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A graph G = (V, E) is arbitrarily partitionable if for any sequence τ of positive integers adding up to |V |, there is a sequence of vertex-disjoint subsets of V whose orders are given by τ , and which induce connected subgraphs. Such graph models, e.g., a computer network which may be arbitrarily partitioned into connected subnetworks. In this paper we study the structure of such graphs and prove that unlike in some related problems, arbitrarily partitionable graphs may have arbitrarily many components after removing a cutset of a given size ≥ 2. The sizes of these components grow exponentially, though.

Introduction

Arbitrarily partitionable graphs

Consider a computer network which we want to partition into disjoint, but connected, subnetworks of given sizes. If it is always feasible regardless of the sizes of the subnetworks, then the underlying graph, where computers are represented by vertices and links between two computers by edges, is arbitrarily partitionable.

More formally, let n, τ 1 , . . . , τ k be positive integers such that τ 1 +. . .+τ k = n. Then τ = (τ 1 , . . . , τ k ) is called a decomposition of n.

Let G = (V, E) be a graph of order n and S a subset of V . By G[S] we denote the subgraph of G induced by S.

Let τ = (τ 1 , . . . , τ k ) be a decomposition of n. The graph G is called τpartitionable iff there exists a partition of V : V 1 , . . . , V k such that for each i, 1 ≤ i ≤ k, |V i | = τ i and G[V i ] is connected. In this case, τ is said to be realizable in G and (V 1 , . . . , V k ) is a realization of τ in G.

A graph G of order n is arbitrarily partitionable (AP for short) iff for each decomposition τ of n, G is τ -partitionable.

On-line and recursive partitions

The problem of arbitrary partitionability gave rise to a list of natural stronger properties. Suppose for instance that the whole list of sizes of subnetworks is initially not known, but its elements are requested on-line, i.e., one by one. Using the graph modeling, this means that upon (any) request we must be able to provide a connected subgraph of a given order such that the remaining part of the graph retains the same feature. Graphs which have this property for any sequence of requests are called on-line arbitrarily partitionable (or OLAP for short).

In other words, a connected graph G = (V, E) of order n is on-line arbitrarily partitionable iff for each integer 1 ≤ λ ≤ n -1, there exists a subset

V λ of V such that |V λ | = λ, G[V λ ] is connected and G[V \V λ ] is OLAP. See [1] for details.
Another family of arbitrarily partitionable graphs has been considered in [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF]. These were the recursively arbitrarily partitionable graphs. In this case we want not only to provide connected subgraphs, but also require so that these subgraphs are themselves partitionable.

A graph G = (V, E) of order n is called recursively arbitrarily partitionable (RAP for short) iff

• G = K 1 or • G is connected and for each decomposition τ = (τ 1 , . . . , τ k ) of n, k ≥ 2,
there exists a partition of

V : V 1 , . . . , V k such that for all i, 1 ≤ i ≤ k, |V i | = τ i and G[V i ] is RAP.
In [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF], it has been shown that for every graph G, G is RAP ⇒ G is OLAP ⇒ G is AP, and that there exist AP graphs that are not OLAP and OLAP graphs that are not RAP.

Previous results

Since every graph containing a spanning AP graph is itself AP, much work have been done to investigate the 'simplest' potential (connected) spanning subgraphs, i.e., trees, which are 1-connected. Below we recall a number of previous results, which, as we shall argue in the following section, provide much insight into the structure of 1 and 2-connected AP graphs, and in particular into the number of components left after removal of a (minimal) cutset, and the sizes of these components.

The following is the central result among these. It provides an upper bound on the degree in AP trees (and thus on the number of components left in AP 1-connected graph after removing a cut-vertex). Theorem 1. [START_REF] Barth | A degree bound on decomposable trees[END_REF] If a tree T is AP, then its maximum degree is at most 4. Moreover, every vertex of degree 4 in T is adjacent to a leaf.

In [START_REF] Horňák | On-line arbitrarily vertex decomposable trees[END_REF] and [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF], OLAP and RAP-trees have been completely characterized. To recall these characterizations, we need the following notations:

• A k-pode T k (t 1 , . . . , t k
) is a tree of order 1 + k i=1 t i composed of k paths of respective orders t 1 , . . . , t k , connected to a unique node, called the root of the k-pode (cf. Figure 1a).

