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aLaBRI, Université de Bordeaux
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Abstract

A graph G = (V,E) is arbitrarily partitionable if for any sequence τ of posi-
tive integers adding up to |V |, there is a sequence of vertex-disjoint subsets
of V whose orders are given by τ , and which induce connected subgraphs.
Such graph models, e.g., a computer network which may be arbitrarily par-
titioned into connected subnetworks. In this paper we study the structure
of such graphs and prove that unlike in some related problems, arbitrarily
partitionable graphs may have arbitrarily many components after removing a
cutset of a given size ≥ 2. The sizes of these components grow exponentially,
though.
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1. Introduction

1.1. Arbitrarily partitionable graphs

Consider a computer network which we want to partition into disjoint,
but connected, subnetworks of given sizes. If it is always feasible regardless
of the sizes of the subnetworks, then the underlying graph, where computers
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are represented by vertices and links between two computers by edges, is
arbitrarily partitionable.

More formally, let n, τ1, . . . , τk be positive integers such that τ1+. . .+τk =
n. Then τ = (τ1, . . . , τk) is called a decomposition of n.

Let G = (V,E) be a graph of order n and S a subset of V . By G[S] we
denote the subgraph of G induced by S.

Let τ = (τ1, . . . , τk) be a decomposition of n. The graph G is called τ -
partitionable iff there exists a partition of V : V1, . . . , Vk such that for each
i, 1 ≤ i ≤ k, |Vi| = τi and G[Vi] is connected. In this case, τ is said to be
realizable in G and (V1, . . . , Vk) is a realization of τ in G.

A graph G of order n is arbitrarily partitionable (AP for short) iff for each
decomposition τ of n, G is τ -partitionable.

1.2. On-line and recursive partitions

The problem of arbitrary partitionability gave rise to a list of natural
stronger properties. Suppose for instance that the whole list of sizes of sub-
networks is initially not known, but its elements are requested on-line, i.e.,
one by one. Using the graph modeling, this means that upon (any) request
we must be able to provide a connected subgraph of a given order such that
the remaining part of the graph retains the same feature. Graphs which
have this property for any sequence of requests are called on-line arbitrarily
partitionable (or OLAP for short).

In other words, a connected graph G = (V,E) of order n is on-line arbi-
trarily partitionable iff for each integer 1 ≤ λ ≤ n − 1, there exists a subset
Vλ of V such that |Vλ| = λ, G[Vλ] is connected and G[V \Vλ] is OLAP. See
[1] for details.

Another family of arbitrarily partitionable graphs has been considered in
[2]. These were the recursively arbitrarily partitionable graphs. In this case
we want not only to provide connected subgraphs, but also require so that
these subgraphs are themselves partitionable.

A graph G = (V,E) of order n is called recursively arbitrarily partitionable
(RAP for short) iff

• G = K1 or

• G is connected and for each decomposition τ = (τ1, . . . , τk) of n, k ≥ 2,
there exists a partition of V : V1, . . . , Vk such that for all i, 1 ≤ i ≤ k,
|Vi| = τi and G[Vi] is RAP.
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In [2], it has been shown that for every graph G, G is RAP⇒ G is OLAP
⇒ G is AP, and that there exist AP graphs that are not OLAP and OLAP
graphs that are not RAP.

1.3. Previous results

Since every graph containing a spanning AP graph is itself AP, much work
have been done to investigate the ‘simplest’ potential (connected) spanning
subgraphs, i.e., trees, which are 1-connected. Below we recall a number of
previous results, which, as we shall argue in the following section, provide
much insight into the structure of 1 and 2-connected AP graphs, and in
particular into the number of components left after removal of a (minimal)
cutset, and the sizes of these components.

The following is the central result among these. It provides an upper
bound on the degree in AP trees (and thus on the number of components
left in AP 1-connected graph after removing a cut-vertex).

Theorem 1. [3] If a tree T is AP, then its maximum degree is at most 4.
Moreover, every vertex of degree 4 in T is adjacent to a leaf.

In [1] and [2], OLAP and RAP-trees have been completely characterized.
To recall these characterizations, we need the following notations:

• A k-pode Tk(t1, . . . , tk) is a tree of order 1 +
∑k

i=1 ti composed of k
paths of respective orders t1, . . . , tk, connected to a unique node, called
the root of the k-pode (cf. Figure 1a).

• Let a and b be two positive integers. A caterpillar Cat(a, b) is a tree of
order a+ b composed of three paths of order a, b and 2 sharing exactly
one node, called the root of the caterpillar. Cat(a, b) is isomorphic to
T3(a− 1, b− 1, 1) (cf. Figure 1b).

