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Abstract

We investigate here the hardness of conjugacy and factorization of
subshifts of finite type (SFTs) in dimension d > 1. In particular, we prove
that the factorization problem is Σ0

3-complete and the conjugacy problem
Σ0

1-complete in the arithmetical hierarchy.
Keywords:Subshift of finite type, factorization, conjugacy, arithmetical
hierarchy, computability, tilings.

Introduction
A d-dimensional Subshift of Finite Type (SFT) is the set of colorings of Zd by a
finite set of colors in which a finite set of forbidden patterns never appear. One
can also see them as tilings of Zd, and in particular in dimension 2, they are
equivalent to the usual notion of tilings introduced by Wang [Wan61]. SFTs are
discrete dynamical systems, and as such, their factoring and conjugacy relations
are of great importance. If two dynamical systems are conjugate, then they
exhibit the same dynamics. When X factors on Y , then the dynamic of Y is a
subdynamic of the one of X.

Conjugacy is an equivalence relation and separates SFTs into classes. Classi-
fying SFTs is a long standing open problem in dimension one [Boy08] which has
been proved decidable in the particular case of one-sided SFTs on N, see [Wil73].
It has been known for a long time that the problem was undecidable when
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given two SFTs, since it can be reduced to the emptyness problem which is
Σ0

1-complete [Ber64]. However, we prove here a slightly stronger result: even by
fixing the class in advance, it is still undecidable to decide whether some given
SFT belongs to it:

Theorem 0.1. For any fixed X, given Y as an input, it is Σ0
1-complete to

decide if X and Y are conjugate.

The more general problem of knowing if some SFT exhibits subdynamics of
another has also been studied intensively. In dimension one, it is only partly
solved for the case when the entropies of the two SFTs X,Y verify h(X) > h(Y ),
see [Boy83]. Factor maps have also been studied with the hope of finding uni-
versal SFTs: SFTs that can factor on any other and thus contain the dynam-
ics of all of them. However it has been shown that such SFTs do not exist,
see [Hoc09,BT10]. We prove here that it is harder to know if an SFT is a factor
of another than to know if it is conjugate to it.

Theorem 0.2. Given two SFTs X,Y as inputs, it is Σ0
3-complete to decide if

X factors onto Y .

An interesting open question for higher dimensions that would probably
help solve the one dimensional problem would be is conjugacy of subshifts with
a recursive language decidable?. A positive answer to this question would solve
the one dimensional case, even if the SFTs are considered on N2 instead of Z2.

The paper is organised as follows: first we give the necessary definitions
and fix the notation is section 1, after what we give the proofs of theorems 0.1
and 0.2 in sections 2 and 3 respectively.

1 Preliminary definitions

1.1 Subshifts of finite type
We give here some standard definitions and facts about multidimensional sub-
shifts, one may consult Lind [Lin04] or Lind/Markus [LM95] for more details.

Let Σ be a finite alphabet, its elements are called symbols, the d-dimensional
full shift on Σ is the set ΣZd

of all maps (colorings) from Zd to the Σ (the colors).
For v ∈ Zd, the shift functions σv : ΣZd → ΣZd

, are defined locally by σv(cx) =

cx+v. The full shift equipped with the distance d(x, y) = 2−min{‖v‖|v∈Zd,xv 6=yv}
is a compact metric space on which the shift functions act as homeomorphisms.
An element of ΣZd

is called a configuration.
Every closed shift-invariant (invariant by application of any σv) subset X

of ΣZd

is called a subshift. An element of a subshift is called a point of this
subshift.

Alternatively, subshifts can be defined with the help of forbidden patterns.
A pattern is a function p : P → Σ, where P , the support, is a finite subset of Zd.
Let F be a collection of forbidden patterns, the subset XF of ΣZd

containing
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the configurations having nowhere a pattern of F . More formally, XF is defined
by

XF =
{
x ∈ ΣZd

∣∣∣∀z ∈ Zd,∀p ∈ F, x|z+P 6= p
}
.

