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Abstract

Chaput, Manivel and Perrin proved in [CMPQ9] a formula describ-
ing the quantum product by Schubert classes associated to cominus-
cule weights in a rational projective homogeneous space X. In the case
where X has Picard rank one, we link this formula to the stratification
of X by P-orbits, where P is the parabolic subgroup associated to the
cominuscule weight. We deduce a decomposition of the Hasse diagram
of X, i.e the diagram describing the cup-product with the hyperplane
class.

1 Introduction

Let G be a semisimple algebraic group over C, B be a Borel subgroup and
T C B a maximal torus. We denote by ® the set of roots of G with respect to
T, ®* the subset of positive roots with respect to B, A = {aq,...,a,} the
subset of simple roots and W the Weyl group of G. A fundamental weight w
is said to be minuscule if |(a",w)| < 1 for all & € ®, where a is the coroot
of a. It is said to be cominuscule if it is minuscule for the dual root system.
Fundamental weights will be denoted wy, ... ,w,, with the same order as in
the notation of [Bou68|.

Let @ D B be a parabolic subgroup of G and denote by X the ho-
mogeneous space G/Q. In [CMPQ09|, Chaput, Manivel and Perrin proved a
formula describing the quantum product in X by special Schubert classes as-
sociated to cominuscule weights. These classes correspond to the elements of
the image of Seidel’s representation 71(G®) — QH*(G/Q):* . [Sei97], where

loc

G* = G/Z(G) and QH*(G/Q);;. is the group of invertible elements in the
small quantum cohomology ring QH*(G/Q) localized in the quantum param-
eters. Before stating this result, we introduce some notation for the quantum
cohomology of X.

The quantum cohomology ring QH*(X) of a homogeneous variety X =
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G/Q is a deformation of its cohomology ring. Consider the parameter ring
A=4> ape’ | BeH(X,Z),a5 €L,
B

where the sums are finite, Hj (X, Z) denotes the set of effective cycles in
Hs(X,7) and the ¢” are formal parameters such that P = ¢PtP . AsaZ-
module, the quantum cohomology ring QH*(X) is isomorphic to H*(X, Z)®z
A. Moreover, it admits a ring structure defined by the quantum product *,
which is a deformation of the cup-product. A precise definition for the
quantum product can be found in [FP97|. The group Hy(X,Z) contains
®V/® ), where ®V denotes the coroot lattice of G and ®¢) the coroot lattice
of Q, hence positive coroots can be seen as effective classes S8 € H; (X,7).

Now let Z be the set of vertices of the Dynkin diagram of G corresponding
to cominuscule weights. If ¢ € Z, let v; be the shortest element of the Weyl
group W such that vw = wow,;’, where w; is the fundamental coweight
associated to ¢ and wq is the longest element of W. Then the quantum
product in X by the Schubert class o, Poincaré dual to the Schubert cycle
[Xovwo] 1s given by the following formula :

Theorem 1 (JCMP09, Thm.1|). For allw € W and for all i € Z, we have :

wY —w (WY
Oy, X Oy = an( ¢ @; ))O-viwa

where 1 : @V — Y /@) is the natural surjection.

The aim of this paper is to relate the above theorem to a stratification
of X = G/Q by Pj-orbits when @ is a maximal parabolic and P; is the
maximal parabolic associated to the weight w;. In Section 2] we recall some
well-known facts about parabolic orbits and we describe the parabolic orbits
associated to cominuscule weights in the classical Grassmannians. Then in
Section Bl we explain the link between Thm. [ and the stratification by
parabolic orbits in X. We deduce in Section @ a decomposition of the Hasse
diagram of the classical Grassmannians.
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2 Parabolic orbits

In 20 we recall some classical facts about parabolic orbits in (generalized)
flag varieties, and in 22 we give a more explicit description of parabolic
orbits associated to cominuscule weights in the classical Grassmannians.



2.1 Parabolic orbits in generalized flag varieties

A generalized flag variety is a variety of the form X = G/Q, where G is
a semisimple algebraic group, B a Borel subgroup and ) O B a parabolic
subgroup. Now consider a second parabolic subgroup P D B. We call
P-orbits or parabolic orbits the orbits of X under the action of P by left
multiplication. Here are some elementary properties of parabolic orbits,
which can be found in [Per02] Sec. 2.1] :

Proposition 1. 1. Every P-orbit can be written as PwQ/Q withw € W.

