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Abstract

A graph G = (V,E) is arbitrarily partitionable if for any sequence τ of positive integers adding
up to |V |, there is a sequence of vertex-disjoint subsets of V whose orders are given by τ , and which
induce connected subgraphs. Such graph models, e.g., a computer network which may be arbitrarily
partitioned into connected subnetworks. In this paper we study the structure of such graphs and
prove that unlike in some related problems, arbitrarily partitionable graphs may have arbitrarily
many components after removing a cutset of a given size ≥ 2. The sizes of these components grow
exponentially, though.

1 Introduction

1.1 Arbitrarily partitionable graphs

Consider a computer network which we want to partition into disjoint, but connected, subnetworks
of given sizes. If it is always feasible regardless of the sizes of the subnetworks, then the underlying
graph, where computers are represented by vertices and links between two computers by edges, is
arbitrarily partitionable.

More formally, let n, τ1, . . . , τk be positive integers such that τ1+. . .+τk = n. Then τ = (τ1, . . . , τk)
is called a decomposition of n.

Let G = (V,E) be a graph of order n and S a subset of V . By G[S] we denote the subgraph of
G induced by S. Let τ = (τ1, . . . , τk) be a decomposition of n. The graph G is called τ -partitionable
iff there exists a partition of V : V1, . . . , Vk such that for each i, 1 ≤ i ≤ k,

• |Vi| = τi,

• G[Vi] is connected.

In this case, τ is said to be realizable in G and (V1, . . . , Vk) is a realization of τ in G.
A graph G of order n is arbitrarily partitionable (AP for short) iff for each decomposition τ of n,

G is τ -partitionable.
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1.2 On-line and recursive partitions

The problem of arbitrary partitionability gave rise to a list of natural stronger properties. Suppose
for instance that the whole list of sizes of subnetworks is initially not known, but its elements are
requested on-line, i.e., one by one. Using the graph modeling, this means that upon (any) request
we must be able to provide a connected subgraph of a given order such that the remaining part of
the graph retains the same feature. Graphs which have this property for any sequence of requests
are called on-line arbitrarily partitionable (or OLAP for short).

In other words, a connected graph G = (V,E) of order n is on-line arbitrarily partitionable iff for
each integer 1 ≤ λ ≤ n− 1, there exists a subset Vλ of V such that

• |Vλ| = λ,

• G[Vλ] is connected,

• G[V \Vλ] is OLAP,

see [HTW07] for details.
Another family of arbitrarily partitionable graphs has been considered in [BGW11]. These were

the recursively arbitrarily partitionable graphs. In this case we want not only to provide connected
subgraphs, but also require so that these subgraphs are themselves partitionable.

A graph G = (V,E) of order n is called recursively arbitrarily partitionable (RAP for short) iff

• G = K1 or

• G is connected and for each decomposition τ = (τ1, . . . , τk) of n, k ≥ 2, there exists a partition
of V : V1, . . . , Vk such that for all i, 1 ≤ i ≤ k,

– |Vi| = τi,

– G[Vi] is RAP.

In [BGW11], it has been shown that for every graph G, G is RAP ⇒ G is OLAP ⇒ G is AP, and
that there exist AP graphs that are not OLAP and OLAP graphs that are not RAP.

1.3 Previous results

Since every graph containing a spanning AP graph is itself AP, much work have been done to in-
vestigate the ‘simplest’ potential (connected) spanning subgraphs, i.e., trees, which are 1-connected.
Below we recall a number of previous results, which, as we shall argue in the following section, provide
much insight into the structure of 1 and 2-connected AP graphs, and in particular into the number
of components left after removal of a (minimal) cutset, and the sizes of these components.

The following is the central result among these. It provides an upper bound on the degree in
AP trees (and thus on the number of components left in AP 1-connected graph after removing a
cut-vertex).

Theorem 1 [BF06] If a tree T is AP, then its maximum degree is 4. Moreover, every vertex of
degree 4 in T is adjacent to a leaf.

In [HTW07] and [BGW11], OLAP and RAP-trees have been completely characterized. To recall
these characterizations, we need the following notations:

• A k-pode Tk(t1, . . . , tk) is a tree of order 1 +
∑k
i=1 ti composed of k paths of respective orders

t1, . . . , tk, connected to a unique node, called the root of the k-pode (cf. Figure 1a).

