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Abstract

A graph G = (V,E) is arbitrarily partitionable if for any sequence τ of positive integers adding
up to |V |, there is a sequence of vertex-disjoint subsets of V whose orders are given by τ , and which
induce connected subgraphs. In this paper, we focus on the number and the sizes of the components
of an arbitrarily partitionable graph after removing a cutset.

1 Introduction

1.1 Arbitrarily partitionable graphs

Consider a network of computers that you want to separate into disjoint subnetworks of given sizes.
If you want to assume that the sizes of the subnetworks may be chosen completely arbitrarily, then
the underlying graph, where computers are represented by vertices and links between two computers
by edges, must be arbitrarily partitionable.

More formaly, let n, τ1, . . . , τk be positive integers such that τ1 + . . .+ τk = n. τ = (τ1, . . . , τk) is
called a decomposition of n.

Let G = (V,E) be a graph of order n and S a subset of V . G[S] denotes the subgraph of G induced
by S. Let (τ1, . . . , τk) be a decomposition of n. G is τ -partitionable iff there exists a partition of V :
V1, . . . , Vk such that for each i, 1 ≤ i ≤ k
• |Vi| = τi

• G[Vi] is connected

In that case, τ is said to be realizable in G and (V1, . . . , Vk) is a realization of τ in G.
A graph G = (V,E) of order n is arbitrarily partitionable (AP for short) iff for each decomposition

τ of n, G is τ -partitionable.
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1.2 On-line and recursive versions

Consider now that the sizes of the subnetworks are requested one by one instead of all together.
Using the graph modeling, that means that you must provide a connected subgraph of given order
and assume that the rest of the graph remains ”on-line” partitionable or is empty. Graphs which
have this property for any sequence of requests are called on-line arbitrarily partitionable.

The following characterization of such graphs has been given in [HTW07]:

A connected graph G = (V,E) of order n is on-line arbitrarily partitionable (OLAP for short) iff
for each integer 1 ≤ λ ≤ n− 1, there exists a subset Vλ of V such that

• |Vλ| = λ,

• G[Vλ] is connected,

• G[V \Vλ] is OL-AVD.

Another family of arbitrarily partitionable graphs has also been considered in [BGW11]: recur-
sively arbitrarily partitionable graphs. In that case, we want not only to provide connected subgraphs,
but also that these subgraphs are themselves partitionable.

A graph G = (V,E) of order n is recursively arbitrarily partitionable (RAP for short) iff

• G = K1 or

• G is connected and for each decomposition τ = (τ1, . . . , τk) of n, k ≥ 2, there exists a partition
of V : V1, . . . , Vk such that for all i, 1 ≤ i ≤ k,

– |Vi| = τi,

– G[Vi] is RAP.

In [BGW11], it has been shown that for all graph G, G is AP ⇒ G is OLAP ⇒ G is RAP and
that it exists AP graphs that are not OLAP and OLAP graphs that are not RAP.

1.3 Previous results

Most of the papers on AP, OLAP and RAP graphs consider quite simple classes of graphs like trees
or a class of 2-connected graphs called balloons. Among the previous results, we will focus on those
which help us to determine how many components may be obtained after removing a cutest and the
sizes of these components.

In [BF06], the following result gives an upper bound on the degree of AP trees:

Theorem 1 [BF06] If a tree T is AP, then its maximum degree is 4. Moreover, every vertex of
degree 4 in T is adjacent to a leaf.

In [HTW07] and [BGW11], OLAP and RAP-trees have been completely characterized. For that,
we need the following notations:

• A k-pode Tk(t1, . . . , tk) is a tree of order 1 +
∑k
i=1 ti composed by k paths of respective orders

t1, . . . , tk, connected to a unique node, called the root of the k-pode (cf. Figure 1a).

