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Abstract This paper aims at showing that to prescribe a flow rate at the inlet
section of a vertical channel with heated walls leads to surprising and counter-
intuitive physical solutions, especially when the problem is modeled as elliptical.
Such an approach can give rise to the onset of recirculation cells in the entry re-
gion while the heat transfer is slightly increased under the influence of buoyancy
force. We suggest an alternative model based on more realistic boundary condi-
tions based on a prescribed total pressure at the inlet and a fixed pressure at
the outlet sections. In this case, the pressure and buoyancy forces act effective-
ly in the same direction and, the concept of buoyancy aiding convection makes
sense. The numerical solutions emphasize the large differences between prescribed
inlet velocity and solutions provided with our pressure based boundary conditions.

Keywords Aiding mixed convection · Vertical open channel flows · Computa-
tional fluid dynamics · Boundary conditions

Nomenclature

a thermal diffusivity [m2 s−1]
A aspect ratio, A = H/D
cp specific heat [J K−1 kg−1]
cx, cz stretching parameters, Eq. 13 and 13
D plate spacing [m]
Dh hydraulic diameter, Dh = 2D [m]
g gravitational acceleration [m s−2]
GrH Grashof number based on H,

GrH = gβ0∆TH3/ν2
0

h heat transfer coefficient [W m−2K−1]
H channel height [m]

Université Paris-Est, Laboratoire de Modélisation et Simulation Multi Echelle, MSME UMR
8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
E-mail: lauriat@univ-mlv.fr



2 Hua Sun et al.

k thermal conductivity [W m−1 K−1]
L channel length in the spanwise direction [m]
ṁ mass flow rate [kg s−1]
nx, nz numbers of grid points in x− and z−directions
p pressure [Pa]
ps pressure at the outlet section [Pa]
Pr Prandtl number, Pr = ν0/a0
Q heat flux, [W ]
Qen enthalpy heat flux, [W ]
Q2w convective heat flux along the two channel walls, [W ]
Re Reynolds number based on Dh, Re = w0Dh/ν0
Ri Richardson number, Ri = Gr/Re2

Sc area of the channel cross section, Sc = DL [m2]
t time [s]
T temperature [K]
u,w velocity components [m s−1]
x, z coordinates [m]
Greeks
β coefficient of thermal expansion, β = 1/T0 [K−1]
∆T temperature difference, ∆T = (Th − T0) [K]
µ dynamic viscosity [Pa.s]
ν kinematic viscosity [m2 s−1]
ρ density [kg m−3]
θ dimensionless temperature ratio, θ = (T − T0)/∆T
τ dimensionless time
Subscripts
a, b analytical solutions
h hot wall
H quantity based on channel height
nc natural convection
0 inlet section
Superscripts
− averaged quantity
∗ dimensionless quantity

1 Introduction

Mixed convection may be defined as heat transfer situations where both pressure
and buoyancy forces interact. In vertical channels, the bulk fluid flow can be either
upward or downward, and the solutal and thermal buoyancy forces may be either
assisting or opposing the forced flow. As a result, several hundred of papers were
published just for mixed convection flows in vertical ducts of various shapes and
thermal conditions, including two phase flows with surface condensation or evapo-
ration, and flows in porous filled ducts. Most studies considered buoyancy assisted
flow, i.e. upward flows with heating or downward flows with cooling. Under these
conditions, the axial velocities may increase near the channel walls and decrease
within the core region, with possible occurrence of a flow recirculation in the entry
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region for large effects of the buoyancy force [1–4] (not to be confused with flow
reversal occurring close to the outlet section in asymmetrically heated channels
[5–10]). In these cases, it is generally expected that heat transfer for mixed convec-
tion is larger than for forced convection. This intuition is obviously well physically
based. However, numerical solutions may lead to opposite effects, not owing to the
numerical accuracy but because the boundary conditions are not well specified.
This paper is focused on this issue.