2. The P-orbits are smooth and locally closed, indexed by the double cosets
Wp\W/Wgq, where Wp and W¢ denote the Weyl groups assoctated to
P and Q. Moreover, they define a stratification of X :

X = | | PuQ/Q.

prWQEWP\W/WQ

3. The P-orbits are B-stable, hence they are a union of Schubert cells :

Pw@Q/Q = U BuwpwwgQ/Q.

(wp,wQ)EWpxWq

We denote by W€ the set of minimal length representatives of cosets in
W /Wgq, which inherits the Bruhat order of W. Let us describe the double
cosets indexing parabolic orbits :

Proposition 2. Let £ = WpwWg be a double coset in Wp\W/Wq. Then
ENWE contains unique minimal and mazimal elements Wynin and Wmaz-
Moreover, it is equal to the interval [Wpin, Wmaz] for the Bruhat order in

wWe.

Proof. This statement is an exercise (without proof) in [Bou68, Chap. 4, §
1]. Here we give a geometric proof.
Let O be the P-orbit indexed by £. By Item [ of Prop. Il we have

0= U Clu,

w'e€E

where Cy = Bw'Q/Q is the Schubert cell associated to w’. Hence the
closure O of O satisfies B
0= J Xw,

w'eE

where X, = C, is the Schubert variety associated to w’. Moreover, O
being B-stable, irreducible and closed, it is a Schubert variety X, .. with

Winaz € WY, Tt follows that wyey is in ENWE, and by definition w' < wWmaz
for each w' € ENWY.



Similarly, the double coset £ := Wow 'Wp admits a unique maximal
element @ € W?. Then Wy, 1= @ is a unique minimal element in £ N W,

Let us now prove that £ N W is the interval [wWyin, Wmae]. From the
definition of wy,;, and Wi, it is already clear that £ N W is contained in
the aforementioned interval. Moreover, the Schubert cell C,,,, . is contained
in all Schubert cells C, for w’ € ENW®. The boundary O\ O being closed
and B-stable, it is a union of Schubert varieties X,,,, and we may write :

@\(’):Iilei

i=1

for some w; € W®. Let C, be a Schubert cell in X,, .. = O, where
w' € W?. It means that w' € [1,Wnae]. The cell Cyy lies in O if and only
if Cyr ¢ Xu;, 1. w' & [1,w;] for each 1 < i < r. In particular, we get that
Win € [1, Winaz] \ Ulgz‘gr [1, wy].

Now let w’ be any element in [wWyin, Wmaz] € WE. If there existed an i
such that w' € [1,w;], then since Wy, < W', we would have wp, € [1, w;],
which is impossible. Hence w’ € [1, Wmag) \ U;_; [1,w;], which means that
w' € ENWE as required. O

In particular, we see that parabolic orbits correspond to sub-intervals of
WQ. The next result describes them as the total space of a vector bundle
over another generalized flag variety.

First of all, consider the Levi decomposition P = L x U, where L is a Levi
subgroup and U is the unipotent radical of P. If O is a P-orbit associated
to a double coset Wpw,in Wg, then we define the following subset of the set
A of simple roots of G :

K

Wmin

= {s € A(P) | i swmin € AQ)}
where for any parabolic subgroup R C G, A(R) C A is such that the associ-
ated reflections, together with B, generate R. Denote by R, the parabolic
subgroup of L generated by K, . and BN L. We have the following geo-
metric description of parabolic orbits :

Theorem 2 (|Mit08], Thm. 1.1). Let O be the P-orbit associated to a
double coset Wpwy,inWeq, where P is a parabolic subgroup associated to a
cominuscule weight. Then there exists a representation V,,, . of Ry, such
that O = L xg, Vi and the map O — L/R 15 a vector bundle.

Wmin

min

Wmin
Remark 1. e An analogous result is proved in [Per(2, Prop. 5|.

e Note that if P is not associated to a cominuscule weight, we still have
a locally trivial map with affine fibers, but it is no longer a vector
bundle, as stated at the end of the proof of [Per(2, Prop. 5|. For
instance, take X = Q3 = OG(1,5) C P* the 3-dimensional quadric



and P = P,,. The open orbit O is Q3 \ P!. The fibration O — P! is
locally trivial, the fibers are 2-dimensional affine spaces, but a simple
calculation shows that the transition maps are quadratic.