• Let a and b be two positive integers. A caterpillar Cat(a, b) is a tree of order a + b composed of three paths of order a, b and 2 sharing exactly one node, called the root of the caterpillar. Cat(a, b) is isomorphic to This result has been extended to OLAP k-balloons:

T 3 (a -1, b -1, 1) (cf. Figure 1b). (a) T 3 (3, 2, 2) (b) Cat(3, 5) (c) B(3, 2, 2, 1)
Theorem 5. [4] If a k-balloon is OLAP, then k ≤ 5.
Upper bounds for the size of the smallest branch of a RAP or OLAP k-balloon have also been given:

Theorem 6. [4] Let B(b 1 , . . . , b k ) be a k-balloon with k ≥ 4 and b 1 ≤ • • • ≤ b k . If B(b 1 , . . . , b k ) is OLAP, then b 1 ≤ 11. If B(b 1 , . . . , b k ) is RAP, then b 1 ≤ 7.
2. Size and number of components after removing a cutset of size at most 2 Observation 7. If G contains a spanning subgraph which is AP (resp. OLAP, RAP), then G is AP (resp. OLAP, RAP). In particular, if G is traceable (contains a hamiltonian path), then G is RAP (and thus also OLAP and AP).

This simple remark suggests the following straightforward generalization. Suppose that G is an AP (resp. OLAP, RAP) graph containing a 1-or 2element cutset S. Then we may construct of it another graph which is the more AP (resp. OLAP, RAP), simply by replacing each component of G -S with a path of the corresponding order.

Observation 8. Let G = (V, E) be a graph with a cutest S, and let

V 1 , • • • V k be the components of G[V \S]: • if |S| = 1 and G is AP (resp. OLAP, RAP), then the k-pode k (|V 1 |, • • • , |V k |)
is AP (resp. OLAP, RAP) ;

• if |S| = 2 and G is AP (resp. OLAP, RAP), then the k-balloon B(|V 1 |, • • • , |V k |) is AP (resp.

OLAP, RAP) ;

Remark 8 and Theorems 1, 2, 3, 4, 5, 6 yield the following summary concerning all 1 and 2-connected AP graphs.

Corollary 9. Let G be a graph with a cutset S, and let

V 1 , • • • V k the com- ponents of G[V \S] with |V 1 | ≤ • • • ≤ |V k |: • if |S| = 1, then -if G is AP, then k ≤ 4 and if k = 4, then |V 1 | = 1 ; -if G is OLAP (resp. RAP), then k ≤ 3, and if k = 3, then either (|V 1 |, |V 2 |, |V 3 |) = (1, a -1, b -1)
with values a and b given in Table 1 (resp. 2), or

(|V 1 |, |V 2 |, |V 3 |) = (2, 4, 6); • if |S| = 2, then -if G is OLAP, then k ≤ 5 ; -if G is OLAP (resp. RAP) and k ∈ {4, 5}, then |V 1 | ≤ 11 (resp. ≤ 7).

Number of components after removing a cutset of size k ≥ 2 in AP graphs

In the previous section, we argued that if we remove a cutset of size 1 from a (1-connected) graph G, then the number of remaining components is at most 4 if G is AP, and 3 if G is OLAP or RAP. Similar result on the bounded number of components extends to the case of removal of a cutset of size 2 from a (1-or 2-connected) OLAP or RAP graph, when this number is at most 5. Surprisingly, the same cannot be generalized for AP graphs.

In this section, we will prove that for any size k ≥ 2 of a cutset, a similar statement does not hold for AP graphs.

Theorem 10. For any integers k ≥ 2 and c ≥ 2, there exists an AP graph G = (V, E) of connectivity k such that G[V \S] consists of exactly c components for every k-element cutset S of G.

Proof: We shall present a construction of such graph G for every pair of integers k, c ≥ 2.

We first consider the case when c ≤ k. Let G = (S ∪ P ∪ S ∪ P , E) be the graph with 2k vertices constructed as follows:

• G[S ] and G[S ] are both stable sets, each containing c -1 vertices;

• G[P ] and G[P ] are both paths with k -c + 1 vertices each;

• every vertex of S ∪ P is adjacent to all the vertices of S ∪ P .