The extensive interest borne upon mixed convection in ducts stems from its
wide range of practical applications including the design of compact heat exchang-
ers, cooling of electronic equipment and, solar energy collectors. Numerous theo-
retical and experimental investigations were reviewed in many textbooks, such as
in Aung [11], Gebhart et al. [12] or Bejan [13]. The present study is focused on
mixed convection of air as the working fluid for typical geometries used for active
cooling from the back of vertical photovoltaic cell panels operating at high fluxes.

This work considers the effect of thermal buoyancy force only (the effect of
solutal force being similar, provided it acts in the same direction as the thermal
force), and in the case of upward forced or natural flow direction (symmetrically
heated vertical channel), commonly termed as buoyancy aiding or assisting mixed
convective flows.

Most of the analytical and numerical studies on mixed convection were based
on approximate problem formulations in order to easily solve the governing equa-
tions thanks to parabolized forms (or boundary-layer type equations for external
flows with the streamwise pressure gradient dropped out [14]) which allow not
to prescribe boundary conditions at the outlet duct section. On the other hand,
the increasingly use of commercial computational fluid dynamics packages during
the last decade has led to solve the problem when it is based on fully elliptic for-
mulation, mostly by considering again prescribed inlet flow rate and outlet free
boundary conditions. However, despite the large number of papers available in the
current literature, the fundamental question of inlet/outlet flow conditions seems
not to have been properly addressed because it appears that mixed convection
with fixed inlet velocity (and thus Reynolds number) was very often considered as
the relevant formulation for solving mixed convection.

The aim of this paper is at showing that the use of prescribed inlet velocity con-
dition (constant flow rate whatever the importance of the buoyancy force) leads to
completely different solutions in comparison with those obtained using prescribed
total pressure inlet and pressure outlet conditions. For our viewpoint, such pres-
sure boundary conditions appear to provide more realistic physical behaviors in
practical applications, as it will be shown in what follows.

We are considering the practical case of air flowing in vertical flat-plate channel-
s submitted to uniform wall temperatures, and maximum temperature differences
compatible with the Boussinesq approximation. Although most of the results are
presented in dimensional form, we also analyze the relevance of scaling predic-
tions based on dimensionless parameters. It should be added that the extension
of the present work to weakly compressible formulation (i.e. large temperature
differences) is straightforward when using our in-house computational code, but
the results obtained have shown that the main conclusions drawn in this paper
remain unchanged.
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2 Governing equations
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Fig. 1 The physical model of mixed convection in a vertical channel. The full boundary
conditions are written in Eqs. (5-7) for the three cases investigated.

We consider two-dimensional, incompressible and laminar buoyancy-assisting
flows inside a vertical parallel-plate channel, as shown in Fig. 1. The fluid enters
the channel of height H at ambient temperature and traverses upward, being heat-
ed by the hot walls at uniform temperature Th. The fully developed region may be
eventually reached at the outlet (z = H), after a development length depending
on the value of the plate spacing as well as on importances of the pressure and
buoyancy forces. On account of the maximum temperature difference invoked, it
is assumed that all physical properties are constant except for the density in the
buoyancy force in the vertical direction (Boussinesq approximation). The refer-
ence temperature has been taken to be the inlet temperature, T0, like in most of
the solutions reported in the current literature. However, this choice remains an
open question, as discussed by Barletta and Zanchini [15], especially for fully de-
veloped mixed-convection. Owing to the stability results by Chen and Chung [16],
the governing equations are written in transient form in order to capture possible
transitions to unsteady flows. With the z-axis pointing upwards and the origin of
coordinates placed at the center of the inlet section, the conservation equations
based on a fully elliptic model are

∇.v = 0 (1)

ρ0(
∂v

∂t
+∇.(v ⊗ v)) = −∇(p+ ρ0gz) + µ0∇2v + ρ0gβ(T − T0)ez (2)

∂T

∂t
+∇.(vT ) = a0∇2T (3)

where ρ0, µ0 and a0 are the fluid density, dynamic viscosity and thermal diffusivity
evaluated at T0.
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Boundary and initial conditions
The initial condition is a fluid at rest at uniform temperature T0.
The boundary conditions are written as follows:

• Along the vertical isothermal walls:

v = 0, T = Th at x = ±D/2 and for 0 < z < H (4)

where D and H are the channel width and height, respectively.
• At the inlet (z = 0) and outlet (z = H) sections for −D/2 < x < D/2:

(a) natural convection

u = 0,
∂w

∂z
= 0, p = −ρ0

w2

2
, T = T0 at z = 0

u = 0,
∂w

∂z
= 0, p+ ρ0gH = 0,

∂T

∂z
= 0 at z = H

(5)

(b) forced or mixed convection
b1 : fixed flow rate (w0 prescribed)

u = 0, w = w0, T = T0 at z = 0

u = 0,
∂w

∂z
= 0, p+ ρ0gH = 0,

∂T

∂z
= 0 at z = H

(6)

b2 : fixed inlet total pressure and outlet pressure (ps)

u = 0,
∂w

∂z
= 0, p = −ρ0

w2

2
, T = T0 at z = 0

u = 0,
∂w

∂z
= 0, p+ ρ0gH = ps,

∂T

∂z
= 0 at z = H

(7)

With boundary conditions Eq. 7 applied to forced or mixed convection, a pres-
sure drop (ps < 0) is prescribed at the outlet section (it could be as well an
increase in pressure at the inlet section). Therefore, the boundary conditions are
inlet temperature and outlet pressure, zero z-derivative for the vertical velocity
component and zero horizontal velocity-component. It should be emphasized that
these flow B.C. differ somehow from those used in most of previous works.

Let us emphasize that our results achieved using Eq. 6 or Eq. 7 are almost
identical, provided the average velocities w(0) are the same. The choice of the
particular boundary condition Eq. 6 may lead to wrong physical interpretations,
because the imposed velocity w0 is completely uncorrelated to the velocity induced
by the natural convection flow. In contrast, the use of Eq. 7 preserves the coherence
of the fluid flow with respect to free convection (Eq. 5) as it will be shown in what
follows.

The governing equations are generally cast in dimensionless form by using
either the set of dimensionless variables X = x/Dh, Z = z/Dh, θ = (T−T0)/(Th−
T0), U = u/w0, W = w/w0 and P = p/ρ0w

2
0 or the set X, Z = z/(DhRe), θ,

U = Dhu/(ν0), W and P where Dh = 2D is the hydraulic diameter. It follows that
the problem formulation depends on four parameters: A = H/D, Re = w0Dh/ν0,
Gr = gβ(Th − T0)D

3
h/ν

2
0 = 8GrH/A3 and Pr = ν0/a0, the channel aspect ratio,

the Reynolds, Grashof and Prandtl numbers, respectively. The relative strength of
the buoyancy force is then characterized either by the Richardson number, Ri =
Gr/Re2, for the first set of dimensionless variables or by the product Ri × Re =
Gr/Re for the second set. Some controversy still exist about the best pertinent
parameter, e.g. Ri or Ri×Re.



6 Hua Sun et al.

2.1 Heat transfer

The total heat transfer rate released by two walls of depth L and heightH, denoted
as Q2w, is calculated as follows:

Q2w = 2Lk0

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(LH)(Th − T0) (W ) (8)

where L is the length of the channel in the y-direction, h is the mean heat transfer
coefficient defined by the right equality in Eq. 8. For natural or mixed convection,
a mean Nusselt number expressed by Nu2w = Q2w/[2(LH)(k0∆T/D)] may be
introduced [17].

The enthalpy flux removed from the two heated surfaces by the stream is

Qen = ρ0cpSc[(wT )H − (wT )0] (W ) (9)

where (wT )z is the average of (wT ) over the channel cross-section of area Sc = DL.
By using again 2(LH)(k0∆T/D) as a reference heat flux, we can define a Nusselt
number Nuen = Qen/[2(LH)(k0∆T/D)].