A consequence of Thm. ] is that the cohomology ring of the parabolic
orbit O and of the generalized flag variety L/R,, , are isomorphic (see
[Ful84) Chap. 3|), which will help us to find decompositions of the Hasse
diagrams in Section [l

2.2 Parabolic orbits associated to cominuscule weights in the
classical Grassmannians

For us, a classical Grassmannian will be a homogeneous space X = G/Q,
where G is of type A,,, By, C,, or D, and @ is a maximal parabolic subgroup
of G. In type A,, it corresponds to the usual Grassmannians G(m,n + 1)
for 1 < m < n, while in type C,, we get the symplectic Grassmannians
IG(m,2n) with 1 < m < n. Finally, in type B, (resp. in type D,,), we obtain
the odd orthogonal (resp. even orthogonal) Grassmannians OG(m,2n + 1)
(resp. OG(m,2n)), where 1 < m < n. In type D,,, we furthermore exclude
the case where m = n — 1, since it corresponds to a variety with Picard
number two.

We start by giving the list of cominuscule weights, including the excep-
tional cases :

‘ Type ‘ Classical Grassmannians Cominuscule weights ‘

A, | Gimn+1)1<m<n w; (1<i<n)
B, | OG(m,2n+1)1<m<n w1

Cn | IG(m,2n) 1 <m<n W,

D, |OG(m,2n) 1<m<n,m#n—1|wy, wy_1,wn
Eg EG/Pj1§j§6 w1, We

E7 E7/Pj1§j§7 wr

In the following sections, following Thm. 2] we describe the parabolic or-
bits associated to the above cominuscule weights for classical Grassmannians.
We will not treat the exceptional cases in general since in these examples,
flags and Schubert varieties are not so easily described. We will only men-
tion the case of the Cayley plane Eg/P; in Section @l However, it would
probably be possible to get similar results for all exceptional cases, using the
description of flags introduced by Iliev and Manivel in [IM05] for type Eg
and by Garibaldi in [Gar0I] for type E7.

We will denote by P, the maximal parabolic subgroup containing the
Borel subgroup B and associated to the cominuscule fundamental weight w;.
In 22771 we give a geometric description of the P,,-orbits, whereas in 2.2.2]
we give a combinatorial description of the double cosets indexing them.



2.2.1 Geometric description of parabolic orbits

First we need to recall the characterization of the flag stabilized by the Borel
subgroup B in each of the classical types :

Type A,, : B is the stabilizer of a (uniquely defined) complete flag
0=EyCE C---CFE,CE,;=C"1
the element E; being an i-dimensional subspace of C"*1.
Type B,, : B is the stabilizer of a type B, complete isotropic flag
0=FyCE, C---CE,CEps1 C---C Eg, C Egppq =C™FL

where the vector spaces Ei,...,FE, are isotropic and for each
1<i<n,wehave E,; = Ex,_,.

Type C, : B is the stabilizer of a type C,, complete isotropic flag
0=FEyCF,C---CE,CEp;1C--C Ey, =C?,

where the E;’s are isotropic and for each 0 < 7 < n, we have
EnJri = Bt

n—i*

Type D,, : B is the stabilizer of a type D,, complete isotropic flag

Ey
C C
0 :EO C ... CEn—2 7& En+1C CEzn:CQn
¢, C
ET'L
where the vector spaces Fi,..., E,_o are isotropic, F, is a type

1 maximal isotropic subspace, E/, a type 2 isotropic subspace,
Eny1 = (E,NnE) and foreach 1 <i <n—1, B, 14 = E-

n—1—z*

Now we prove that P-orbits associated to cominuscule weights in the
classical Grassmannians can be described by the relative position of their
elements with respect to a certain partial flag associated to the cominuscule
weight defining P. In the following proposition, the unique complete flag
stabilized by the Borel subgroup will be denoted as above .

Proposition 3. 1. If X = G(m,n+1) and P = B, for 1 <i <mn, then
the P-orbits are the

Og:={¥ e X |dm(XnNE;) =d},

for max(0,i +m —n —1) < d < min(m,q).

(@)



2. a)

b)

If X = OG(m,2n + 1) with m <n and P = P,,, then the P-orbits
are

OW:{EGX|E¢E%,
O ::{zeX\zcEll andeﬁEl},
Oy ={Xe€X|XDE}.
If X = 0G(n,2n+ 1) and P = P,,,, then the P-orbits are

Oy:={SeX|TDE},
O1:={Se€X|XDE}.

3. If X =1G(m,2n) and P = P,,,, then the P-orbits are the

O ={XeX|dm(XENE,) =d}

for 0 <d<m.

4. a)

b)

c)

Q)

¢)

)

o I

If X = OG(m,2n) withm <n—1 and P = P,,, then the P-orbits
are defined as in case [2d

If X = OG(m,2n) withm < n—1 and P = P,,,_,, then the P-orbits
are the

Oq:={Y e X |[dm(ZNE),)=d}
for 0 <d<m.

If X = OG(m,2n) withm <n—1 and P = P, , then the P-orbits
are defined as in case [{8), with E!, replaced by E,.