(a) T3(3, 2, 2) (b) Cat(3, 5) (c) B(3, 2, 2, 1)

Figure 1: Examples of special graphs
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Theorem 2. [1] A tree T is OLAP if and only if either T is a path or T
is a caterpillar Cat(a, b) with a and b given in Table 1 or T is the 3-pode
T3(2, 4, 6).

a b a b a b

2 ≡ 1 (mod 2) 5 6, 7, 9, 11, 14, 19 8 11, 19
3 ≡ 1, 2 (mod 3) 6 ≡ 1, 5 (mod 6) 9, 10 11
4 ≡ 1 (mod 2) 7 8, 9, 11, 13, 15 11 12

Table 1: Values of a, b (b ≥ a) for which Cat(a, b) is OLAP

Theorem 3. [2] A tree T is RAP if and only if either T is a path or T
is a caterpillar Cat(a, b) with a and b given in Table 2 or T is the 3-pode
T3(2, 4, 6).

a b a b a b

2 ≡ 1 (mod 2) 4 ≡ 1 (mod 2) 6 7
3 ≡ 1, 2 (mod 3) 5 6, 7, 9, 11, 14, 19 7 8, 9, 11, 13, 15

Table 2: Values of a, b (b ≥ a) for which Cat(a, b) is RAP

In terms of 2-connected graphs, let us consider the ‘simplest’ of such
graphs forming the family of so called balloons. Let b1, . . . , bk be positive
integers, k ≥ 2. A k-balloon B(b1, . . . , bk) is a graph of order 2 +

∑k
i=1 bi

composed of two vertices (called roots) linked by k paths (called branches)
of widths (the numbers of internal vertices) b1, . . . , bk (cf. Figure 1c).

Theorem 4. [2] If a k-balloon is RAP, then k ≤ 5. This bound is tight.

This result has been extended to OLAP k-balloons:

Theorem 5. [4] If a k-balloon is OLAP, then k ≤ 5.

Upper bounds for the size of the smallest branch of a RAP or OLAP
k-balloon have also been given:

Theorem 6. [4] Let B(b1, . . . , bk) be a k-balloon with k ≥ 4 and b1 ≤ · · · ≤
bk. If B(b1, . . . , bk) is OLAP, then b1 ≤ 11. If B(b1, . . . , bk) is RAP, then
b1 ≤ 7.
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2. Size and number of components after removing a cutset of size
at most 2

Observation 7. If G contains a spanning subgraph which is AP (resp. OLAP,
RAP), then G is AP (resp. OLAP, RAP). In particular, if G is traceable
(contains a hamiltonian path), then G is RAP (and thus also OLAP and
AP).

This simple remark suggests the following straightforward generalization.
Suppose that G is an AP (resp. OLAP, RAP) graph containing a 1- or 2-
element cutset S. Then we may construct of it another graph which is the
more AP (resp. OLAP, RAP), simply by replacing each component of G−S
with a path of the corresponding order.

Observation 8. Let G = (V,E) be a graph with a cutest S, and let V1, · · ·Vk
be the components of G[V \S]:

• if |S| = 1 and G is AP (resp. OLAP, RAP), then the k-pode Tk(|V1|, · · · , |Vk|)
is AP (resp. OLAP, RAP) ;

• if |S| = 2 and G is AP (resp. OLAP, RAP), then the k-balloon
B(|V1|, · · · , |Vk|) is AP (resp. OLAP, RAP) ;

Remark 8 and Theorems 1, 2, 3, 4, 5, 6 yield the following summary
concerning all 1 and 2-connected AP graphs.

Corollary 9. Let G be a graph with a cutset S, and let V1, · · ·Vk the com-
ponents of G[V \S] with |V1| ≤ · · · ≤ |Vk|:

• if |S| = 1, then

– if G is AP, then k ≤ 4 and if k = 4, then |V1| = 1 ;

– if G is OLAP (resp. RAP), then k ≤ 3, and if k = 3, then either
(|V1|, |V2|, |V3|) = (1, a − 1, b − 1) with values a and b given in
Table 1 (resp. 2), or (|V1|, |V2|, |V3|) = (2, 4, 6);

• if |S| = 2, then

– if G is OLAP, then k ≤ 5 ;

– if G is OLAP (resp. RAP) and k ∈ {4, 5}, then |V1| ≤ 11 (resp.
≤ 7).
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3. Number of components after removing a cutset of size k ≥ 2 in
AP graphs

In the previous section, we argued that if we remove a cutset of size 1
from a (1-connected) graph G, then the number of remaining components
is at most 4 if G is AP, and 3 if G is OLAP or RAP. Similar result on the
bounded number of components extends to the case of removal of a cutset of
size 2 from a (1- or 2-connected) OLAP or RAP graph, when this number is
at most 5. Surprisingly, the same cannot be generalized for AP graphs.