• Let a and b be two positive integers. A caterpillar Cat(a, b) is a tree of order a + b composed
of three paths of order a, b and 2 sharing exactly one node, called the root of the caterpillar.
Cat(a, b) is isomorphic to T3(a− 1, b− 1, 1) (cf. Figure 1b).
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(a) 3-pode T3(3, 2, 2) (b) Cat(3, 5) (c) B(3, 2, 2, 1)

Figure 1: Examples of special graphs

Theorem 2 [HTW07] A tree T is OLAP if and only if either T is a path or T is a caterpillar
Cat(a, b) with a and b given in Table 1 or T is the 3-pode T3(2, 4, 6).

a b

2, 4 ≡ 1 (mod 2)

3 ≡ 1, 2 (mod 3)

5 6, 7, 9, 11, 14, 19

6 ≡ 1, 5 (mod 6)

a b

7 8, 9, 11, 13, 15

8 11, 19

9, 10 11

11 12

Table 1: Values of a, b (b ≥ a) for which Cat(a, b) is OLAP

Theorem 3 [BGW11] A tree T is RAP if and only if either T is a path or T is a caterpillar Cat(a, b)
with a and b given in Table 2 or T is the 3-pode T3(2, 4, 6).

a b

2, 4 ≡ 1 (mod 2)

3 ≡ 1, 2 (mod 3)

5 6, 7, 9, 11, 14, 19

6 7

7 8, 9, 11, 13, 15

Table 2: Values of a, b (b ≥ a) for which Cat(a, b) is RAP

In terms of 2-connected graphs, let us consider the ‘simplest’ of such graphs forming the family
of so called balloons. Let b1, . . . , bk be positive integers, k ≥ 2. A k-balloon B(b1, . . . , bk) is a graph

of order 2 +
∑k
i=1 bi composed of two vertices (called roots) linked by k paths (called branches) of

widths (the numbers of internal vertices) b1, . . . , bk (cf. Figure 1c).

Theorem 4 [BGW11] If a k-balloon is RAP, then k ≤ 5. This bound is tight.

This result has been extended to OLAP k-balloons:

Theorem 5 [BBFP12] If a k-balloon is OLAP, then k ≤ 5.

Upper bounds for the size of the smallest branch of a RAP or OLAP k-balloon have also been
given:
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Theorem 6 [BBFP12] Let B(b1, . . . , bk) be a k-balloon with k ≥ 4 and b1 ≤ · · · ≤ bk. If B(b1, . . . , bk)
is OLAP, then b1 ≤ 11. If B(b1, . . . , bk) is RAP, then b1 ≤ 7.

2 Size and number of components after removing a cutset of
size at most 2

Remark 7 If G contains a spanning subgraph which is AP (resp. OLAP, RAP), then G is AP (resp.
OLAP, RAP). In particular, if G is traceable (contains a hamiltonian path), then G is RAP (and
thus also OLAP and AP).

This simple remark suggests the following straightforward generalization. Suppose that G is an
AP (resp. OLAP, RAP) graph containing a 1- or 2-element cutset S. Then we may construct of it
another graph which is the more AP (resp. OLAP, RAP), simply by replacing each component of
G− S with a path of the corresponding order.

Remark 8 Let G = (V,E) be a graph with a cutest S, and let V1, · · ·Vk be the components of G[V \S]:

• if |S| = 1 and G is AP (resp. OLAP, RAP), then the k-pode Tk(|V1|, · · · , |Vk|) is AP (resp.
OLAP, RAP) ;

• if |S| = 2 and G is AP (resp. OLAP, RAP), then the k-balloon B(|V1|, · · · , |Vk|) is AP (resp.
OLAP, RAP) ;

Remark 8 and Theorems 1, 2, 3, 4, 5, 6 yield the following summary concerning all 1 and 2-
connected AP graphs.

Corollary 9 Let G be a graph with a cutset S, and let V1, · · ·Vk the components of G[V \S] with
|V1| ≤ · · · ≤ |Vk|:
• if |S| = 1, then

– if G is AP, then k ≤ 4 and if k = 4, then |V1| = 1 ;

– if G is OLAP (resp. RAP), then k ≤ 3, and if k = 3, then either (|V1|, |V2|, |V3|) =
(1, a−1, b−1) with values a and b given in Table 1 (resp. 2), or (|V1|, |V2|, |V3|) = (2, 4, 6);

• if |S| = 2, then

– if G is OLAP, then k ≤ 5 ;

– if G is OLAP (resp. RAP) and k ∈ {4, 5}, then |V1| ≤ 11 (resp. ≤ 7).