In particular, a subshift is said to be a subshift of finite type (SFT) when the
collection of forbidden patterns is finite. Usually, the patterns used are blocks
or r-blocks, that is they are defined over a finite subset P of Zd of the form
Br = J−r, rKd, r is called its radius. We may assume that all patterns of F are
defined with blocks of the same radius r, and say the SFT has radius r.

Given a subshift X, a pattern p is said to be extensible if there exists x ∈ X
in which p appears, p is also said to be extensible to x. We also say that a
pattern p1 is extensible to a pattern p2 if p1 appears in p2. A block or pattern
is said to be admissible if it does not contain any forbidden pattern. Note that
every extensible pattern is admissible but that the converse is not necessarily
true. As a matter of fact, for SFTs, it is undecidable (in Π0

1 to be precise)
in general to know whether a pattern is extensible while it is always decidable
efficiently (polytime) to know if a pattern is admissible.

As we said before, SFTs are compact spaces, this gives a link between admis-
sible and extensible: if a pattern appears in an increasing sequence of admissible
patterns, then it appears in a valid configuration and is thus extensible. More
generally, if we have an increasing sequence of admissible pattern, then we can
extract from it a sequence converging to some point of the SFT.

Note that instead of using the formalism of SFTs we could have used the
formalism of Wang tiles, in which numerous results have been proved. In par-
ticular the undecidability of knowing whether a SFT is empty. Since we will be
using a construction based on Wang tiles, we review their definitions.

Wang tiles are unit squares with colored edges which may not be flipped or
rotated. A tileset T is a finite set of Wang tiles. A coloring of the plane is a
mapping c : Z2 → T assigning a Wang tile to each point of the plane. If all
adjacent tiles of a coloring of the plane have matching edges, it is called a tiling.

The set of tilings of a Wang tileset is a SFT on the alphabet formed by the
tiles. Conversely, any SFT is isomorphic to a Wang tileset. From a recursivity
point of view, one can say that SFTs and Wang tilesets are equivalent. In this
paper, we will be using both terminologies indiscriminately.

1.2 Factorization and Conjugacy
In the rest of the paper, we will use the notation ΣX for the alphabet of the
subshift X.

A subshift X ⊆ ΣZ2

X factors on a subshift Y ⊆ ΣZ2

Y if there exists a finite
set V = {v1, . . . , vk} ⊂ Z2, the window, and a local map f : Σ

|V |
X → ΣY ,

such that for any point y ∈ Y , there exists a point x ∈ X such that for all
z ∈ Zd, yz = f(xz+v1 , . . . , xz+vk

). That is to say, the global map F : X → Y
associated to f , the factorization or factor map, verifies F (X) = Y . Without
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loss of generality, we may suppose that the window is an r-block, r being then
called the radius of f and (2r + 1) its diameter.

When the map F is invertible and its inverse is also a factorization, the
subshifts X and Y are said to be conjugate. In the rest of the paper, we will
note with the same symbol the local and global functions, the context making
clear which one is being used.

The entropy of a subshift X is defined as

h(X) = lim
n→∞

logEn(X)

nd

where En(X) is the number of extensible patterns of X of support J0, nKd where
d is the dimension. The entropy is a conjugacy invariant, that is to say, if X
and Y are conjugate, then h(X) = h(Y ). It is in particular easy to see thanks
to the entropy that the full shift on n symbols is not conjugate to the full shift
with n′ symbols when n 6= n′.

1.3 Arithmetical Hierarchy and computability
We give now some background in computability theory and in particular about
the arithmetical hierarchy. More details can be found in Rogers [Rog87].

In computability, the arithmetical hierarchy is a classification of sets accord-
ing to their logical characterization. A set A is Σ0

n if there exists a total com-
putable predicate R such that x ∈ A⇔ ∃y1,∀y2, . . . , QynR(x, y1, . . . , yn), where
Q is a ∀ or an ∃ depending on the parity of n. A set A is Π0

n if there exists a to-
tal computable predicate R such that x ∈ A⇔ ∀y1,∃y2, . . . , QynR(x, y1, . . . , yn,
where Q is a ∀ or an ∃ depending on the parity of n. Equivalently, a set is Σ0

n

iff its complement is Π0
n.