Clearly, G is an AP graph, since it contains as a subgraph the complete bipartite graph K k,k , which is hamiltonian. By the same reason, G has connectivity k and contains exactly two cutsets of size k, i.e., S ∪P and S ∪P . After removing any of these, we obtain exactly c components, i.e., a path with k -c + 1 ≥ 1 vertices and c -1 isolated vertices. Now, we assume that c > k. We denote by K k (a 1 , . . . , a c ) the graph formed of c + 1 cliques, one of size k, the others of size a 1 , . . . a c , by adding all the edges between the vertices of the clique of size k and the vertices of all other cliques (see Figure 2). Clearly G is k-connected and the vertices of the clique K k form a unique cutset of size k in K k (a 1 , . . . , a c ).

Let G be any graph K k (a 1 , . . . , a c ) with values a 1 , . . . , a c chosen (consecutively) as follows: 1. 1 ≤ a 1 ≤ . . . ≤ a c ; 2. for any i, 1 ≤ i ≤ c, we denote n i = 1 + 1≤j≤i a j ; 3. for any i,

1 ≤ i ≤ c -1, choose a i+1 such that (a) ∀j, 2 ≤ j ≤ n i , a i+1 ≡ 0 (mod j), (b) a i+1 ≥ n i a i .
For example, a i • n i ! is a possible value for a i+1 .

Let τ = (τ 1 , . . . , τ l ) be any decomposition of n = k + 1≤i≤c a i , with τ 1 ≤ . . . ≤ τ l . To show that τ is realizable in G we consider two cases.

First case: τ l ≥ a c-1 .

In that case, τ l ≥ n c-2 = 1 + 1≤i≤c-2 a i . Thus, the part (vertex subset) of size τ l may be chosen so that it 'covers' all the cliques K a i with i ≤ c -2, plus one of the vertices of K k and possibly some vertices of the cliques K a c-1 and K ac . The remaining graph is induced by the rest of the vertices from K k , K a c-1 and K ac , and is obviously traceable.

Second case: τ l < a c-1 .

For each i, 1 ≤ i ≤ τ l , we denote by q i the number of terms of τ having value i.

We thus have n = 1≤i≤τ l i • q i . Then there exists an integer α,

1 ≤ α ≤ τ l , such that α • q α ≥ n τ l . Thus, α • q α > n a c-1 > ac a c-1 ≥ n c-1 a c-1 a c-1
= n c-1 . We denote by s the integer such that for all i ≤ s, a i ≡ 0 (mod α) and for all i > s, a i ≡ 0 (mod α). Its existence is guaranteed by property 3a. Note that s may in particular be equal to 0.

Because for each i > s, a i ≡ 0 (mod α), and α • q α > n c-1 , we may cover the cliques K a s+1 , . . . , K a c-1 with parts of size α.

If s ≥ 2, since a s ≡ 0 (mod α), we have α > n s-1 by property 3a. On the other hand, α ≤ a c . It means that we may choose one part of size α so that it covers all the cliques K a 1 , . . . , K a s-1 plus one vertex of K k and possibly some vertices of K ac .

Thus the remaining graph is induced by

• the vertices of K ac and K k if s = 0,

• the vertices of K ac , K k and K a 1 if s = 1,

• the remaining vertices of K ac , k -1 vertices of K k and the vertices of K as if s ≥ 2.

In every case, such graph is again traceable. 2

Balloons. The previous result (Theorem 10) can be adapted to the special case of balloons. The benefit from such modification is that it gives (for the case k = 2) examples of graphs with a linear number of edges (with respect to n -the order of a graph), contrarily to the examples presented above, where the number of edges may be quadratic. • b 1 ≥ 1;

• for any i ≤ k -1, choose b i+1 such that:

1. ∀j, 2 ≤ j ≤ n i , b i+1 ≡ 0 (mod j), 2. b i+1 ≥ n i b i .

Using the same argument as the one used for K k (a 1 , ..., a c ), it is easy to see that such balloon is AP.

2

  of a, b (b ≥ a) for which Cat(a, b) is RAP In terms of 2-connected graphs, let us consider the 'simplest' of such graphs forming the family of so called balloons. Let b 1 , . . . , b k be positive integers, k ≥ 2. A k-balloon B(b 1 , . . . , b k ) is a graph of order 2 + k i=1 b i composed of two vertices (called roots) linked by k paths (called branches) of widths (the numbers of internal vertices) b 1 , . . . , b k (cf. Figure 1c).

Theorem 4 .

 4 [START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF] If a k-balloon is RAP, then k ≤ 5. This bound is tight.

Figure 2 :

 2 Figure 2: Graph K 2[START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF][START_REF] Barth | A degree bound on decomposable trees[END_REF][START_REF] Baudon | Structural properties of recursively partitionable graphs with connectivity[END_REF] 

Theorem 11 .