In this section, we will prove that for any size k ≥ 2 of a cutset, a similar
statement does not hold for AP graphs.

Theorem 10. For any integers k ≥ 2 and c ≥ 2, there exists an AP graph
G = (V,E) of connectivity k such that G[V \S] consists of exactly c compo-
nents for every k-element cutset S of G.

Proof: We shall present a construction of such graph G for every pair of
integers k, c ≥ 2.

We first consider the case when c ≤ k. Let G = (S ′ ∪P ′ ∪S ′′ ∪P ′′, E) be
the graph with 2k vertices constructed as follows:

• G[S ′] and G[S ′′] are both stable sets, each containing c− 1 vertices;

• G[P ′] and G[P ′′] are both paths with k − c+ 1 vertices each;

• every vertex of S ′ ∪ P ′ is adjacent to all the vertices of S ′′ ∪ P ′′.

Clearly, G is an AP graph, since it contains as a subgraph the complete
bipartite graph Kk,k, which is hamiltonian. By the same reason, G has con-
nectivity k and contains exactly two cutsets of size k, i.e., S ′∪P ′ and S ′′∪P ′′.
After removing any of these, we obtain exactly c components, i.e., a path with
k − c+ 1 ≥ 1 vertices and c− 1 isolated vertices.

Now, we assume that c > k.
We denote by Kk(a1, . . . , ac) the graph formed of c+1 cliques, one of size

k, the others of size a1, . . . ac, by adding all the edges between the vertices of
the clique of size k and the vertices of all other cliques (see Figure 2). Clearly
G is k-connected and the vertices of the clique Kk form a unique cutset of
size k in Kk(a1, . . . , ac).

Let G be any graph Kk(a1, . . . , ac) with values a1, . . . , ac chosen (consec-
utively) as follows:
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Figure 2: Graph K2(2, 3, 4)

1. 1 ≤ a1 ≤ . . . ≤ ac;

2. for any i, 1 ≤ i ≤ c, we denote ni = 1 +
∑

1≤j≤i aj;

3. for any i, 1 ≤ i ≤ c− 1, choose ai+1 such that

(a) ∀j, 2 ≤ j ≤ ni, ai+1 ≡ 0 (mod j),
(b) ai+1 ≥ niai.

For example, ai · ni! is a possible value for ai+1.

Let τ = (τ1, . . . , τl) be any decomposition of n = k +
∑

1≤i≤c ai, with
τ1 ≤ . . . ≤ τl. To show that τ is realizable in G we consider two cases.

First case: τl ≥ ac−1.
In that case, τl ≥ nc−2 = 1 +

∑
1≤i≤c−2 ai. Thus, the part (vertex subset)

of size τl may be chosen so that it ‘covers’ all the cliques Kai with i ≤ c− 2,
plus one of the vertices of Kk and possibly some vertices of the cliques Kac−1

and Kac . The remaining graph is induced by the rest of the vertices from
Kk, Kac−1 and Kac , and is obviously traceable.

Second case: τl < ac−1.
For each i, 1 ≤ i ≤ τl, we denote by qi the number of terms of τ having

value i.
We thus have n =

∑
1≤i≤τl i · qi.

Then there exists an integer α, 1 ≤ α ≤ τl, such that α · qα ≥ n
τl

. Thus,

α · qα > n
ac−1

> ac
ac−1
≥ nc−1ac−1

ac−1
= nc−1.

We denote by s the integer such that for all i ≤ s, ai 6≡ 0 (modα) and for
all i > s, ai ≡ 0 (modα). Its existence is guaranteed by property 3a. Note
that s may in particular be equal to 0.

Because for each i > s, ai ≡ 0 (modα), and α · qα > nc−1, we may cover
the cliques Kas+1 , . . . , Kac−1 with parts of size α.
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If s ≥ 2, since as 6≡ 0 (modα), we have α > ns−1 by property 3a. On the
other hand, α ≤ ac. It means that we may choose one part of size α so that
it covers all the cliques Ka1 , . . . , Kas−1 plus one vertex of Kk and possibly
some vertices of Kac .

Thus the remaining graph is induced by

• the vertices of Kac and Kk if s = 0,

• the vertices of Kac , Kk and Ka1 if s = 1,

• the remaining vertices of Kac , k − 1 vertices of Kk and the vertices of
Kas if s ≥ 2.

In every case, such graph is again traceable. 2

Balloons. The previous result (Theorem 10) can be adapted to the special
case of balloons. The benefit from such modification is that it gives (for the
case k = 2) examples of graphs with a linear number of edges (with respect
to n - the order of a graph), contrarily to the examples presented above,
where the number of edges may be quadratic.