It should be emphasized that Q2w is always greater than Qen because the
heat losses by axial diffusion through the channel inlet are not included into the
definition of Qen. When the wall temperatures are kept fixed, Q2w and Qen merge
provided that the Reynolds number is large enough in order that axial diffusion
may be assumed negligibly small. The difference Qcond = Q2w − Qen yields the
effect of axial diffusion which can be written as

Qcond = k0

∫ D/2

−D/2

∂T

∂z

∣∣∣∣
z=0

dx

= 2k0

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz − ρ0cp

∫ D/2

−D/2

[w(x,H)T (x,H)− w(x, 0)T0]dx

(10)
For negligible axial heat diffusion, equation (8) reads:

2k0L

∫ H

0

∂T

∂x

∣∣∣∣
x=D/2

dz = 2h(HL)(Th − T0) = ṁcp(Tb(H)− T0) (11)

where ṁ = ρ0w0(DL) and Tb(H) = (wT )H/w0 is the bulk temperature at the
outlet section. Such an approximation is one of the foundations introduced for
establishing the analytical solutions reported in Ref. [13, 17, 18].

3 Numerical method and validation

The mass, momentum and energy conservation equations were spatially discretized
by using the collocated finite volume method presented in [19, 20], applied here
for structured meshes. The key features of this method are:

– the normal fluxes to cell faces are defined by a consistent two-points approxi-
mation,
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– the variables transported by the fluid flow are expressed on cell faces in a
centered manner, not by using a linear interpolation at the faces,

– the “pressure gradient” is defined by the dual expression of the velocity diver-
gence and therefore, it can be non-consistent with a gradient.

An implicit second-order Euler scheme was adopted for time derivatives at time
t = (n + 1)∆t, with an implicit treatment of the diffusion terms and an Adams-
Bashforth extrapolation procedure for the transport terms. A stabilization method
is necessary to prevent from the onset of checkerboard oscillations associated with
collocated schemes. This is performed through the velocity-pressure decoupling
which is handled by a projection method [21].

Attention was also paid to the temperature discontinuities at the corner of
the inlet section (i.e. at x = ±D/2, z = 0). In the case of pure conduction,
the analytical heat fluxes along the vertical walls are indeed infinite. Therefore,
the wall heat fluxes calculated numerically, Q2w, cannot converge when refining
the meshes (see [22] for details). To avoid this problem, it is then necessary to
smooth the thermal boundary conditions in order to recover some regularity. To
this end, we have substituted the uniform temperature imposed at the walls by a
temperature distribution which decreases abruptly towards T0 close to z = 0. The
steep function retained in this work writes:

Tp(z) = T0 + (Th − T0) tanh(Γ
z

H
) (12)

For example, by choosing Γ = 1000, the wall temperature Tp(z) for a channel
height H = 1 m varies from 0.5Th at z ≃ 0.55mm to 0.9Th at z ≃ 1.5mm and
then becomes larger than 0.99Th for z > 2.65mm. We checked that such a steep
variation in Tp(z) does change significantly the temperature field while it allow
second order convergence of the wall heat fluxes, Q2w.

The velocity components, the temperature field and the pressure correction
were calculated by using the Bi-Conjugate Gradient Stabilized (BCGS) method,
preconditioned by an incomplete LU decomposition. Owing to the axial symmetry
of the flow, the problem was solved on the half-width of the channel. The faces of
the mesh xf

i and zfk are defined as follows:

xf
i

D/2
=

i

nx
− cx

2π
sin

(
i

nx
π

)
, 0 ≤ i ≤ nx

zfk
H

=
tanh

(
cz

(
k
nz

− 1
))

tanh(cz)
+ 1, 0 ≤ k ≤ nz

(13)

The coefficients cx and cz define the mesh refinements in the entrance region and
along the isothermal wall. By choosing cx = 1 and cz = 1.82, the size ratios
between the largest cell and the smallest cell are equal to 3 and 10 in horizontal
and vertical directions, respectively. The time integration was performed with the
Courant-Friedrich-Levy number kept fixed to CFL = 0.5.

