Structure of Arbitrarily Partitionable Graphs with cutset of size \mathbf{k}
 Olivier Baudon, Florent Foucaud, Jakub Przybylo, Mariusz Woźniak

To cite this version:

Olivier Baudon, Florent Foucaud, Jakub Przybylo, Mariusz Woźniak. Structure of Arbitrarily Partitionable Graphs with cutset of size k. 2012. hal-00690253v2

HAL Id: hal-00690253
https://hal.science/hal-00690253v2
Preprint submitted on 27 Apr 2012 (v2), last revised 26 Apr 2013 (v9)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Structure of Arbitrarily Partitionable Graphs with cutset of size k^{*}

Olivier Baudon ${ }^{a}$, Florent Foucaud ${ }^{a}$, Jakub Przybyło ${ }^{b}$, Mariusz Woźniak ${ }^{b},^{\dagger}$
${ }^{a}$ LaBRI, Université de Bordeaux
351, cours de la Libération, 33405 Talence Cedex, France
${ }^{b}$ Faculty of Applied Mathematics, AGH University of Science and Technology Al. Mickiewicza 30, 30-059 Kraków, Poland

April 27, 2012

Abstract

A graph $G=(V, E)$ is arbitrarily partitionable if for any sequence τ of positive integers adding up to $|V|$, there is a sequence of vertex-disjoint subsets of V whose orders are given by τ, and which induce connected subgraphs. In this paper, we focus on the number and the sizes of the components of an arbitrarily partitionable graph after removing a cutset.

1 Introduction

1.1 Arbitrarily partitionable graphs

Consider a network of computers that you want to separate into disjoint subnetworks of given sizes. If you want to assume that the sizes of the subnetworks may be chosen completely arbitrarily, then the underlying graph, where computers are represented by vertices and links between two computers by edges, must be arbitrarily partitionable.

More formaly, let $\mathrm{n}, \tau_{1}, \ldots, \tau_{k}$ be positive integers such that $\tau_{1}+\ldots+\tau_{k}=n . \tau=\left(\tau_{1}, \ldots, \tau_{k}\right)$ is called a decomposition of n.

Let $G=(V, E)$ be a graph of order n and S a subset of $V . G[S]$ denotes the subgraph of G induced by S. Let $\left(\tau_{1}, \ldots, \tau_{k}\right)$ be a decomposition of $n . G$ is τ-partitionable iff there exists a partition of V : V_{1}, \ldots, V_{k} such that for each $i, 1 \leq i \leq k$

- $\left|V_{i}\right|=\tau_{i}$
- $G\left[V_{i}\right]$ is connected

In that case, τ is said to be realizable in G and $\left(V_{1}, \ldots, V_{k}\right)$ is a realization of τ in G.
A graph $G=(V, E)$ of order n is arbitrarily partitionable (AP for short) iff for each decomposition τ of n, G is τ-partitionable.

[^0]
1.2 On-line and recursive versions

Consider now that the sizes of the subnetworks are requested one by one instead of all together. Using the graph modeling, that means that you must provide a connected subgraph of given order and assume that the rest of the graph remains "on-line" partitionable or is empty. Graphs which have this property for any sequence of requests are called on-line arbitrarily partitionable.

The following characterization of such graphs has been given in [HTW07] :
A connected graph $G=(V, E)$ of order n is on-line arbitrarily partitionable (OLAP for short) iff for each integer $1 \leq \lambda \leq n-1$, there exists a subset V_{λ} of V such that

- $\left|V_{\lambda}\right|=\lambda$,
- $G\left[V_{\lambda}\right]$ is connected,
- $G\left[V \backslash V_{\lambda}\right]$ is OL-AVD.

Another family of arbitrarily partitionable graphs has also been considered in [BGW11] : recursively arbitrarily partitionable graphs. In that case, we want not only to provide connected subgraphs, but also that these subgraphs are themselves partitionable.