If X = O0G(n,2n) = OG(n — 1,2n — 1) and P = P,,, then the
P-orbits are defined as in case [20.

If X = OG(n,2n) and P = P,,, ,, then the P-orbits are the
O4:={YeX|dm(EZNE,)=2d+¢}

for 0 <d < |22, where € =0 if n is odd and 1 if n is even.

If X = OG(n,2n) and P = P, , then the P-orbits are defined as
in case[{d, with E!, replaced by E,, and € replaced by ¢ :=1 — €.

Proof. The parabolic subgroup P is the stabilizer of the following partial
flags :

in case [l ;

e F) C Ei in cases 2 Hal and Edl;

e B, =E} in cases B Bd and [ ;



e E, = E/," in cases Al and Hd.

Hence the dimensions of the intersections with each element of these par-
tial flags are constant on the P-orbits, and conversely, the sets where these
dimensions are constant are exactly the P-orbits. O

We conclude the section by giving in each classical type an explicit de-
scription of the fibration introduced in Thm. In the following result, the
orbits Oy are the ones defined in Prop. Bl

Proposition 4. 1. If X = G(m,n+1) and P = P, for 1 <i <mn, then
the fibrations are the

O — G(d, El) X G(m —d, (CnJrl/Ei)
I (SN E;, /(SN E))

2. a) If X = OG(m,2n+1) withm < n and P = P,,, then the fibrations
are the

Oq4 — OG(m —e¢ Ef/Ey)
I [N Ef]
where e =14fd=0,2 ande =0 if d=1.
b) If X = OG(n,2n + 1) and P = P,,,, then the fibrations are the

O4 — OG(m-—1,E{/E)
I [ENEf]

3. If X =1G(m,2n) and P = P,,,, then the fibrations are the

0, — F(d,n —m+d; E,)
¥ = (ENE,)c(EhnE,))

4. a) If X = OG(m, 2n) withm < n—1 and P = P,,,, then the fibrations
are defined as in case [2d.
b) If X = OG(m,2n) with m < n—1 and P = P,
fibrations are

then the

—1

Oy —  Fld,n—m+d;E)
Y = (EnE)cCEtnE))

c) If X = OG(m,2n) withm < n—1 and P = P, , then the fibrations
are defined as in case[3

d) If X = OG(n,2n) = OG(n — 1,2n — 1) and P = P,,, then the
fibrations are defined as in case [20.



e) If X = OG(n,2n) and P = P, _,, then the fibrations are

04 — G2d+¢,E)
S = SNE,

where € =0 if n is odd and 1 if n is even.

f) If X = OG(n,2n) and P = P,,,, then the fibrations are defined as
in case[fd, with E!, replaced by E,, and € replaced by € :=1 — e.

Proof. We only describe Cases [Il Ral Bl and [4f] with n even. The other cases
are very similar.

0 Since Oy = {¥ € X | dim(X N E;) = d}, the map is well defined.
Moreover, the fiber at a pair (X1,Ys) € G(d, E;) x G(m — d,C""/E;) is

{S19Y |dimY =m —d, % = %y mod E;} = ClimZxdmEi _ ¢lm=d)i,
Ral) For d = 0, the fiber over ¥; € OG(m — 1, E{-/Ey) is
{E' ®L|Y =% mod Ey,L C %{ \ Ef, L isotropic}
~dim Ty xdim By o dimBi —dim 3y —dim L—1 _ (+2n—m_
For d = 1, the fiber over ¥ € OG(m, E{/E}) is
{E/ ‘ s El mod El} ~ CdimEldimEl —Qm,

Finally, for d = 2, the map is an isomorphism.
Bl The fiber over (X; C ¥9) € F(d,n —m+d; E,,) is

{21 ¥ [dimY =m —d, ¥ = 5+ mod E,, ¥ C £ isotropic }
~oCdim B (dim B, —dim £y) - 820D () (n-d) - 2D nmd=D
[4f) We assume n is even. The fiber over X1 € G(2d, E,,) is

{El @Y |dimY =m—2d,%Y =% mod E, Y ¢ £1,% isotropic}
g(cdlm 2/27dim Z’(d;mE/—l) _ (C(n72d)27 (n—Qd)(;L—Qd—l) . D
Remark 2. In Thm. 2] the fibrations for parabolic orbits are described com-

binatorially. Tedious but straightforward calculations show that these fibra-
tions are indeed the same as those described in the above proposition.



2.2.2 Combinatorial description of parabolic orbits

We begin by recalling the description of the elements of the Weyl group
in type A, (respectively in types B,, C, and D,,) as permutations (resp.
signed permutations) of {1,...,n}. We do not have such a description in
the exceptional cases.