3 Number of components after removing a cutset of size k ≥ 2
in AP graphs

In the previous section, we argued that if we remove a cutset of size 1 from a (1-connected) graph
G, then the number of remaining components is at most 4 if G is AP, and 3 if G is OLAP or RAP.
Similar result on the bounded number of components extends to the case of removal of a cutset of
size 2 from a (1- or 2-connected) OLAP or RAP graph, when this number is at most 5. Surprisingly,
the same cannot be generalized for AP graphs.

In this section, we will prove that for any size k ≥ 2 of a cutset, a similar statement does not hold
for AP graphs.

Theorem 10 For any integers k ≥ 2 and c ≥ 2, there exists an AP graph G = (V,E) of connectivity
k such that G[V \S] consists of exactly c components for every k-element cutset S of G.
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Proof.
We shall present a construction of such graph G for every pair of integers k, c ≥ 2.
We first consider the case when c ≤ k. Let G = (S′ ∪ P ′ ∪ S′′ ∪ P ′′, E) be the graph with 2k

vertices constructed as follows:

• G[S′] and G[S′′] are both stable sets, each containing c− 1 vertices;

• G[P ′] and G[P ′′] are both paths with k − c+ 1 vertices each;

• every vertex of S′ ∪ P ′ is adjacent to all the vertices of S′′ ∪ P ′′.
Clearly, G is an AP graph, since it contains as a subgraph the complete bipartite graph Kk,k, which
is hamiltonian. By the same reason, G has connectivity k and contains exactly two cutsets of size k,
i.e., S′ ∪ P ′ and S′′ ∪ P ′′. After removing any of these, we obtain exactly c components, i.e., a path
with k − c+ 1 ≥ 1 vertices and c− 1 isolated vertices.

Now, we assume that c > k.
We denote by Kk(a1, . . . , ac) the graph formed of c + 1 cliques, one of size k, the others of size

a1, . . . ac, by adding all the edges between the vertices of the clique of size k and the vertices of all
other cliques (see Figure 2). Clearly G is k-connected and the vertices of the clique Kk form a unique
cutset of size k in Kk(a1, . . . , ac).

Figure 2: Graph K2(2, 3, 4)

Let G be any graph Kk(a1, . . . , ac) with values a1, . . . , ac chosen (consecutively) as follows:

1. 1 ≤ a1 ≤ . . . ≤ ac;
2. ∀i, 1 ≤ i ≤ c, we denote ni = 1 +

∑
1≤j≤i aj ;

3. ∀i, 1 ≤ i ≤ c− 1, choose ai+1 such that

(a) ∀j, 2 ≤ j ≤ ni, ai+1 ≡ 0 (mod j),

(b) ai+1 ≥ niai.
For example, ai · ni! is a possible value for ai+1.

Let τ = (τ1, . . . , τl) be any decomposition of n = k+
∑

1≤i≤c ai, with τ1 ≤ . . . ≤ τl. To show that
τ is realizable in G we consider two cases.

First case: τl ≥ ac−1.
In that case, τl ≥ nc−2 = 1+

∑
1≤i≤c−2 ai. Thus, the part (vertex subset) of size τl may be chosen

so that it ‘covers’ all the cliques Kai with i ≤ c− 2, plus one of the vertices of Kk and possibly some
vertices of the cliques Kac−1

and Kac . The remaining graph is induced by the rest of the vertices
from Kk, Kac−1

and Kac , and is obviously traceable.

Second case: τl < ac−1.
For each i, 1 ≤ i ≤ τl, we denote by qi the number of terms of τ having value i.
We thus have n =

∑
1≤i≤τl i · qi.
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Then there exists an integer α, 1 ≤ α ≤ τl, such that α · qα ≥ n
τl

. Thus, α · qα > n
ac−1

> ac
ac−1

≥
nc−1ac−1

ac−1
= nc−1.

We denote by s the index such that for all i ≤ s, ai 6≡ 0 (modα) and for all i > s, ai ≡ 0 (modα).
Its existence is guaranteed by property 3a. Note that s may in particular be equal to 0.

Since as 6≡ 0 (modα), we have α > ns−1 by property 3a. On the other hand, α ≤ ac. It means
that we may choose one part of size α so that it covers all the cliques Ka1 , . . . ,Kas−1

plus one vertex
of Kk and possibly some vertices of Kac .

Because ∀i > s, ai ≡ 0 (modα), and α ·qα > nc−1, we may cover also the cliques Kas+1 , . . . ,Kac−1

with parts of size α.
Thus the remaining graph is formed by Kas , the remaining vertices of Kac and k − 1 vertices of

Kk. Such graph is again traceable. 2

Balloons The previous result (Theorem 10) can be adapted to the special case of balloons. The
benefit from such modification is that it gives (for the case k = 2) examples of graphs with a linear
number of edges (with respect to n - the order of a graph), contrarily to the examples presented
above, where the number of edges may be quadratic.