A graph $G=(V, E)$ of order n is recursively arbitrarily partitionable (RAP for short) iff

- $G=K_{1}$ or
- G is connected and for each decomposition $\tau=\left(\tau_{1}, \ldots, \tau_{k}\right)$ of $n, k \geq 2$, there exists a partition of $V: V_{1}, \ldots, V_{k}$ such that for all $i, 1 \leq i \leq k$,

$$
-\left|V_{i}\right|=\tau_{i}
$$

$$
-G\left[V_{i}\right] \text { is RAP. }
$$

In [BGW11], it has been shown that for all graph G, G is AP $\Rightarrow G$ is OLAP $\Rightarrow G$ is RAP and that it exists AP graphs that are not OLAP and OLAP graphs that are not RAP.

1.3 Previous results

Most of the papers on AP, OLAP and RAP graphs consider quite simple classes of graphs like trees or a class of 2 -connected graphs called balloons. Among the previous results, we will focus on those which help us to determine how many components may be obtained after removing a cutest and the sizes of these components.

In [BF06], the following result gives an upper bound on the degree of AP trees :
Theorem 1 [BF06] If a tree T is AP, then its maximum degree is 4. Moreover, every vertex of degree 4 in T is adjacent to a leaf.

In [HTW07] and [BGW11], OLAP and RAP-trees have been completely characterized. For that, we need the following notations :

- A k-pode $T_{k}\left(t_{1}, \ldots, t_{k}\right)$ is a tree of order $1+\sum_{i=1}^{k} t_{i}$ composed by k paths of respective orders t_{1}, \ldots, t_{k}, connected to a unique node, called the root of the k-pode (cf. Figure 1a).
- Let a and b be two positive integers. A caterpillar $C a t(a, b)$ is a tree of order $a+b$, composed by three paths of order a, b and 2 , sharing exactly one node, called the root of the caterpillar. $\operatorname{Cat}(a, b)$ is isomorphic to $T_{3}(a-1, b-1,1)$ (cf. Figure 1b).

(a) 3-pode $T_{3}(3,2,2)$

(b) $\operatorname{Cat}(3,5)$

(c) $B(3,2,2,1)$

Figure 1: Examples of Graphs

Theorem 2 [HTW07] A tree T is OLAP if and only if either T is a path or T is a caterpillar Cat (a, b) with a and b given in Table 1 or T is the 3-pode $T_{3}(2,4,6)$.

a	b	a	b
2, 4	$\equiv 1(\bmod 2)$	7	8, 9, 11, 13, 15
3	$\equiv 1,2(\bmod 3)$	8	11, 19
5	$6,7,9,11,14,19$	9, 10	11
6	$\equiv 1,5(\bmod 6)$	11	12

Table 1: Values $a, b(b \geq a)$, such that $\operatorname{Cat}(a, b)$ is OLAP

Theorem 3 [BGW11] A tree T is RAP if and only if either T is a path or T is a caterpillar Cat (a, b) with a and b given in Table 2 or T is the 3-pode $T_{3}(2,4,6)$.

a	b
2,4	$\equiv 1(\bmod 2)$
3	$\equiv 1,2(\bmod 3)$
5	$6,7,9,11,14,19$
6	7
7	$8,9,11,13,15$

Table 2: Values $a, b(b \geq a)$, such that $C a t(a, b)$ is RAP

We have also some results on the class of 2 -connected graphs called k-balloons. Let b_{1}, \ldots, b_{k} be positive integers. A k-balloon $B\left(b_{1}, \ldots, b_{k}\right)$ is a graph of order $2+\sum_{i=1}^{k} b_{i}$ composed by two vertices (called roots) linked by k paths (called branches) of widths (the number of internal vertices) b_{1}, \ldots, b_{k} (cf. Figure 1c).