In type A, the Weyl group is W = &,,, and we denote w € W as w =
(a1,...,an) where {1,...,n} ={ay,...,a,}, which means that w(i) = a;.

In types B,, and C,,, the Weyl group is W = &,, x Z3, and we denote w €
W as w = (by,...,b,), where b; = a; or —a; and {1,...,n} = {a1,...,a,},
which means that w(i) = a; if b; = a; and w(i) = a; if b; = —a;.

Finally, in type D,,, the Weyl group is W = &,, X Zg_l, and we denote
elements of W as in the previous case, with the additional condition that
the number of negative parts —a; should be even.

We can now state a proposition describing, for all the classical types, the
double coset & € Wp\W /W indexing the P-orbit Oy defined in Prop. B]:

Proposition 5. 1. If X = G(m,n+1) and P = P,,, for 1 <i <mn, then

Ea={weW|[#{1<j<m|w(j) <i}=m-—d}.

2. a) If X = OG(m,2n + 1) with m <n and P = P,,, then

S={weW |31 <j<muw(j)=-1}
£1= fwe W | B <j<mu() e {1,-1})
E={weW |31 <j<muw(j)=1}.

b) If X = OG(n,2n+ 1) and P = P,,,, then

S ={weW|31<j<muw(j)=—1}
Si={weW |31 <j<muw(j)=1}.

3. If X =1G(m,2n) and P = P,,,, then

Ca={weW|[#{1<j<m[w(j)>0}=d}.

4. a) If X = OG(m,2n) withm <n—1 and P = P, , then &; is defined
as in case [Zd

b) If X = OG(m,2n) withm <n—1 and P=P,, ., then

Ea={we W | #{j <m|w(j) >0} = dw(j) #n,—nV¥j <m}
Ufw | #45 <mw() >0} =d—1,3j < m,uw(j) = —n}
Ufw | #45 < mw(j) >0} = d+ 1,3j < m,w(j) = n}.

10



c) If X = OG(m,2n) withm <n—1 and P = B,,,, then &; is defined
as in case[3

d) If X = OG(n,2n) = OG(n —1,2n — 1) and P = P,,,, then &y is
defined as in case [20.

e) If X = O0G(n,2n) and P =P, _,, then
Eg={weW |[#{j|w(j) >0} =2d+¢€ —1 and 3j,w(j) = —n}
U{we W | #{w(j) >0} =2d+ € +1 and 3j,w(j) = n},

where € =0 if n is odd and 1 if n is even.
f) If X = OG(n,2n) and P = P,,,, then

Ea={weW|[#{j|lw(j) >0} =2d+¢},
where e =1 — €.

Proof. The arguments for each case being similar, we only prove the propo-
sition in Case D] which is a little more complicated than the others.

Here the Weyl groups are W = G,, x Zg_l, Wp = 6,1 X Zy and
Wo = G X (Gpem X ngmfl). We will denote elements of W as signed

permutations w = (by,...,b,) as in the beginning of the section.
The action of Wg on the right permutes the m first entries by, ..., by, of
w on one hand, and the n — m last entries by,41,...,b, on the other hand,

and changes the sign of these last entries while keeping the total number
of minus signs even. Hence the minimal length representatives of classes in

W/Wgq are of the form :

w = (u1 < <UL, =2y < e < — 21,01 < v < Up_me1, (—1)m_lvn_m> ,

where 0 <1 <m, {u;} U {2z} U{v;} ={1,...,n} and vp—m—1 < Un_m.
Moreover, the action of Wp on the right permutes the n — 1 values

1,...,n — 1 and exchanges n — 1 and n while changing their signs. Hence

the minimal length representatives of double cosets in Wp\W /W are of the
form :

wp=idorwg=(1<---<d—-1<n,—-n+l<---<-n+m-—d,v),
where 1 < d < m and
v= <d<---<n—m+d—2,(—1)m—d(n—m+d—1)).

Now it is enough to prove that all elements of the set &; defined in the
statement of the proposition are in the same double coset as wy.

11



First suppose w € W is such that # {j < m | w(j) < 0} =d and w(j) #
n, —n for all 7 < m. Using the action of Wg on the right, we see that w is
in the same double coset as

wh = <a1 < <ag,—bp_g << =bi,e1 < < Cpm-1, (_1)m—dn> .

