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ABSTRACT 

Many real world problems can be expressed as optimisation 

problems. Solving this kind of problems means to find, among all 

possible solutions, the one that maximises an evaluation function. 

One approach to solve this kind of problem is to use an informed 

search strategy. The principle of this kind of strategy is to use 

problem-specific knowledge beyond the definition of the problem 

itself to find solutions more efficiently than with an uninformed 

strategy. This kind of strategy demands to define problem-specific 

knowledge (heuristics). The efficiency and the effectiveness of 

systems based on it directly depend on the used knowledge 

quality. Unfortunately, acquiring and maintaining such knowledge 

can be fastidious. The objective of the work presented in this 

paper is to propose an automatic knowledge revision approach for 

systems based on an informed tree search strategy. Our approach 

consists in analysing the system execution logs and revising 

knowledge based on these logs by modelling the revision problem 

as a knowledge space exploration problem. We present an 

experiment we carried out in an application domain where 

informed search strategies are often used: cartographic 

generalisation. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control methods 

and Search – Graph and tree search strategies, Heuristic methods 

 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Knowledge Revision, Problem Solving, Informed Tree Search 

Strategy, Cartographic Generalisation. 

1. INTRODUCTION 
Problem-solving is one of the central topics of artificial 

intelligence. Among solving approaches, some are based on an 

informed search strategy. The principle of this kind of strategy is 

to use problem-specific knowledge (heuristics) beyond the 

definition of the problem itself to find solutions more efficiently 

than with an uninformed strategy.  

The efficiency of systems based on this kind of strategy directly 

depends on the used knowledge quality. Unfortunately, it is 

usually very difficult to acquire expert knowledge. Eward 

Feigenbaum formulated this problem in 1977 as the knowledge 

acquisition bottleneck problem. Indeed, the expert knowledge is 

rarely formalised and its translation into a formalism usable by 

computers is very complex.  

The work presented in this paper deals with the problem of 

knowledge revision in systems based on a specific informed 

search strategy. We propose an approach of automatic knowledge 

revision for such systems.  

In part 2, we introduce the general context in which our work 

takes place and the difficulties that we must face. Part 3 is devoted 

to the presentation of our approach. Part 4 describes an 

application of our approach to cartographic generalisation. In this 

context, we present a real case study that we carried out as well as 

its results. Part 5 concludes and presents the perspectives for this 

work. 

2. CONTEXT 

2.1 Context and formalisation of the revision 

problem 

2.1.1 Description of the considered optimisation 

problems  
Many real world problems can be expressed as optimisation 

problems. The goal in this kind of problems is to find, among all 

possible solutions, the one that maximises an evaluation function.  

In this paper, we are interested in a family of optimisation 

problems, which consist in finding, by action application, the state 

of an entity that maximises an evaluation function.  

Let P be an optimisation problem class that is characterised by: 

 An entity class EP 

 {action}P: a set of actions that can be applied on an entity 

belonging to EP. The result of the application of an action is 

supposed non-predicable. 

 QP: a function that defines the state quality of an entity 

belonging to EP 

An optimisation problem p of class P is defined by an entity ep of 

class EP, which is characterised by its current state. Solving p 

consists in finding the state s of ep that optimises QP, by applying 

actions from {action}P to the initial state of ep. 

Let’s consider the following example: Let Probot be a class of 

problems where a robot, considering its initial position in a maze, 

seeks to find the. 

 EProbot : a kind of robot. A robot of the kind EP is 

characterised by its initial position in the maze. 



 {action}Probot: {move forward, turn left, turn right} 

 QProbot: distance separating the robot from the exit of a maze  

A problem of the class Probot is: Let eprobot be a robot of the kind 

EProbot with an initial position in the maze. Its goal is to find the 

exit or at least to reach the closest possible position to the exit.  

There are many ways to solve problems of this kind. In this paper, 

we are interested in systems that solve it by exploring a state tree 

by means of an informed strategy. Such systems are often used for 

real world problems thanks to their efficiency. In section 2.1.2, we 

present the generic system for which our revision approach is 

dedicated. Our revision approach could be used for other kinds of 

systems with some adaptations. 

2.1.2 Description of the considered systems 
The generic system is based on informed depth-first exploration of 

state trees. The passage from a state to another corresponds to the 

application of an action. Figure 1 presents the action cycle.  