We say a set A is many-one reducible to a set B, A ≤m B if there exists
a computable function f such that for any x, f(x) ∈ A ⇔ x ∈ B. Given an
enumeration of Turing Machines Mi with oracle X, the Turing jump X ′ of a set
X is the set of integers i such that Mi halts on input i. We note X(0) = X and
X(n+1) = (X(n))′. In particular 0′ is the set of halting Turing machines.

A set A is Σ0
n-hard (resp. Π0

n) iff for any Σ0
n (resp. Π0

n) set B, B ≤m A. The
problem 0(n) is Σ0

n-complete. Furthermore, it is Σ0
n-complete if it is in Σ0

n. The
sets in Σ0

1 are also called recursively enumerable and the sets in Π0
1 are called

the co-recursively enumerable or effectively closed sets.

2 Conjugacy
We prove here the Σ0

1-completeness of the conjugacy problem in dimension d ≥
2, even for a fixed SFT.

Theorem 2.1. Given two SFTs X,Y as an input, it is Σ0
1 to decide whether

X and Y are conjugate.
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Proof. To decide whetherX and Y are conjugate, we have to check if there exists
two local functions F : ΣX → ΣY , and G : ΣY → ΣX such that F ◦ G = idX
and G ◦ F = idY . To do this, we define two new functions F ′, G′:

• Let rX and rF be the radiuses of X and F , then F ′ : (ΣX t {?})Br
F ′ →

ΣY t {?} is defined with a window of radius rF ′ = max(rF , rX):

F ′ =

{
F if the window does not contain a forbidden pattern or a ?
? otherwise

• Let rY and rG be the radiuses of Y and G, then G′ : (ΣY t {?})Br
G′ →

ΣX t {?} is defined with a window of radius rG′ = max(rF , rX):

G′ =

{
G if the window does not contain a forbidden pattern or a ?
? otherwise

This definition may look gruesome, but is actually simple: F ′ and G′ act
exactly as F and G, except they keep track of forbidden patterns. That is, if
for some pattern p, F ◦G(p) does not contain a ?, then G(p) does not contain a
forbidden pattern. This will allow us to prove at the same time that F (X) ⊆ Y
(resp. G(Y ) ⊆ X) and that F ◦G = idX (resp. G ◦ F = idY ).

We want to prove that X and Y are conjugate if and only if there exists F,G
and k > (rF ′ + rG′) such that for any admissible block b of size k of X (resp.
Y ), F ′ ◦G′(b) (resp. G′ ◦ F ′(b)) is equal to b at 0.

We prove this by contraposition for F ′◦G′, the proof is identical for the other
composition. Suppose there is a configuration x ∈ X such that F ′ ◦G′(x) 6= x,
we may suppose they differ in 0 by shifting x. So for any k there is an admissible
block b of size k such that F ′ ◦ G′(b) differs from b at 0. Conversely, if there
is a sequence of blocks bk of size k, for k > (rF ′ + rG′) such that F ′ ◦ G′(bk)
differs from bk in 0, then by compactness we can extract a sequence converging
to some configuration x ∈ X, and by construction F ′ ◦ G′(x) differs from x in
0.

Theorem 2.2. For any X, given Y as an input, it is Σ0
1-hard to decide if X

and Y are conjugate.

Proof. We reduce the problem to 0′, the halting problem. Given a Turing
machine M we construct a SFT YM such that YM is conjugate to X iff M
halts.

Let RM be Robinson’s SFT [Rob71] encoding computations of M : RM is
empty iff M halts1.

Now take the full shift on one more symbol than X, note it F . YM is now
the disjoint union of X and RM × F .

If M halts, YM = X and hence is conjugate to X. In the other direction,
suppose M does not halt, then RM × F has entropy strictly greater than that
of X and hence YM is not conjugate to X.