• Let a and b be two positive integers. A caterpillar Cat(a, b) is a tree of order a+ b, composed
by three paths of order a, b and 2, sharing exactly one node, called the root of the caterpillar.
Cat(a, b) is isomorphic to T3(a− 1, b− 1, 1) (cf. Figure 1b).
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(a) 3-pode T3(3, 2, 2) (b) Cat(3, 5) (c) B(3, 2, 2, 1)

Figure 1: Examples of Graphs

Theorem 2 [HTW07] A tree T is OLAP if and only if either T is a path or T is a caterpillar
Cat(a, b) with a and b given in Table 1 or T is the 3-pode T3(2, 4, 6).

a b

2, 4 ≡ 1 (mod 2)

3 ≡ 1, 2 (mod 3)

5 6, 7, 9, 11, 14, 19

6 ≡ 1, 5 (mod 6)

a b

7 8, 9, 11, 13, 15

8 11, 19

9, 10 11

11 12

Table 1: Values a, b (b ≥ a), such that Cat(a, b) is OLAP

Theorem 3 [BGW11] A tree T is RAP if and only if either T is a path or T is a caterpillar Cat(a, b)
with a and b given in Table 2 or T is the 3-pode T3(2, 4, 6).

a b

2, 4 ≡ 1 (mod 2)

3 ≡ 1, 2 (mod 3)

5 6, 7, 9, 11, 14, 19

6 7

7 8, 9, 11, 13, 15

Table 2: Values a, b (b ≥ a), such that Cat(a, b) is RAP

We also have some results on the class of 2-connected graphs called k-balloons. Let b1, . . . , bk be
positive integers. A k-balloon B(b1, . . . , bk) is a graph of order 2 +

∑k
i=1 bi composed by two vertices

(called roots) linked by k paths (called branches) of widths (the number of internal vertices) b1, . . . , bk
(cf. Figure 1c).

Theorem 4 [BGW11] If a k-balloon is RAP, then k ≤ 5. This bound is tight.

This result has been extended to OLAP-k-balloons:

Theorem 5 [BBFP12] If a k-balloon is OLAP, then k ≤ 5.

Upper bounds for the size of the smallest branch of a RAP or OLAP k-balloon have also been
given:
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Theorem 6 [BBFP12] Let B(b1, . . . , bk) be a k-balloon, with k ≥ 4 and b1 ≤ · · · ≤ bk. If B(b1, . . . , bk)
is OLAP, then b1 ≤ 11. If B(b1, . . . , bk) is RAP, then b1 ≤ 7.

2 Size and number of components after removing a cutset of
size at most 2

Results given in subsection 1.3 allow us to easily deduce some bounds on the number of components
and their sizes, after removing a custet of size 1 or 2, using the following remarks:

Remark 7 If G contains a spanning subgraph which is AP (resp. OLAP, RAP), then G is AP (resp.
OLAP, RAP). In particular, if G is traceable (containing an hamiltonian path), then G is RAP (and
then OLAP and AP).

Remark 8 Let G = (V,E) be a graph with a cutest S and let V1, · · ·Vk be the connected components
of G[V \S]:

• if |S| = 1 and G is AP (resp. OLAP, RAP), then the k-pode Tk(|V1|, · · · , |Vk|) is AP (resp.
OLAP, RAP) ;

• if |S| = 2 and G is AP (resp. OLAP, RAP), then the k-balloon B(|V1|, · · · , |Vk|) is AP (resp.
OLAP, RAP) ;

Using Remark 8 and Theorems 1, 2, 3, 4, 5, 6, we obtain the following results:

Corollary 9 Let G be a graph with a cutset S, and V1, · · ·Vk the connected components of G[V \S],
with |V1| ≤ · · · ≤ |Vk|:
• if |S| = 1 then

– if G is AP, then k ≤ 4 and if k = 4, then |V1| = 1 ;

– if G is OLAP (resp. RAP), then k ≤ 3, and if k = 3, then either (|V1|, |V2|, |V3|) = (1, a, b),
with values a and b taken in Table 1 (resp. 2) , or (|V1|, |V2|, |V3|) = (2, 4, 6) ;

• if |S| = 2 then

– if G is OLAP, then k ≤ 5 ;

– if G is OLAP (resp. RAP) and k ∈ {4, 5} then |V1| ≤ 11 (resp. ≤ 7).

3 Number of components after removing a cutset of size k ≥ 2
in AP graphs

In the previous section, we have proved that if we remove a cutset of size 1 from a graph G, then
the number of the remaining connected components is at most 4 if G is AP, and 3 if G is OLAP.
Similarly, if we remove a cutset of size 2 from an OLAP graph, then the number of components is at
most 5.

In this section, we will prove that for any k ≥ 2, a similar statement does not hold for AP graphs.

Theorem 10 For any integers k ≥ 2 and c ≥ 2, there exists an AP graph G = (V,E) with a cutest
S of size k such that the number of connected components of G[V \S] is c.