The asymptotic behavior of the numerical solution was investigated using
a Richardson extrapolation on one set of the three meshes defined by nx ∈
{10, 20, 40} with nz = 20nx. This method leads to the extrapolated value of f
which is written

fExtrap. = fnx +
cnx

(nx)s
(14)
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where cnx is a coefficient depending on nx and fnx is the numerical result on grid
nx × nz. For sufficiently fine meshes, the value of s must tend towards the order
of consistency of the numerical scheme (i.e. s = 2), fExtrap. must then become
independent of the mesh. For natural convection flow, the mesh 20× 400 defined
for a half width of the channel provides accurate results within 3 digits (Tab. 1).
This grid size is then retained for all computations.

nx 10 20 40 s fExtrap.

Q2w (W ) 130.39 130.31 130.30 2.66 130.30
Qen (W ) 130.32 130.22 130.20 2.01 130.19
wnc(m/s) 0.3840 0.3833 0.3831 2.01 0.3830

Table 1 Convective heat flux, enthalpy heat flux and mean velocity according to the mesh
refinement (nz = 20nx), for D/2 = 1 cm and H = 1 m. Order s of the numerical scheme and
Richardson-extrapolated values (see Eq. 14).

4 Results

The influence of the dynamical boundary conditions at the inlet and outlet sections
is discussed by considering air entering at T0 = 300 K into a vertical channel with
height walls H = 1 m at uniform hot temperature Th = 320 K (or H = 1.5 m,
just for allowing comparisons with previously published works [2, 3]). The channel
width was D = 2 cm or D = 3 cm. With the air properties taken at T0 =
300 K (ρ0 = 1.176 kg.m−3, µ0 = 1.85 10−5Pa.s, cp,0 = 1006 J.kg−1.K−1, k0 =
0.0261 W.m−1.K−1) the Grashof number is then GrH = 2.64 109H3. Channel
heights less than about two meters are thus considered as maximum in order to
keep a laminar flow.

For pure natural convection (Tab. 1), the computations yield an average ve-
locity wcn = 0.38 m/s and a pressure drop at the inlet section (Eq. 5) pcn,in =
−0.087 Pa. The heat flux transferred along one of the isothermal walls is Q1w =
Q2w/2 = 65.2 W by unit of depth length (direction perpendicular to the plane of
Fig. 1). These values are the basis for the discussions of mixed convection results
presented in what follows.

Before getting further into the result section, let us recall that flow solutions
are similar provided that the average velocities, imposed or resulting from com-
putation, are identical. However, when a constant flow rate is prescribed, coun-
terintuitive results or surprising phenomena may arise. Such situations, developed
in details in Sec.4.1, are now briefly exemplified. By using Eq. 6, astonishing flow
recirculations are highlighted close to inlet section. Their occurrences are simply
due to the incompatibility between the imposed flow rate and the necessity of
feeding the dynamic boundary layers produced by the buoyancy along the vertical
heated walls. Similarly from a purely thermal viewpoint, it is also expected that
the buoyant force increases the velocities in the boundary layers and then improves
the heat transfer at the solid walls. However this behavior is not observed when
the inlet velocity is prescribed.
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The next two subsections are then devoted to the detailed analysis of the fluid
flows and heat transfers when using boundary conditions 6 and 7. For both sets of
boundary conditions, comparisons between natural, forced and mixed convection
flows are performed. These comparisons emphasize clearly that only the pressure
boundary conditions make sense.

4.1 Constant flow rate

We are first considering prescribed inlet velocity in the range 0.1 m/s ≤ w0 ≤
1 m/s in order to satisfy the assumption of laminar flow (Re = 2500 for w0 =
1 m/s). For pure forced convection, it results that the difference in pressure be-
tween the inlet and outlet sections is within ∆p = 0.061 Pa and ∆p = 0.96 Pa.