1Robinson’s SFT is in dimension 2 of course, for higher dimensions, we take the rules that
the symbol in x± ei equals the symbol in x, for i > 2.
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3 Factorization
We start with two small examples to see why factorization is more complex than
conjugacy. Here the examples are the simplest ones possible: we fix the SFT
to which we factor in a very simple way, thus making the factor map known in
advance.

Theorem 3.1. Let Y be the SFT containing exactly one configuration, a uni-
form configuration. Given X as an input, it is Π0

1-complete to know whether X
factors onto Y .

Proof. In this case the factor map is forced: it has to send everything to the
only symbol of ΣY . And the problem is hence equivalent to knowing whether a
SFT is not empty, which is Π0

1-complete.

Theorem 3.2. Let Y be the empty SFT. Given X as an input, it is Σ0
1-complete

to know whether X factors onto Y .

Proof. Here any factor map is suitable, the problem is equivalent to knowing
whether X is empty, which is Σ0

1-complete.

We study now the hardness of factorization in the general case, that is to say
when two SFTs are given as inputs and we want to know whether one is a factor
of the other. We prove here with theorems 3.3 and 3.8 the Σ0

3-completeness of
the factorization problem.

3.1 Factorization is in Σ0
3

Theorem 3.3. Given two SFTs X,Y as an input, deciding whether X factors
onto Y is in Σ0

3.

Proof. X factors onto Y iff there exists a factor map F , a local function, such
that F (X) = Y . This is the first existential quantifier.The result follows from
the two next lemmas.

Lemma 3.4. Given F,X, Y as an input, deciding if Y ⊆ F (X) is Π0
2.

Proof. We prove here that the statement Y ⊆ F (X), that is to say, for every
point y ∈ Y , there exists a point x ∈ X such that F (x) = y, is equivalent
to the following Π0

2 statement: for any admissible pattern m of Y , if m is
extensible, then F−1(m) contains an admissible pattern. This statement is Π0

2

since checking that m is not extensible is Σ0
1, that is to say: there exists a radius

r such that all r-blocks containing m are not admissible.
We now prove the equivalence. Suppose that Y ⊆ F (X), then any extensible

pattern m of Y appears in a configuration y ∈ Y which has a preimage x ∈ X.
A preimage of m being extensible, it is also admissible. This proves the first
direction.

Conversely, suppose all extensible patternsm of Y have an admissible preim-
age. Let y be a point of Y , then we have an increasing sequence mi of extensible
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patterns converging to y. All of them have at least one admissible preimage m′i.
By compactness, we can extract from this sequence a converging subsequence,
note x its limit. By construction x is a point of X and a preimage of y.

Lemma 3.5. Given F,X, Y as an input, deciding if F (X) ⊆ Y is Σ0
1.

Proof. It is clear that F (X) ⊆ Y if and only if F (X) does not contain any
configuration where a forbidden patterns of Y appears. We now show that this
is equivalent to the following Σ0

1 statement: there exists a radius r such that for
any admissible r-block M of X, F (M) does not contain any forbidden pattern
in its center.

We prove the result by contraposition, in both directions. Suppose there is
a configuration x ∈ X such that F (x) contains a forbidden pattern. Then for
any radius r > 0, there exists an extensible, hence admissible, pattern M of size
r such that F (M) contains a forbidden pattern in its center.

Conversely, if for any radius r > 0, there exists an admissible pattern M
of X of size r such that F (M) contains a forbidden pattern in its center, then
by compactness, there exists a configuration x ∈ X such that F (x) contains a
forbidden pattern in its center.

3.2 Factorization is Σ0
3-hard

To prove the hardness, we use the base construction that we introduced in [JV11]:
we note it T . This construction introduces a new way to put Turing machine
computations in SFTs, in particular, the base construction has exactly one point
(up to shift) in which computations may be encoded. We call this point config-
uration α, its schematic view is shown in figure 1a. The computation is encoded
in the inner grid which is sparse. Each crossing between a horizontal line and
a vertical one forms a cell. The constraints are carried along the vertical and
horizontal lines, so that we may view the encoding of the Turing machine as a
tiling on the grid. For each time step, the tape of the Turing machine is encoded
in the NW-SE diagonals and the size of the diagonal steadily increases in size
when going north-east. At each growth of the diagonal size, it gains two cells.