Using (several times) the action of the simple reflections sq,...,s,-1 of Wp
on the left (which together permute the values from 1 to n — 1), we deduce
that w! is in the same double coset as

w=(1<---<d,—n+1<---<-n+m-d,v),
where v = (d+1<---<n—m+d—1, (—l)m_dn). Then applying the
simple reflection s, € Wp on the left, we get

w=(1<---<d<n,—n+2<---<-n+m-—dv),
where v = (d+1< - <n—-m+d—1,(-1)"" 4 (n—1)).

Finally, using the action of the simple reflections s1,...,s,-1 of Wp on
the left, we obtain the element w* = wg, which proves that w is in the same
double coset as wy.

The reasoning in the two other situations (#{j < m |w(j) >0} =d—1
and 35 < m,w(j) = —n on one hand, #{j <m |w(j) >0} = d+ 1 and
3j < m,w(j) = n on the other hand) being very similar, this concludes the
proof. O

Definition 1. Let w € W be an element of the Weyl group. Then w belongs
to one of the double cosets £ defined in the statement of the proposition and
we define the integer d(w) := d.

3 Link between P-orbits and quantum product

Here we describe the link between Thm. [Il and parabolic orbits for homoge-
neous spaces X = GG/Q, where @) is a maximal parabolic subgroup. Since @
is maximal, we have ®"/®} = Z. Hence for each w € W, we may define an
integer

B(w) = ng(w) —w = (w))).

In the following sections, we will prove that the loci where §(w) is constant
correspond to the double cosets £ indexing P-orbits. For classical Grass-
mannians, this proves that for every w € W%, §(w) equals the integer d(w)
introduced in Definition [

12



3.1 The integer 6(w) is constant on parabolic orbits.

We start by proving that J is constant on the double cosets £ = WpwWy.
Consider w’ € £. From the definition of &, it follows that w’ can be written
as wpwwg for some wp € Wp and wg € Wg. Denote by w; the cominuscule
weight defining P. Reflections associated to the simple roots will be denoted
by s; for 1 <1 < n.

If I # i, we have

hence

wp' (W) =W, (1)

Now consider e := ng(w™!(w,’)). Then by definition of 7,
wHw)) = ea), + Z cpay
pFm
where the ¢, are some coefficients. But if [ # m, we have

si(ag) = o = (au, )’

Similarly, for p # m and [ # p,m :

Sl(%v;) = az\)/ - (Oél,OéI\)/)OZ;/,
andifp#mandl=p:
sp(az) = —04;.

Hence if we apply the reflection s; for [ # m, the coefficient of )/, does not

change. We conclude that 7g (wélw_lwly> =g (w™'w)). Using Equation

(), we obtain

1 1, -1 V)

ng(wg'w™ wp'e, oy

= ne(w ™ w;).

3.2 The integer 0(w) changes on different parabolic orbits.

It is enough to prove that if w’ € & N W is a successor of w € £ N W®
for the Bruhat order in W, where £ and &’ are two different P-orbits, then
d(w') > d(w).

Since w and w and w’ do not belong to the same P-orbit, we know that
w' = s4,w for some positive root ag € T\ (@JIS N @5} Indeed, if o € <I>JIS,

then the reflection s, is in Wp, hence stabilizes £ and if o € @5, then v’ = w
in W/W¢q. Moreover, we have lg(w') = lg(w) + 1, where I is the length
function of W€.

We set Lo(w) := qa € T\ @5 | w(a) € <I>_}. There exists By € T\

@5 such that w(fy) = ap. Indeed, if it were not the case, then for all
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a € Lg(w'), we would have sq w(a) € @~ and w(a) # g, hence w(w) € O~
and a € Lgo(w). This would mean that lg(w') < lg(w), which is absurd.
Let us now compute §(w’) :

d(w') =g () = w ™ sag(w)) = d(w) + (a0, )g (w™'ag) -

Since ag € &+ \ @}, we have (ap,w)’) > 0. Moreover, w(fy) = ap implies
w (o) = By, and ng(By) > 0 since By € &+ \ @5. Finally §(w’) > §(w)
as required.

We conclude that the loci

{wew?|sw) =d}

coincide with the sets €N WE.

4 Decomposition of the Hasse diagram

In [CMPO07], Chaput, Manivel and Perrin relate the quantum product by
the point class in minuscule varieties with a decomposition of their Hasse
diagram. The Hasse diagram H of a homogeneous space with Picard rank
one is the diagram of the multiplication by the hyperplane class h. More
precisely, its vertices are the Schubert classes o, for w € W< and o, and
ow are related by an arrow of multiplicity = if and only if o, appears with
multiplicity r in the cup-product o, U h.

