10-

dimensional spinor variety. Indeed, the last fibration is trivial and the second
stems from the description of O1 as a cone over S10 (see [IM05, Lemma 4.1]).
Finally, we know from [IM05] that the Cayley plane also parametrises the
family of Q8’s it contains, hence to p0 is associated an 8-dimensional quadric
Q0. The same goes for p, to which corresponds a quadric Q. These quadrics
are isomorphic to projective octonionic lines OP1, and two general such lines
meet in one point in OP2, hence the first fibration.
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Figure 3: Pω6-orbits in E6/Pω1

Q8

OG(5, 10)

pt
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