The ∆p-variations versus the inlet velocity are shown in Fig. 2 for forced con-
vection and for mixed convection. Since the outlet pressure has been fixed to ps = 0
(see Eq. 6), that implies ∆p = p(0). For forced convection, the inlet pressure is al-
ways positive while it is negative for mixed convection if the inlet velocity is smaller
than the inlet velocity corresponding to pure natural convection (wnc = 0.38 m/s).
Therefore, the pressure and buoyancy forces are opposite if w0 < wnc.

Let us now consider computations based on the dimensionless form of the
governing equations. In most of the papers dealing with aiding mixed convection,
the Reynolds and Grashof numbers were arbitrarily fixed: the relative importance
of one convective mode was discussed by considering only the value of Ri or Ri×Re
with the same length scale for Re and Gr. For the present computations (D =
2 cm), it is found that Ri = 2.62 10−2/w2

0 (w0 in m/s) and Ri × Re = 66.4/w0.
Therefore, either the first or the second criterion (e.g Ri > O(1) [13] or Ri ×
Re > O(103) [23]) leads to assume that natural convection dominates for w0 less
than about 0.15 m/s, a value smaller than wcn = 0.38 m/s. For the practical
case considered, the average velocity 0.15 m/s can only be reached for a negative
pressure gradient (Fig. 2), namely for a ”forced convection” opposing to the natural
convection. Thus, concluding that natural convection is dominating has no physical
meaning since the pressure gradient plays a dominant part into the flow rate.

The streamlines plotted in Fig. 3 shows another view of the results linked to a
fixed flow rate smaller than the natural inlet flow rate. For this case, we consider
a channel height H = 1.5 m and a channel width D = 3 cm in order to check that
the present results are in full agreement with those published in [2–4].

Figure 3 raises obviously the question of the origin of existence of flow recir-
culations within the entry region for aiding mixed convection in vertical channels.
As it is well established nowadays, the separation bubble (the axis of which be-
ing the channel axis) cannot be predicted when using parabolized formulations.
On the other hand, elliptical models may lead to such flow topologies provided
that the inlet velocity is prescribed without any reference to the natural convec-
tion velocity. The case shown in Fig. 3 corresponds to a clear recirculating flow,
easily reproducible by using the simulation conditions reported in the legend of
this figure. The conclusion is that the flow field referenced as ”buoyancy-assisted
mixed flow” is similar to the flow predicted for ”opposing mixed convection” with
ps = 1.4 Pa (∆p < 0).

Figure 4 shows the variations of the vertical velocity component along the cen-
terline (e.g. w(0, z)) for the three convective modes. For forced convection, w(0, z)
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Fig. 2 Variations of the pressure difference between inlet and outlet sections according to the
prescribed inlet velocity for forced, mixed and natural convection.

is the maximum flow velocity at any z-section and it increases upstream until the
flow regime is fully established (before z = H if w0 < 0.2 m/s in the case consid-
ered). For mixed convection, the buoyancy force produces maximum in velocities
near the walls. Therefore, w(0, z) for mixed convection is lower than for forced
convection when the flow rate is prescribed, the difference increasing upstream
with w0. If w0 < wnc (wnc being the average velocity for natural convection) the
decrease in w(0, z) at the bottom of the channel indicates a possible onset of flow
recirculation (see Fig. 3). For w0 = 0.1 m/s and 0.2 m/s, a stagnant zone char-
acterized by a decrease in the axial velocity spreads within the lower half-region.
This stagnation zone becomes more and more confined close to the channel inlet
as the difference between w0 and the natural convection velocity increases.

Figure 5 displays the variation in the total heat flux transferred at one of
the channel walls (Q1w = Q2w/2) as function of the inlet velocity, the horizontal
dashed line being for pure natural convection. As can be seen, mixed convection
with a prescribed inlet velocity lower than that for pure natural convection leads
to a lower heat transfer rate. In addition, the very small differences between the
results for forced and mixed convection clearly show that the buoyancy force does
not assist significantly the pressure force. For the lowest inlet velocity considered
here (w0 = 0.1 m/s), the Péclet number is Pe ≈ 259. Therefore, axial conduction
is negligibly small (Qcond ≪ Q2w, Eq. 8 and 10).
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(a) (b)

Fig. 3 Flow recirculation for mixed convection (a) prescribed inlet velocity , w0 = 0.05 m/s
(b) overpressure at the outlet section ps = 1.4 Pa (D = 3 cm, H = 1.5m, ∆T = 20 K).