Proof.
The proof of this theorem is based on examples of AP graphs having a cutest S of size k and such

that the number of the remaining connected components after deleting vertices of S is c.
We first consider the case where c ≤ k. Let G = (S1 ∪ P ∪ S2, E) be the graph with 2k vertices

constructed as follows:
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• G[S1] is a stable set with c− 1 vertices ;

• G[P ] is a path with k − c+ 1 vertices ;

• G[S2] is a stable set with k vertices ;

• every vertex of S1 or P is adjacent to all the vertices of S2.

Clearly, S2 is a cutest of size k. The components of G[V \S2] are the c − 1 vertices of S1 plus the
path induced by P . Because G admits the complete bipartite graph Kk,k has partial graph and Kk,k

is hamiltonian, then G is AP.

Now, we assume that c > k.
We denote by Kk(a1, . . . , ac) the graph formed by c + 1 cliques, one of size k, the others of size

a1, . . . ac. Moreover, we add all the edges between the vertices of the clique of size k and the vertices
of the other cliques (see Figure 2). Clearly, the clique Kk is a cutset of Kk(a1, . . . , ac).

Figure 2: Graph K2(2, 3, 4)

We consider the case of the graph Kk(a1, . . . , ac) where values a1, . . . , ac are chosen as follows:

1. 1 ≤ a1 ≤ . . . ≤ ac
2. ∀i, 1 ≤ i ≤ c, we denote ni = i+

∑
1≤j≤i aj .

3. ∀i, 1 ≤ i ≤ c− 1, choose ai+1 such that

(a) ∀j, 2 ≤ j ≤ ni, ai+1 ≡ 0 (mod j)

(b) ai+1 ≥ niai
For example, ai · ni! is a possible value for ai+1.

Let τ = (τ1, . . . , τl) be a decomposition of n = k +
∑

1≤i≤c ai, with τ1 ≤ . . . ≤ τl. We consider
two cases.

First case: τl ≥ ac−1
In that case, τl ≥ nc−2 = c − 2 +

∑
1≤i≤c−2 ai ≥ k − 1 +

∑
1≤i≤c−2 ai. Thus the part of size τl

may cover all the cliques Kai with i ≤ c− 2, plus k − 1 vertices of Kk and eventually some vertices
of the cliques Kac−1

and Kac . The remaining graph is formed by at most two cliques joined by the
last vertex of Kk and is traceable.

Second case: τl < ac−1
For each i, 1 ≤ i ≤ τl, we denote by qi the number of terms of τ having value i.
We have n =

∑
1≤i≤τl i · qi

Then there exists an integer α, 1 ≤ α ≤ τl, such that α · qα ≥ n
τl

. Thus, α · qα > n
ac−1

≥ nc

ac−1
≥

nc−1ac−1

ac−1
= nc−1.

We denote by s the index such that for all i ≤ s, ai 6≡ 0 (modα) and for all i > s, ai ≡ 0 (modα).
Note that s may be equal to 0.
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Because as 6≡ 0 (modα), we have α > ns−1 by property 3a of the definition of Kk(a1, . . . , ac).
That means that one part of size α may cover all the cliques Ka1 , . . . ,Kas−1

plus a vertex of Kk and
maybe some vertices of Kas .

Because ∀i > s, ai ≡ 0 (modα), and α ·qα > nc−1, we may cover also the cliques Kas+1
, . . . ,Kac−1

with parts of size α.
Thus the remaining graph is formed by Kac , the remaining vertices of Kas and k − 1 vertices of

Kk. This graph is traceable. 2

Balloons The previous result (Theorem 10) can be adapted to the special case of balloons. The
interest of this result is that it gives (for the case k = 2) an example of graphs with a linear number
of edges, contrarily to the example built for the proof of Theorem 10 where the number of edges may
be quadratic.

Theorem 11 ∀k ≥ 1, there exists a k-balloon AP.

Proof. We consider a k-balloon B(b1, . . . , bk) where branches have the same size than the cliques
of Kk(a1, ..., ac) given in the proof of Theorem 10:
b1 ≤ . . . ≤ bk and we denote ni = 1 +

∑
1≤j≤i bj .