Theorem 4 [BGW11] If a k-balloon is $R A P$, then $k \leq 5$. This bound is tight.
This result has been extended to OLAP- k-balloons:
Theorem 5 [BBFP12] If a k-balloon is $O L A P$, then $k \leq 5$.
Upper bounds for the size of the smallest branch of a RAP or OLAP k-balloon have also been given :

Theorem 6 [BBFP12] Let $B\left(b_{1}, \ldots, b_{k}\right)$ be a k-balloon, with $k \geq 4$ and $b_{1} \leq \cdots \leq b_{k}$. If $B\left(b_{1}, \ldots, b_{k}\right)$ is $O L A P$, then $b_{1} \leq 11$. If $B\left(b_{1}, \ldots, b_{k}\right)$ is $R A P$, then $b_{1} \leq 7$.

2 Size and number of components after removing a cutset of size at most 2

Results given in subsection 1.3 allow us to easily deduce some bounds on the number of components and their sizes, after removing a custet of size 1 or 2 , using the following remarks :

Remark 7 If G contains a spanning subgraph which is $A P$ (resp. OLAP, RAP), then G is AP (resp. OLAP, RAP). In particular, if G is traceable (containing an hamiltonian path), then G is RAP (and then OLAP and AP).

Remark 8 Let $G=(V, E)$ be a graph with a cutest S and let $V_{1}, \cdots V_{k}$ be the connected components of $G[V \backslash S]$:

- if $|S|=1$ and G is $A P$ (resp. OLAP, RAP), then the k-pode $T_{k}\left(\left|V_{1}\right|, \cdots,\left|V_{k}\right|\right)$ is $A P$ (resp. OLAP, RAP) ;
- if $|S|=2$ and G is $A P$ (resp. OLAP, RAP), then the k-balloon $B\left(\left|V_{1}\right|, \cdots,\left|V_{k}\right|\right)$ is AP (resp. $O L A P, R A P)$;

Using Remark 8 and Theorems 1, 2, 3, 4, 5, 6, we obtain the following results :
Corollary 9 Let G be a graph with a cutset S, and $V_{1}, \cdots V_{k}$ the connected components of $G[V \backslash S]$, with $\left|V_{1}\right| \leq \cdots \leq\left|V_{k}\right|$:

- if $|S|=1$ then
- if G is $A P$, then $k \leq 4$ and if $k=4$, then $\left|V_{1}\right|=1$;
- if G is OLAP (resp. RAP), then $k \leq 3$, and if $k=3$, then either $\left(\left|V_{1}\right|,\left|V_{2}\right|,\left|V_{3}\right|\right)=(1, a, b)$, with values a and b taken in Table 1 (resp. 2), or $\left(\left|V_{1}\right|,\left|V_{2}\right|,\left|V_{3}\right|\right)=(2,4,6)$;
- if $|S|=2$ then
- if G is $O L A P$, then $k \leq 5$;
- if G is OLAP (resp. RAP) and $k \in\{4,5\}$ then $\left|V_{1}\right| \leq 11$ (resp. ≤ 7).

3 Number of components after removing a cutset of size $k \geq 2$ in AP graphs

In the previous section, we have proved that if we remove a cutset of size 1 from a graph G, then the number of the remaining connected components is at most 4 if G is AP, and 3 if G is OLAP. Similarly, if we remove a cutset of size 2 from an OLAP graph, then the number of components is at most 5 .

In this section, we will prove that for any $k \geq 2$, we may find an AP graph G such that if we remove a cutset of size k from G, the number of components is as large as we want.

Theorem 10 For any integers $k \geq 2$ and $c \geq 2$, there exists an $A P$ graph $G=(V, E)$ with a cutest S of size k such that the number of connected components of $G[V \backslash S]$ is c.

Proof.

The proof of this theorem is based on examples of AP graphs having a cutest S of size k and such that the number of the remaining connected components after deleting vertices of S is c.