Configuration α is made of two layers: one producing the horizontal lines
and the other the vertical ones. The layer producing the vertical lines is shown
in figure 2, the vertical lines are the black vertical lines. The configuration
producing the horizontal lines is its exact symetric along the south-west/north-
east diagonal. The key property of these layers is that when a corner tile (the tile
in the lower left corner of the first square) appears, then the point is necessarily
of this form.

In the original construction, corner tiles of the horizontal and vertical layers
could only be superimposed to each other. We just change this so that instead,
the corner tile of the vertical layer has to be at position (1,−1) relative to
the corner tile of the horizontal one. This change does not impact any of the
properties of T , but simplifies a bit the proof of lemma 3.7.
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(a)

tim
e

space

(b)

Figure 1: (a) The skeleton of configuration α. (b) How the computation is
superimposed to α.

Figure 2: Point α, the meaningful point of XT . The corner tile may be seen on
the first non all-white column: it is the lower left corner of the square.

Our reduction will use two SFTs based on this construction, both of them
will be feature a different tiling on its grid. We will say that an SFT which is
basically T with a tiling on its grid as having T -structure.

Definition 3.6 (T -structure). We say an SFT X has T -structure it is a copy
of T to which we superimposed new symbols only on the symbols representing
the horizontal/vertical lines and their crossings.

Note that an SFT may have T -structure while having no α-configuration:
for instance if you put a computation of a Turing machine that produces an
error whenever it halts.
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Figure 3: Uniform quarter- and eighth-planes in non-α-configurations.

The next lemma states a very intuitive result, that will be used later, namely
that if an SFT with T -structure factors to another one, then the structure of
each point is preserved by factorization. Furthermore, it shows that the factor
map can only send a cell to its corresponding one, that is to say cell of the
preimage has to be in the window of the image.

Lemma 3.7. Let X,Y be two SFTs with T -structure, such that X factors onto
Y . Let r be the radius of the factorization, then any α-configuration of Y is
factored on by an α-configuration of X, and can be shifted by v iff ‖v‖∞ ≤ r.

Proof. By [JV11, lemma 1], we know that non-α-configurations have at most one
vertical line and one horizontal line. And therefore that they have two uniform
(same symbols everywhere) quarter-planes and four uniform eighth-planes, as
seen on figure 3. The two north east eighth-planes are not uniform in α. thus
they cannot factor on α.

It remains to prove the second part: that in the factorization process the
α-structure is at most shifted by the radius of the factorization. We do that
by contradiction, suppose that an α-configurations x of X factors on an α-
configuration y of Y and shifts it by v = (vx, vy), with ‖v‖∞ > r. Without
loss of generality we may suppose that vx > r and vy > 0 and that the vertical
and horizontal corner tiles of the preimage are at positions (0, 1) and (1, 0)
respectively. We are now going to show that this is not possible.

On the horizontal layer, for all k ∈ N∗ there is a square with lower left corner
at (2k2+k, 2k2+k), see figure 2. Inside this square, there are two (k−1)×(k−1)
uniform smaller squares, see figure 4. This being also true for the vertical layer,
these squares remain uniform when they are superimposed. Now take k such
that k > (‖v‖∞+2r+1). By hypothesis, there is a vertical line symbol t at zp =
(2k2+2k+1, 2k2+k) on x, and thus at zi = (2k2+2k+1+vx, 2k

2+k+vy) on y.
We know x|zi+Br

has image t, and by what precedes that x|zi+Br
= x|zi+(1,0)+Br

since they are both uniform, therefore, there should be two t symbols next to
eachother in y at zi and zi + (1, 0). This is impossible.
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k − 1 k − 1

k k − 1

2k

(2k2 + k, 2k2 + k)

Figure 4: For every k ∈ N∗, the square starting at position (2k2+k, 2k2+k) is of
the form on the right on the component producing the vertical lines (and is the
symetric along the diagonal for the one producing the horizontal lines). We can
see that there are two uniform (k−1)×(k−1) squares at (2k2+2k+2, 2k2+k+1)
and (2k2 + k + 1, 2k2 + 2k + 2) respectively.