 11 For any k ≥ 1, there exists an AP k-balloon. Proof: We consider a k-balloon B(b 1 , . . . , b k ) where branches have the same size as the cliques of K k (a 1 , ..., a c ) given in the proof of Theorem 10, i.e., for b 1 ≤ . . . ≤ b k we denote n i = 1 + 1≤j≤i b j , and choose b i as follows:

Table 1 :

 1 Figure 1: Examples of special graphs Theorem 2. [1] A tree T is OLAP if and only if either T is a path or T is a caterpillar Cat(a, b) with a and b given in Table1or T is the 3-pode T 3[START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF][START_REF] Baudon | Structural properties of recursively partitionable graphs with connectivity[END_REF] 6).

	a	b		a	b	a	b
	2 ≡ 1 (mod 2)		5 6, 7, 9, 11, 14, 19	8 11, 19
	3 ≡ 1, 2 (mod 3)	6 ≡ 1, 5 (mod 6)	9, 10 11
	4 ≡ 1 (mod 2)		7 8, 9, 11, 13, 15	11 12
	a	b	a	b	a	b
	2 ≡ 1 (mod 2)	4 ≡ 1 (mod 2)	6 7
	3 ≡ 1, 2 (mod 3)	5 6, 7, 9, 11, 14, 19	7 8, 9, 11, 13, 15

Values of a, b (b ≥ a) for which Cat(a, b) is OLAP Theorem 3. [2] A tree T is RAP if and only if either T is a path or T is a caterpillar Cat(a, b) with a and b given in Table

2

or T is the 3-pode T 3

[START_REF] Baudon | Recursively arbitrarily vertexdecomposable graphs[END_REF][START_REF] Baudon | Structural properties of recursively partitionable graphs with connectivity[END_REF] 6)

.

Table 2 :

 2 Values
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Size of components

In this section, we will show that, though the number of components after removing a cutset of size at least 2 from an AP graph may be arbitrarily large, then the size of these components must grow exponentially with their number.

Theorem 12. Let G = (V, E) be an AP graph with n vertices, S a cutset of G of size k, c 1 , . . . , c l the orders of the components of G[V \S], where l > k and 1 ≤ c 1 ≤ c 2 ≤ . . . ≤ c l . Then the values of the sequence (c i ) i≥1 grow exponentially with i.

To prove this theorem, we use Lemmas 13 to 15: Lemma 13. Let G = (V, E) be a graph with n vertices, S a cutset of G of size k, c 1 , . . . , c l the orders of the components of G[V \S], where l > k and

Let a, q 1 , . . . , q l , r 1 , . . . , r l be nonnegative integers such that:

• for any i,

respectively. Consider a decomposition τ = (a, . . . , a, r) of n with r < a, and any of its realizations in G. Now suppose we remove from G the vertices of all parts (in the realization) of size a each of which is contained entirely in one of the subgraphs G 1 , . . . , G l . We thus must have at least 1≤i≤k r i + k vertices in the remaining graph. On the other hand, every part (in the realization) left in our graph must contain at least one of k vertices of the cutset S or has size different from a (and there is only one such part in the graph). Therefore, the remaining graph is induced by at most k • a + r ≤ k • a + a -1 vertices.

Combining the two observations, we obtain that 1≤i≤k r i + k ≤ k • a + a -1, and the thesis follows. 2

Corollary 14. Let G = (V, E) be a graph with n vertices, S a cutset of G of size k, c 1 , . . . , c l the orders of the components of G[V \S], where l > k and

Proof: For any fixed i ≤ l, let us apply Lemma 13 with a = c i + 1. Then for all j ≤ i, we have r j = c j . Thus, by Lemma 13, 1≤j<i c j + c i + i<j≤l r j ≤ (k + 1) • c i . Since i<j≤l r j ≥ 0, we obtain the thesis. 2 The following lemma completes the proof of Theorem 12: Lemma 15. If the assumptions of Theorem 12 hold, then:

Proof: Consider the sequence (v i ) i≥1 defined by v 1 = c 1 and for all i ≥ 2,

2 Note that, even if the lower bound given in the proof of Theorem 12 is exponential, it remains a large gap between this bound and the order of the example used to prove Theorem 10 (2nd case). Thus, it would be interesting to find smaller examples or to improve the lower bound.