We first consider the case where $c \leq k$. Let $G=\left(S_{1} \cup P \cup S_{2}, E\right)$ be the graph with $2 k$ vertices constructed as follows :

- $G\left[S_{1}\right]$ is a stable set with $c-1$ vertices ;
- $G[P]$ is a path with $k-c+1$ vertices ;
- $G\left[S_{2}\right]$ is a stable set with k vertices ;
- every vertex of S_{1} or P is adjacent to all the vertices of S_{2}.

Clearly, S_{2} is a cutest of size k. The components of $G\left[V \backslash S_{2}\right]$ are the $c-1$ vertices of S_{1} plus the path induced by P. Because G admits the complete bipartite graph $K_{k, k}$ has partial graph and $K_{k, k}$ is hamiltonian, then G is AP.

Now, we assume that $c>k$.
We denote by $K_{k}\left(a_{1}, \ldots, a_{c}\right)$ the graph formed by $c+1$ cliques, one of size k, the others of size $a_{1}, \ldots a_{c}$. Moreover, we add all the edges between the vertices of the clique of size k and the vertices of the other cliques (see Figure 2). Clearly, the clique K_{k} is a cutset of $K_{k}\left(a_{1}, \ldots, a_{c}\right)$.

Figure 2: Graph $K_{2}(2,3,4)$

We consider the case of the graph $K_{k}\left(a_{1}, \ldots, a_{c}\right)$ where values a_{1}, \ldots, a_{c} are chosen as follows :

1. $1 \leq a_{1} \leq \ldots \leq a_{c}$
2. $\forall i, 1 \leq i \leq c$, we denote $n_{i}=i+\sum_{1 \leq j \leq i} a_{j}$.
3. $\forall i, 1 \leq i \leq c-1$, choose a_{i+1} such that
(a) $\forall j, 2 \leq j \leq n_{i}, a_{i+1} \equiv 0(\bmod j)$
(b) $a_{i+1} \geq n_{i} a_{i}$

For example, $a_{i} \cdot n_{i}$! is a possible value for a_{i+1}.
Let $\tau=\left(\tau_{1}, \ldots, \tau_{l}\right)$ be a decomposition of $n=k+\sum_{1 \leq i \leq c} a_{i}$, with $\tau_{1} \leq \ldots \leq \tau_{l}$. We consider two cases.

First case: $\tau_{l} \geq a_{c-1}$

In that case, $\tau_{l} \geq n_{c-2}=c-2+\sum_{1 \leq i \leq c-2} a_{i} \geq k-1+\sum_{1 \leq i \leq c-2} a_{i}$. Thus the part of size τ_{l} may cover all the cliques $K_{a_{i}}$ with $i \leq c-2$, plus $k-1$ vertices of \bar{K}_{k} and eventually some vertices of the cliques $K_{a_{c-1}}$ and $K_{a_{c}}$. The remaining graph is formed by at most two cliques joined by the last vertex of K_{k} and is traceable.

Second case: $\tau_{l}<a_{c-1}$
For each $i, 1 \leq i \leq \tau_{l}$, we denote by q_{i} the number of terms of τ having value i.
We have $n=\sum_{1 \leq i \leq \tau_{l}} i \cdot q_{i}$
Then there exists a value $\alpha, 1 \leq \alpha \leq \tau_{l}$, such that $\alpha \cdot q_{\alpha} \geq \frac{n}{\tau_{l}}$. Thus, $\alpha \cdot q_{\alpha}>\frac{n}{a_{c-1}} \geq \frac{n_{c}}{a_{c-1}} \geq$ $\frac{n_{c-1} a_{c-1}}{a_{c-1}}=n_{c-1}$.

We denote by s the index such that for all $i \leq s, a_{i} \not \equiv 0(\bmod \alpha)$ and for all $i>s, a_{i} \equiv 0(\bmod \alpha)$. Note that s may be equal to 0 .

Because $a_{s} \not \equiv 0(\bmod \alpha)$, we have $\alpha>n_{s-1}$ by property 3 a of the definition of $K_{k}\left(a_{1}, \ldots, a_{c}\right)$. That means that one part of size α may cover all the cliques $K_{a_{1}}, \ldots, K_{a_{s-1}}$ plus a vertex of K_{k} and maybe some vertices of $K_{a_{s}}$.