Theorem 3.8. Given two SFTs X,Y as an input, deciding whether X factors
onto Y is Σ0

3-hard.

For this proof, we will reduce to the problemCOFINITE, which is known to
be Σ0

3-complete, see Kozen [Koz06]. COFINITE is the set of Turing machines
which run infinitely only on a finite set of inputs.

d
>
n n

Figure 5: Computation on input n in the SFT Z, the number of white diagonals
d preceeding the computation is strigtly greater than the input n.

Proof. Given a Turing machine M , we construct two SFTs XM and YM such
that XM factors on YM iff the set of inputs on which M does not halt is finite.
We first introduce an SFT ZM on which both will be based. It will of course
have T structure. Above the T base, we allow the cells of the grid to be either
white or blue according to the following rules:

• All cells on a NW-SE diagonal are of the same color.

10



• A blue diagonal may follow (along direction SW-NE) a white diagonal,
but not the contrary.

• A transition from white diagonal to blue may only appear when the grid
grows.

We now allow computation on blue cells only. Only the diagonals after
the growth of the grid may contain computations. The Turing machine M is
launched on the input formed by the size of the first blue line (in number of
cells of course). We forbid the machine to halt

So for each n on which M does not halt, there is a configuration with white
cells until the first blue diagonal appears, then computation occurs inside the
blue cone, see figure 5 for a schematic view. If M halts on n, then there is
no tiling where the first blue line codes n. By compactness, there is of course
a configuration with only white diagonals. If M is total, then the only α-
configuration in ZM is the one with only white diagonals.

Now from ZM , we can give XM and YM :

• XM : Let Z ′M be a copy of ZM to which we add two decorations 0 and
1 on the blue cells only, and all blue cells in a configuration must have
the same decoration. Now XM is Z ′M to which we add a third color, red,
that may only appear alone, instead of white and blue. No computation
is superimposed on red.

• YM is a copy of ZM where we decorated only the horizontal corner tile
with two symbols 0 and 1.

We now check that XM factors onto YM iff M does not halt on a finite set
of inputs:

⇒ Suppose M does not halt on a finite set of inputs: there exists N such
that M halts on every input greater than N . The following factor map F
works:

– F is the identity on ZM . Note that the additional copy of T is also
sent onto ZM .

– F has a radius big enough so that when its window is centered on
the corner tile, it would cover the beginning of the computation on
input N .

– An α-configuration x of XM is sent on the same α-configuration y
in YM . For the decorations, when there is a computation on x, the
factor map can see it and gives the same decoration to the corner
tile of y. When there is no computation, the factor map doesn’t see
a computation zone and gives decoration 0 to the corner tile. The
configuration with only white diagonals and decoration 1 of YM is
factored on by the α-configuration colored in red contained in XM .

Note that this also works when M is total.

11



⇐ Conversely, suppose M does not halt on an infinite set of inputs, and
that there exists a factor map F with radius r: lemma 3.7 states that
all α-configurations of YM are factored on by α-configurations of XM .
Now, there is an infinite number of α-configurations with corner tile dec-
orated with 0 (resp. 1) in YM , they all must be factored on by some
α-configuration of XM . Still by lemma 3.7, the corner tile of the preimage
must be in the window of the corner tile of the image. However, there
can only be a finite number of configurations in which the symbols in this
window differ. So the α-configurations of XM factor to a finite number of
α-configurations of YM with one of the decorations. This is impossible.

Note that the construction of XM and YM from the description of M is
computable and uniform. The reduction is thus many-one.
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