4.2 Pressure driven mixed convection

When a pressure drop is prescribed at the outlet section (ps < 0), with an inlet
total pressure fixed, the pressure and the velocity profile at the inlet as well as
the flow rate are not a priori known. Therefore, it is not possible to calculate the
Reynolds and Richardson numbers until the end of the computations. However,
the flow rate is necessary greater than that for pure natural convection. For the
practical case investigated (H = 1 m, D = 2 cm, ∆T = 20 K), the maximum
pressure (at the center of the inlet section) for natural convection is p(0, 0) =
−0.143 Pa. The inlet pressure for mixed convection should be lower than this
value since the flow rate is assumed to increase (p(0) ≈ −ρ0w

2/2).

Figure 6 shows the axial variation of pressure along the channel axis. For
natural convection the pressure minimum is at z = 0.24 m while it is located at
the outlet section for forced convection. For mixed convection, the pressure curves
exhibit a minimum, whose location is indicated by an arrow in Fig. 6. Therefore,
∂p/∂z is zero at this z-coordinate where the buoyancy force compensates viscosity
and advection. When the pressure drop at the outlet section exceeds 0.6 Pa, the
pressure decreases monotonously from the inlet to the outlet section, indicating
the predominance of forced convection.

The average velocity is displayed in Fig 7 versus the outlet pressure drop.
In contrast to what has been found for prescribed inlet velocity, w for mixed
convection is systematically greater than for forced convection: buoyancy force
assists thus the pressure force whatever ps < 0 and, we can effectively speak
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Fig. 4 Vertical velocity variations along the channel axis for forced and mixed convection
according to the prescribed inlet velocity. The natural convection curve is also shown (D =
2 cm, H = 1 m, ∆T = 20 K).

in terms of ”buoyancy assisted mixed convection”. The results is obviously an
increase in the heat flux transferred along the walls as can be seen in Fig 8. The
computations were not pursued for ps < −1.5 Pa owing to the large values of
the Reynolds number involved (Re = 2744 for ps = −1.5 Pa). Figure 8 shows
that natural convection dominates for the smallest values of −ps and that forced
convection dominates for the largest values of −ps. The comparison between Fig. 5
(B.C. 6) and Fig. 8 (B.C. 7) clearly exhibits the large differences in the wall heat
flux according to the type of boundary conditions. It should be noted that the
forced convection curve does not tend to zero as ps → 0 because the problem turns
then into a pure conduction problem. From Eq. 10 it is found that Qcond = 4.8 W
for ps = 0.

Let us now discuss the above results in terms of Ri or Ri×Re (Re and Gr being
both based on the same length scale, i.e Dh). When increasing the pressure drop,
Ri and Ri × Re decrease since the flow rate is increased. From ps = −0.1 Pa to
ps = −1.5 Pa, Ri decreases from 0.134 to 0.022 while Ri×Re decreases from about
151 to about 57. The criterion for the transition from dominant forced convection
to dominant natural convection being Ri > O(1) [13] or Ri × Re > O(103) [23],
it could be assumed that natural convection plays a negligible role for the results
discussed herein. In fact, the heat flux at one of the vertical walls is Q1w ≈ 65 W
for pure natural convection. That substantially differs from Q1w ≈ 75 W for mixed
convection when ps = −0.2 Pa (Q1w ≈ 50 W for forced convection). Therefore,
any of these two criteria based on approximate analyses appears to be relevant.
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Fig. 5 Total heat flux transferred at one of the hot walls for forced and mixed convection
according to the prescribed inlet velocity. The value for natural convection is also shown
(D = 2 cm, H = 1 m, ∆T = 20 K).