B(b1, . . . , bk) is constructed as follow:

• b1 ≥ 1

• ∀i ≤ k − 1, choose bi+1 such that

1. ∀j, 2 ≤ j ≤ ni, bi+1 ≡ 0 (mod j)

2. bi+1 ≥ nibi
Using the same arguments than those used for Kk(a1, ..., ac), it is easy to see that such a balloon

is AP. 2

4 Size of components

In this section, we will show that, if the number of connected components after removing a cutset
of size at least 2, may be as large as wanted, the size of these components grows exponentially with
their number.

Theorem 12 Let G = (V,E) be a graph with n vertices, S a cutset of G of size k, c1, . . . , cl the
orders of the connected components of GV \S, such that l > k and 1 ≤ c1 ≤ c2 ≤ . . . ≤ cl. Then the
values of the sequence (ci)i≥1 grow exponentially with i.

To prove this theorem, we use Lemma 13 to 15:

Lemma 13 Let G = (V,E) be a graph with n vertices, S a cutset of G of size k, c1, . . . , cl the orders
of the connected components of GV \S, such that l > k and 1 ≤ c1 ≤ c2 ≤ . . . ≤ cl.

Let a, q1, . . . , ql, r1, . . . , rl be integers such that

• 2 ≤ a ≤ n− 1

• ∀i, 1 ≤ i ≤ l, ci = qia+ ri with ri < a

If G is AP, then ∑
1≤i≤l

ri ≤ (k + 1) · (a− 1)
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Proof.
Observe that, by the assumptions we made, G is a partial graph of Kk(c1, . . . , cl). If a decom-

position τ = (τ1, . . . , τp) of n is realizable in G, and V1, . . . , Vp is a realization of τ in G, then τ is
realizable in Kk(c1, . . . , cl) and V1, . . . , Vp is a realization of τ in Kk(c1, . . . , cl). Moreover, if G is AP,
then Kk(c1, . . . , cl) is AP.

Hence, to prove Lemma 13, we may consider only graphs of the form Kk(c1, . . . , cl).
First, we remark that for any decomposition τ of n = k +

∑
1≤i≤l ci, there exists a realization of

τ in Kk(c1, . . . , cl) where the vertices of the clique Kk are covered by the greatest parts of τ (note
that one part may contain more than one vertex of the clique Kk). In fact, suppose that we have
a part V1 which does not cover any vertex of Kk and a vertex v in Kk covered by a part V2 such
that |V2| < |V1|. Then we may always exchange |V1| − |V2| vertices from V1 to V2 inside the clique
containing V1.

We consider now the decomposition τ = (a, . . . , a, r) of n with r < a and its realization in
Kk(c1, . . . , cl). Because a > r, we may suppose that all the parts covering the vertices of Kk are of
size a. The cliques Kc1 , . . . ,Kclare also mainly covered by parts of size a. The remaining vertices
must be covered by the at most k parts of size a which cover also the k vertices of Kk, and the part
of size r. Because r ≤ a− 1, we obtain

∑
1≤i≤k ri + k ≤ k · a+ a− 1. 2

Corollary 14 Let G = (V,E) be a graph with n vertices, S a cutset of G of size k, c1, . . . , cl the
orders of the connected components of GV \S, such that l > k and 1 ≤ c1 ≤ c2 ≤ . . . ≤ cl. If G is AP,
then ∀i, 1 ≤ i ≤ k,

ci ≥
1

k

∑
1≤j<i

cj

Proof. We consider a = ci + 1. In that case, for all j ≤ i, we have rj = cj . Thus, Lemma 13
implies

∑
i<j≤k rj + ci +

∑
1≤j<i rj ≤ (k + 1) · ci. Because

∑
i<j≤k rj > 0, we obtain the result. 2

The following lemma completes the proof of Theorem 12

Lemma 15

∀i ≥ 1, ci ≥ (1 +
1

k
)i−2 × c1

k

Proof. Consider the sequence (vi)i≥1 defined by v1 = c1 and ∀i ≥ 2, vi = 1
k

∑
1≤j<i vj . Corol-

lary 14 implies that ∀i, i ≥ 1, ci ≥ vi.
We have v2 = v1

k = c1
k and v3 = 1

k (v1 + v2) = v2 + 1
kv2 = (1 + 1

k )v2.
For all value i ≥ 3, vi+1 = 1

k

∑
1≤j≤i vj = 1

k (vi +
∑

1≤j≤i−1 vj) = 1
kvi + vi = (1 + 1

k )vi.

Thus, by induction, we have vi+1 = (1 + 1
k )i−1v2 = (1 + 1

k )i−1 c1k . 2
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