Because $\forall i>s, a_{i} \equiv 0(\bmod \alpha)$, and $\alpha \cdot q_{\alpha}>n_{c-1}$, we may cover also the cliques $K_{a_{s+1}}, \ldots, K_{a_{c-1}}$ with parts of size α.

Thus the remaining graph is formed by $K_{a_{c}}$, remaining vertices of $K_{a_{s}}$ and $k-1$ vertices of K_{k}. This graph is traceable.

Balloons The previous result (Theorem 10) can be adapted to the special case of balloons. The interest of this result is that it gives (for the case of $k=2$) an example of graphs with order n, and number of edges in $O(n)$.

Theorem $11 \forall k \geq 1$, it exists a k-balloon AP.
Proof. We consider a k-balloon $B\left(b_{1}, \ldots, b_{k}\right)$ where branches have the same size than the cliques of $K_{k}\left(a_{1}, \ldots, a_{c}\right)$ given in the proof of Theorem 10 :
$b_{1} \leq \ldots \leq b_{k}$ and we denote $n_{i}=1+\sum_{1 \leq j \leq i} b_{j}$.
$B\left(b_{1}, \ldots, b_{k}\right)$ is constructed as follow:

- $b_{1} \geq 1$
- $\forall i \leq k-1$, choose b_{i+1} such that

1. $\forall j, 2 \leq j \leq n_{i}, b_{i+1} \equiv 0(\bmod j)$
2. $b_{i+1} \geq n_{i} b_{i}$

Using the same arguments than those used for $K_{k}\left(a_{1}, \ldots, a_{c}\right)$, it is easy to see that such a balloon is AP.

4 Size of components

In this section, we will show that, if the number of connected components after removing a cutset of size at least 2 , may be as large as wanted, the size of these components grows exponentially with their number.

Theorem 12 Let $G=(V, E)$ be a graph with n vertices, S a cutset of G of size k, c_{1}, \ldots, c_{l} the orders of the connected components of $G_{V \backslash S}$, such that $l>k$ and $1 \leq c_{1} \leq c_{2} \leq \ldots \leq c_{l}$. Then the values of the sequence $\left(c_{i}\right)_{i \geq 1}$ grow exponentially with i.

To prove this theorem, we will first prove the following lemma :
Lemma 13 Let $G=(V, E)$ be a graph with n vertices, S a cutset of G of size k, c_{1}, \ldots, c_{l} the orders of the connected components of $G_{V \backslash S}$, such that $l>k$ and $1 \leq c_{1} \leq c_{2} \leq \ldots \leq c_{l}$.

Let $a, q_{1}, \ldots, q_{l}, r_{1}, \ldots, r_{l}$ be integers such that

- $2 \leq a \leq n-1$
- $\forall i, 1 \leq i \leq l, c_{i}=q_{i} a+r_{i}$ with $r_{i}<a$

If G is $A P$, then

$$
\sum_{1 \leq i \leq l} r_{i} \leq(k+1) \cdot(a-1)
$$

Proof.

Let G be a partial graph of $K_{k}\left(c_{1}, \ldots, c_{l}\right)$. If a decomposition $\tau=\left(\tau_{1}, \ldots, \tau_{p}\right)$ of n is realizable in G, and V_{1}, \ldots, V_{p} is a realization of τ in G, then τ is realizable in $K_{k}\left(c_{1}, \ldots, c_{l}\right)$ and V_{1}, \ldots, V_{p} is a realization of τ in $K_{k}\left(c_{1}, \ldots, c_{l}\right)$. Moreover, if G is AP, then $K_{k}\left(c_{1}, \ldots, c_{l}\right)$ is AP.