The temperature distribution along the channel axis is plotted in Fig. 9 ac-
cording to the pressure at the channel outlet section. Small increases in the axial
temperature indicate that the channel flow regime turns into a boundary layer
type regime. Asymptotic solutions for assisting mixed convection along a vertical
isothermal plate may be thus useful. The present results show that it is not the
case, at least for laminar flows (i.e. |ps| < 1.5 Pa). In addition, temperature as
well as velocity profiles do not exhibit boundary layer-type behavior. When ps
is decreased from ps = 0 (pure natural convection) to ps = −1.5 Pa (dominant
forced convection), Figure 9 indicates a significant decrease in the axial tempera-
ture which is closely linked to an increase in heat transfer at the walls. Since the
temperature increases up to the outlet section, an established velocity field cannot
be predicted, as shown in Fig. 10. This figure exhibits also that the dynamical
entry length augments with the Reynolds number. However, the usual criterion
for defining the dynamical and thermal entry lengths for forced convection in a
flat plate channel (zd ≈ 4 10−4ReDh

and zt/Dh ≈ 0.01ReDh
Pr, respectively) are

not met for the largest pressure drop considered.

5 Conclusion

Mixed-convection for assisting flows occurring in isothermal flat-plate channels
was studied by solving numerically the system of conservation equations written
in elliptical form. The computations were carried out by using a finite-volume
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Fig. 6 Axial variation of pressure along the channel axis according to the outlet pressure drop
(D = 2 cm, H = 1 m, ∆T = 20 K). The arrows indicate the positions (in m) of the pressure
minimum.

method implemented in an in-house code. The spatial order of convergence of
the method and the accuracy of the results have been checked thanks to the
Richardson extrapolation method and regularized inlet thermal conditions in order
to properly solve cases of low flow rates linked to small plate spacings and/or small
temperature differences.

As an example, we have considered air at ambient temperature flowing in
vertical channels (height H = 1 m or H = 1.5 m, width D = 2 cm or D =
3 cm). For a maximum temperature difference compatible with the Boussinesq
approximation (∆T = 20 K), leading to GrH = 2.65 109H3, the entire laminar
mixed-convection regime has been covered by changing either the inlet velocity
or the outlet pressure drop. ReDh

was varied from ReDh
≈ 200 to ReDh

≈ 2800.
Although most of the results have been discussed in their dimensional forms, we
have also analyzed the reliability of scaling predictions based on dimensionless
numbers.

The results for a prescribed inlet velocity w0 show that flow recirculations may
appear in the entry region when the inlet velocity is lower than that for pure
natural convection. In that case, the pressure force opposes to the buoyancy force
and the problem is, in fact, similar to that of opposing natural convection with
a downward bulk flow. In addition, we have shown that to prescribe w0 yields
no significant difference between the wall heat fluxes calculated either for forced
convection or for mixed convection.

The modeling of mixed convection based on a pressure drop at the outlet
section (ps < 0) and a total pressure at the inlet section leads to a completely
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Fig. 7 Variations of the average velocity according to the pressure drop at the outlet section
for forced and mixed convection (D = 2 cm, H = 1 m, ∆T = 20 K).

p (Pa)

Q
(W

)

0 0.5 1 1.5
0

20

40

60

80

100

120

forced convection

mixed convection

1w

i s

Fig. 8 Variations of the heat flux transferred at one of the walls according to the pressure
drop at the outlet section for forced and mixed convection (D = 2 cm, H = 1 m, ∆T = 20 K).
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Fig. 9 Variations of the temperature along the channel axis according to the pressure drop
at the outlet section for natural and mixed convection (D = 2 cm, H = 1 m, ∆T = 20 K).

different analysis of the results, with a better accordance with the common physical
sense. When imposing an outlet pressure drop, natural convection assists effectively
forced convection and the flow rate as well as the wall heat fluxes are systematically
increased over those found for pure forced convection.
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