Theorem 11. For any k ≥ 1, there exists an AP k-balloon.

Proof: We consider a k-balloon B(b1, . . . , bk) where branches have the same
size as the cliques of Kk(a1, ..., ac) given in the proof of Theorem 10, i.e.,
for b1 ≤ . . . ≤ bk we denote ni = 1 +

∑
1≤j≤i bj, and choose bi as follows:

• b1 ≥ 1;

• for any i ≤ k − 1, choose bi+1 such that:

1. ∀j, 2 ≤ j ≤ ni, bi+1 ≡ 0 (mod j),

2. bi+1 ≥ nibi.

Using the same argument as the one used for Kk(a1, ..., ac), it is easy to
see that such balloon is AP. 2
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4. Size of components

In this section, we will show that, though the number of components after
removing a cutset of size at least 2 from an AP graph may be arbitrarily
large, then the size of these components must grow exponentially with their
number.

Theorem 12. Let G = (V,E) be an AP graph with n vertices, S a cutset of
G of size k, c1, . . . , cl the orders of the components of G[V \S], where l > k
and 1 ≤ c1 ≤ c2 ≤ . . . ≤ cl. Then the values of the sequence (ci)i≥1 grow
exponentially with i.

To prove this theorem, we use Lemmas 13 to 15:

Lemma 13. Let G = (V,E) be a graph with n vertices, S a cutset of G of
size k, c1, . . . , cl the orders of the components of G[V \S], where l > k and
1 ≤ c1 ≤ c2 ≤ . . . ≤ cl.

Let a, q1, . . . , ql, r1, . . . , rl be nonnegative integers such that:

• 2 ≤ a ≤ n− 1;

• for any i, 1 ≤ i ≤ l, ci = qia+ ri with ri < a.

If G is AP, then ∑
1≤i≤l

ri ≤ (k + 1) · (a− 1).

Proof: Let G1, G2, . . . , Gl be the components of G[V \S] of size c1, c2, . . . , cl,
respectively. Consider a decomposition τ = (a, . . . , a, r) of n with r < a, and
any of its realizations in G. Now suppose we remove from G the vertices of all
parts (in the realization) of size a each of which is contained entirely in one of
the subgraphs G1, . . . , Gl. We thus must have at least

∑
1≤i≤k ri + k vertices

in the remaining graph. On the other hand, every part (in the realization)
left in our graph must contain at least one of k vertices of the cutset S or has
size different from a (and there is only one such part in the graph). Therefore,
the remaining graph is induced by at most k · a+ r ≤ k · a+ a− 1 vertices.
Combining the two observations, we obtain that

∑
1≤i≤k ri+k ≤ k ·a+a−1,

and the thesis follows. 2
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Corollary 14. Let G = (V,E) be a graph with n vertices, S a cutset of G
of size k, c1, . . . , cl the orders of the components of G[V \S], where l > k and
1 ≤ c1 ≤ c2 ≤ . . . ≤ cl. If G is AP, then for any i, 2 ≤ i ≤ l,

ci ≥
1

k

∑
1≤j<i

cj.

Proof: For any fixed i ≤ l, let us apply Lemma 13 with a = ci + 1. Then for
all j ≤ i, we have rj = cj. Thus, by Lemma 13,

∑
1≤j<i cj + ci +

∑
i<j≤l rj ≤

(k + 1) · ci. Since
∑

i<j≤l rj ≥ 0, we obtain the thesis. 2

The following lemma completes the proof of Theorem 12:

Lemma 15. If the assumptions of Theorem 12 hold, then:

∀i ≥ 2, ci ≥ (1 +
1

k
)i−2 × c1

k
.

Proof: Consider the sequence (vi)i≥1 defined by v1 = c1 and for all i ≥
2, vi = 1

k

∑
1≤j<i vj. Corollary 14 implies that for any i ≥ 1, ci ≥ vi.

We have v2 = v1
k

= c1
k

and v3 = 1
k
(v1 + v2) = v2 + 1

k
v2 = (1 + 1

k
)v2.

For each integer i ≥ 3, vi+1 = 1
k

∑
1≤j≤i vj = 1

k
(vi+

∑
1≤j≤i−1 vj) = 1

k
vi+vi =

(1 + 1
k
)vi.

Thus, by induction, we have vi+1 = (1 + 1
k
)i−1v2 = (1 + 1

k
)i−1 c1

k
. 2

Note that, even if the lower bound given in the proof of Theorem 12 is
exponential, it remains a large gap between this bound and the order of the
example used to prove Theorem 10 (2nd case). Thus, it would be interesting
to find smaller examples or to improve the lower bound.
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