The results of previous sections enable us to find decompositions of the
Hasse diagram in the non-minuscule case, corresponding to the quantum
product by the Schubert classes o,,, associated to cominuscule weights intro-
duced in the statement of Thm. [II

Let O be a P-orbit of X. It is the union of the Schubert cells C,, C X for
all w in the associated double coset £. The set £NW? being an interval (cf
Prop. @), we denote it as £ N W = [Wiin, Wmaz). From Thm. [0, we know
that O is a vector bundle over the generalized flag variety F' := L/R,,,,,, .

Here we state a result relating the Hasse diagrams of the parabolic orbit
O with a similar diagram for the flag variety F' :

Proposition 6. Let v : O — F be the fibration, i : O — X the natural
embedding and h the hyperplane class of X. Then :

1. There exists a class h' € H2(F) such that i*h = ¢¥*h' ;

2. The Hasse diagram of O is isomorphic to the diagram of the multipli-
cation by h' in F.

Proof. 1. Since i*h € H?(O) = H?(F), there exists h’ € H?(F) such that
i*h = ¢*h'.

14



2. There exists an isomorphism W¥ = £ N W<, where W¥ is the set
of minimal length representatives of Wi, /Wg, . Indeed, let CF be
a Schubert cell of F. Since 1 is a vector bundle, its inverse image
Y~ HCF) is a Schubert cell of X, which we denote by Cﬁu), where
d(u) € W€, Since C';((u) C O, we have ¢(u) € ENWEY, and ¢ is the
desired isomorphism. It yields a correspondence between the vertices of
the Hasse diagram of O and those of the diagram of the multiplication

by the class i’ in F.

Now we study the correspondence between the edges of both diagrams.
Assume that

Vo] UK =Y a,[Y,],

where Y, denotes the Schubert variety of F' associated to the element
v. This means that a generic hyperplane section of Y,, is rationally
equivalent to the union of the Y, with multiplicities a,. Let Y, be a
Schubert variety of F. Its inverse image ¢~ !(Y,) is the closure in O
of the Schubert cell Cf(u), hence it is the intersection of O with the
Schubert variety X ).

Thus Xy(,,) N O is rationally equivalent to the union of the Xy,) N O
with multiplicities a,. As a consequence, if H is a generic hyperplane,
a section Xy(,,) N O N H is rationally equivalent to the union of the
Xgw) MO N H with multiplicities a,. If we consider the closure in 0,
we deduce that Xy,) N H is rationally equivalent to the sum of the
X¢(v) with multiplicities a,, plus a class Z supported in the boundary
O\ O. But such a class is rationally equivalent to the union of some
Schubert varieties X, contained in O\ O, with some multiplicities b,.
This rational equivalence stays true in the whole of X = G/P;. Taking
cohomology classes, it means that

O (w) Y h = Z AyO p(v) + Zbuau-

Since the Schubert varieties X,, are contained in O \ O, the elements
u € W@ are not contained £ N W¥. Hence they do not contribute
to the arrows of the Hasse diagram of . This proves that the Hasse
diagram of O has the same arrows as the diagram of the multiplication
by the class b’ in F. O

We may now conclude by combining the previous results to describe the
Hasse diagrams of the classical Grassmannians :

Theorem 3. 1. In types A, Cp, Dy, and in type By, for odd orthogonal
Grassmannians OG(m,2n + 1) with m # n — 1, if O is a parabolic
orbit associated to a cominuscule weight w;, the Hasse diagrams Ho
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and Hp of O and the corresponding flag variety F described in Prop.
[3 are isomorphic.

2. In type By, for the odd orthogonal Grassmannian OG(n — 1,2n + 1),
if we denote by Op, O1 and Oy the parabolic orbits associated to the
weight wi and Fy, F1 and Fs the corresponding flag varieties, we have
Ho, = Hr, and Ho, = HE,, but Ho, corresponds to Hp, with the
multiplicities of the arrows doubled.

Proof. Since we want to apply Prop. [ it is enough to compute the class
k' € H2(F) introduced in the statement of this proposition. We use the same
notations.

In type A,, denote by S the tautological bundle on X and &;,Ss the
tautological bundles on F'. We need to prove that i*(detS) = ¥*(det S; ®
det Sy), which is simply the consequence of the exact sequence

0— Y*S; = i*S = ¥*Sy — 0

since h = ¢1(det S) and I/ = ¢1(det S; ® det Sy).