Theorem 11 ∀k ≥ 1, there exists an AP k-balloon.

Proof. We consider a k-balloon B(b1, . . . , bk) where branches have the same size as the cliques
of Kk(a1, ..., ac) given in the proof of Theorem 10, i.e.,
for b1 ≤ . . . ≤ bk we denote ni = 1 +

∑
1≤j≤i bj , and choose bi as follows:

• b1 ≥ 1;

• ∀i ≤ k − 1, choose bi+1 such that:

1. ∀j, 2 ≤ j ≤ ni, bi+1 ≡ 0 (mod j),

2. bi+1 ≥ nibi.
Using the same argument as the one used for Kk(a1, ..., ac), it is easy to see that such balloon is

AP. 2

4 Size of components

In this section, we will show that, though the number of components after removing a cutset of size
at least 2 from an AP graph may be arbitrarily large, then the size of these components must grow
exponentially with their number.

Theorem 12 Let G = (V,E) be an AP graph with n vertices, S a cutset of G of size k, c1, . . . , cl
the orders of the components of G[V \S], where l > k and 1 ≤ c1 ≤ c2 ≤ . . . ≤ cl. Then the values of
the sequence (ci)i≥1 grow exponentially with i.

To prove this theorem, we use Lemmas 13 to 15:

Lemma 13 Let G = (V,E) be a graph with n vertices, S a cutset of G of size k, c1, . . . , cl the orders
of the components of G[V \S], where l > k and 1 ≤ c1 ≤ c2 ≤ . . . ≤ cl.

Let a, q1, . . . , ql, r1, . . . , rl be nonnegative integers such that:

• 2 ≤ a ≤ n− 1;

• ∀i, 1 ≤ i ≤ l, ci = qia+ ri with ri < a.
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If G is AP, then ∑
1≤i≤l

ri ≤ (k + 1) · (a− 1).

Proof.
Let G1, G2, . . . , Gl be the components of G[V \S] of size c1, c2, . . . , cl, respectively. Consider a

decomposition τ = (a, . . . , a, r) of n with r < a, and any of its realizations in G. Now suppose
we remove from G the vertices of all parts (in the realization) of size a each of which is contained
entirely in one of the subgraphs G1, . . . , Gl. We thus must have at least

∑
1≤i≤k ri+k vertices in the

remaining graph. On the other hand, every part (in the realization) left in our graph must contain
at least one of k vertices of the cutset S or has size different from a (and there is only one such part
in the graph). Therefore, the remaining graph is induced by at most k · a+ r ≤ k · a+ a− 1 vertices.
Combining the two observations, we obtain that

∑
1≤i≤k ri+k ≤ k ·a+a−1, and the thesis follows. 2

Corollary 14 Let G = (V,E) be a graph with n vertices, S a cutset of G of size k, c1, . . . , cl the
orders of the components of G[V \S], where l > k and 1 ≤ c1 ≤ c2 ≤ . . . ≤ cl. If G is AP, then
∀i, 2 ≤ i ≤ l,

ci ≥
1

k

∑
1≤j<i

cj .

Proof. For any fixed i ≤ l, let us apply Lemma 13 with a = ci + 1. Then for all j ≤ i, we have
rj = cj . Thus, by Lemma 13,

∑
1≤j<i cj + ci +

∑
i<j≤l rj ≤ (k + 1) · ci. Since

∑
i<j≤l rj ≥ 0, we

obtain the thesis. 2

The following lemma completes the proof of Theorem 12:

Lemma 15 If the assumptions of Theorem 12 hold, then:

∀i ≥ 1, ci ≥ (1 +
1

k
)i−2 × c1

k
.

Proof. Consider the sequence (vi)i≥1 defined by v1 = c1 and ∀i ≥ 2, vi = 1
k

∑
1≤j<i vj . Corol-

lary 14 implies that ∀i, i ≥ 1, ci ≥ vi.
We have v2 = v1

k = c1
k and v3 = 1

k (v1 + v2) = v2 + 1
kv2 = (1 + 1

k )v2.
For each integer i ≥ 3, vi+1 = 1

k

∑
1≤j≤i vj = 1

k (vi +
∑

1≤j≤i−1 vj) = 1
kvi + vi = (1 + 1

k )vi.

Thus, by induction, we have vi+1 = (1 + 1
k )i−1v2 = (1 + 1

k )i−1 c1k . 2
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