Then, to prove Lemma 13 , we may consider only graphs of the form $K_{k}\left(c_{1}, \ldots, c_{l}\right)$.
First, we remark that in a decomposition of $K_{k}\left(c_{1}, \ldots, c_{l}\right)$, the vertices of K_{k} may be covered by the greatest parts of a decomposition τ (note that one part may contain more than one vertex of K_{k}). In fact, suppose that we have a part V_{1} which does not cover any vertex of K_{k} and a vertex v in K_{k} covered by a part V_{2} such that $\left|V_{2}\right|<\left|V_{1}\right|$. Then we may always exchange $\left|V_{1}\right|-\left|V_{2}\right|$ vertices from V_{1} to V_{2} inside the clique containing V_{1}.

We consider a decomposition of $n, \tau=(a, \ldots, a, r)$ with $r<a$ and its realization in $K_{k}\left(c_{1}, \ldots, c_{l}\right)$. Because $a>r$, we may suppose that all the parts covering the vertices of K_{k} are of size a. The cliques $K_{c_{1}}, \ldots, K_{c_{l}}$ are also covered mainly by parts of size a. The remaining vertices must be covered by the at most k parts of size a which cover also the k vertices of K_{k}, and the part of size r. Because $r \leq a-1$, we obtain $\sum_{1 \leq i \leq k} r_{i}+k \leq k \cdot a+a-1$.

Corollary 14 Let $G=(V, E)$ be a graph with n vertices, S a cutset of G of size k, c_{1}, \ldots, c_{l} the orders of the connected components of $G_{V \backslash S}$, such that $l>k$ and $1 \leq c_{1} \leq c_{2} \leq \ldots \leq c_{l}$. If G is $A P$, then $\forall i, 1 \leq i \leq k$,

$$
c_{i} \geq \frac{1}{k} \sum_{1 \leq j<i} c_{j}
$$

Proof. We consider $a=c_{i}+1$. In that case, for all $j \leq i$, we have $r_{j}=c_{j}$. Thus, Lemma 13 implies $\sum_{i<j \leq k} r_{j}+c_{i}+\sum_{1 \leq j<i} r_{j} \leq(k+1) \cdot c_{i}$. Because $\sum_{i<j \leq k} r_{j}>0$, we obtain the result.

Proof of Theorem 12

We can now conclude the proof of the Theorem 12 :
$\forall i, j$ such that $k \cdot i>j \geq k(i-1)$, we have $c_{j} \geq c_{k(i-1)}$. Thus,

$$
c_{k \cdot i} \geq \frac{1}{k} \cdot\left(k \cdot c_{k(i-1)}+k \cdot c_{k(i-2)}+\sum_{1 \leq j<k(i-2)} c_{j}\right)
$$

Thus, $c_{k \cdot i} \geq c_{k(i-1)}+c_{k(i-2)}$, and the sequence $\left(c_{k i}\right)_{i \geq 1}$ grows at least as fast as a Fibonacci sequence.

References

[BBFP12] O. Baudon, J. Bensmail, F. Foucaud, and M. Pilśniak. On the size of the longest path in an online or recursively partitionable balloon. Technical report, 2012. oai:hal.archives-ouvertes.fr:hal-00656232.
[BF06] D. Barth and H. Fournier. A degree bound on decomposable trees. Discrete Applied Mathematics, 306:469-477, 2006.
[BGW11] O. Baudon, F. Gilbert, and M. Woźniak. Recursively arbitrarily vertex-decomposable graphs. To appear in Opuscula Mathematica, 2011.
[HTW07] M. Horňák, Z. Tuza, and M. Woźniak. On-line arbitrarily vertex decomposable trees. Discrete Applied Mathematics, 155:1420-1429, 2007.

[^0]: *This research was partially supported by the partnership Hubert Curien Polonium 22658VG and the Polish Ministry of Science and Higher Education.
 ${ }^{\dagger}$ email adresses: \{olivier.baudon,florent.foucaud\}@labri.fr, przybylo@wms.mat.agh.edu.pl, mwozniak@agh.edu.pl