In type B, for X = OG(m,2n + 1) with m < n, we will prove for each
of the three P-orbits O, for d = 0,1,2 that ¢*(detS) = ¢*(det S1), where
&1 is the tautological bundle on F. Indeed, for d = 0, we have the exact
sequences

0=YNEf =X =2/(XNEL) =0
0—-Y = FE{/E, - Ef /(ENEf®E) =0
0=YNEf=SNEf®FE — (ENEf®E)/(SNE;L) =0,
which give the following equalities of determinant bundles
det(X) = det(X N EL) @ det(X/(X N EL))
det(X') = det(X N Ei @ Ey)
det(X N Ef @ Fy) = det(S N Ef) @ det((S N Ef @ E1) /(XN ET)).
We conclude by using the fact that the quadratic form induces a duality
Y/(ENEL) x (ENEf @ E)/(ENEL) — C.
For d = 1, we use the same method, only replacing > N ElL with 3, and for
d = 2, the result follows from the exact sequence
0—E —-X—X/E —0.

Now we have proved that i*(det S) = ¢*(det Sy), it remains to relate their
first Chern classes with the classes h and h’ defined in the statement of Prop.
6l We always have c;(det S) = h, but there are two cases for ¢;(det Sy) :

K ifm<n—1

ci(det &) = {Qh’ fm=n—1
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Indeed, OG(n — 1,2n — 1) is projectively isomorphic to OG(n — 1,2n — 2),
which is embedded in P(V,,, ,), where V,, , is the half-spin representation.
Hence the hyperplane class I/ is equal to the first Chern class of the line bun-
dle associated to the weight w,,_1, while det 87 is the line bundle associated
to the weight 2w, 1.

In type B, for X = OG(n,2n + 1), we prove as in the non-maximal case
that i*(det S) = ¢*(det S1), c1(det S) = h and ¢1(det S1) = 1.

In type C,, denote by S the tautological bundle on X and S;,Ss the
tautological bundles on F'. Since h = ¢1(det S) and b/ = ¢;(det S; @ det Sa),
we need to prove that i*(det S) = ¥*(det S; ® det Sz), which is simply the
consequence of the exact sequences

0—-XNE,-YX—-%/(ENE,) —0

0—->tNE, - E, = E, /(X' NE,) —0.

In type D, for X = OG(m,2n) with m < n or for X = OG(n, 2n) with
P = P,,, the result is proven in an analogous way as in types B, and C),.
This leaves us with the case where X = OG(n,2n) and P = P,,, or P, _,.
Here we treat the case P = F,, , the other being very similar. We use the
two exact sequences

0—->XNE,-YX—=%/(ENE,) —0

0—-XNE,—E,—E,/(XNE,) —0

and the duality ¥/(X N E,) x E,/(X¥ N E,) — C to prove that i*(detS) =
*(det Sy ), with notations as before. Then we use the fact that h = ¢;(det S)
and b = ¢;(det Sy). O

Finally, we give some pictures illustrating Thm. Bl We start with a type
C,, example : the symplectic Grassmannian 1G(2, 8) in Figure [l There are
three orbits, two being vector bundles over the Grassmannian G(2,4) and
another over the two-step flag variety F(1,3;4).

Figure 1: P,,-orbits in IG(2,8)

F(1,3;4)
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Figure 2: P, -orbits in OG(3,9)
AT
QN
A
0G(3,7)

Then we consider a type B, example : the odd orthogonal Grassman-
nian OG(3,9) in Figure 2l There are again three orbits. The first and last
are vector bundles over OG(2,7). For the middle orbit, which is a vector
bundle over OG(3,7), we see as expected that the multiplicity of all arrows
is multiplied by 2.

Finally, let us recall an exceptional example, computed in [CMPQ7] : the
Cayley plane X = Eg/P,, = QP? (see Figure[). There are three P,,, orbits.
Indeed, we know that a partial Fg-flag associated to P, simply consists in
a point pg € X. The P, -orbits are

Oo={pe€ X |p¢ line through po}
O; = {p € X |p € line through po,p # po}

Oz = {po}-
We can also describe these orbits as vector bundles over generalized flag
varieties
Oo — Qs
O — SIO
02 — pta

where Qg = QP! is the 8-dimensional quadric and S1p = OG(5, 10) is the 10-
dimensional spinor variety. Indeed, the last fibration is trivial and the second
stems from the description of O; as a cone over Sjg (see [IM05, Lemma 4.1]).
Finally, we know from [IM05] that the Cayley plane also parametrises the
family of Qg’s it contains, hence to pg is associated an 8-dimensional quadric
Qo. The same goes for p, to which corresponds a quadric ). These quadrics
are isomorphic to projective octonionic lines OP!, and two general such lines
meet in one point in OP?, hence the first fibration.
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Figure 3: P,,-orbits in Eg/P,,

Qs
0G(5,10)
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