It begins with the characterisation of the current state of the entity 

and its evaluation using the function QP. Then, the system tests if 

the current state is good enough or if it is necessary to continue 

the exploration of others states. If the system decides to continue 

the exploration, it tests if the current state is valid or not. If not, 

the entity backtracks to its previous state, otherwise, the system 

constructs a list of actions to apply. If the actions list is empty the 

entity backtracks to its previous state, otherwise the system 

chooses the best action, and applies it. Then it goes back to the 

first step. The action cycle ends when the stopping criterion is 

checked or when all actions have been applied for all valid states. 

 

Figure 1.Action cycle 

In this paper, we are interested in the pieces of procedural 

knowledge used to construct the actions list. One knowledge base 

KP is defined by optimisation problems class P. In many real 

world applications, knowledge is expressed by production rules. 

The interest of this kind of knowledge representation is to be 

easily interpretable by domain experts and thus to facilitate the 

knowledge validation and update. Therefore, we impose in our 

system the knowledge to be expressed by production rules.  

A knowledge base KP contains, for each action, a production rule 

base that defines, for each state and according to a measure set, if 

the action has to be applied and if so, with which weight. The 

higher the weight, the higher priority the action has (and thus will 

be applied first). The weight is an integer between 0 and 

WEIGHT_MAX (0: the action is not proposed for the state, 

WEIGHT_MAX: the action is applied first). A measure set is 

defined per action. Several actions can depend of the same 

measure set. The advantage of having one rule base per action and 

not a unique rule base for all actions is to facilitate the definition 

of the rules by domain experts, to have more readable knowledge 

base and to improve the modularity of the system: it makes it 

easier to update the knowledge base when removing or adding 

new actions.  

2.1.3 Formalisation of the knowledge revision  
We define a function perf(S,p) that evaluates the performance of a 

system S, for the resolution of a problem p. The function is linked 

to the effectiveness and the efficiency of S for the resolution of p 

and depends on the domain and on the users needs. 

We define, in the same way, a function Perf(S,P) that evaluates 

the performance of a system S, for the resolution of all problems 

of class P. The computation of the function demands to compute 

the function perf(S,p) for each p belonging to P. The knowledge 

revision problem then consists in finding for an optimisation 

problem class P, and with the help of the initial knowledge base, 

among all possible knowledge bases for P, the one that optimises 

Perf(S,P). 

In practice, most of the time, it is impossible to compute 

Perf(S,P). Indeed, it is rarely possible to compute perf(S,p) for 

each p belonging to P. Thus, we will just estimate Perf(S,P) on a 

sample of problems of class P. The more representative of all 

problems of P the problems composing the sample, the better the 

estimation will be. 

The choice of the sample has a major importance for the possible 

revision quality. 

2.2 Related works  
As we mention in part 2.1.2, we are interested in knowledge 

represented by productions rules. If many learning algorithms 

propose to induce production rules from examples labelled by 

experts, very few among them allow taking into account initial 

rules. However, a few works already dealt with this problem.  

Among them, a few are interested in the inductive knowledge-

base refinement. The objective of these works is to improve the 

expert system knowledge base. Most of them make the 

assumption that the knowledge base is almost valid and that only 

small improvements are needed [6]. Thus, some approaches 

propose to improve rule bases only by refining or deleting 

existing rules without giving the possibility to add new rules [9]. 

Others do not aim at refining rule bases directly, but aim at 

supporting the user during the refining process [1]. Many of these 

works are based on logical operators and thus rarely deal with 

noisy data [13]. Another drawback of many of these works is the 

increase of the number of rules [17] that can lead to readability 

problems. One common point of all these works is that they 

concern the revision of a unique rule base and do not allow 

revising several dependant rule bases simultaneously. It is thus 

not possible to directly apply these approaches to our revision 

problem. 

3. PROPOSED APPROACH 

3.1 General approach 
Our objective is to automatically revise the knowledge base of a 

system based on an informed tree search strategy. The system 



already has a defined initial knowledge base that has to be taken 

into account by the revision process. 

 

Figure 2.General approach 

Our revision approach is based on the analysis of the execution 

logs. We do not seek on-line knowledge revision. Our approach 

requires to stop the “normal” system functioning in order to 

activate the process with a minimal pruning and thus get the most 

complete and accurate information on the successes/failures met 

by each piece of knowledge (figure 2).  

 

Figure 3.Revision approach 

Our approach is composed of two stages (figure 3): 

 Exploration stage: consists in logging the process while the 

system solves a great number of problems with minimal 

pruning. This stage is composed of two sub-stages: 

• Selection of the problem sample 

• Resolution of the selected problems  and logging 

 Analysis stage: consists in analysing the logs obtained during 

the previous stage and in using it to revise the knowledge. This 

stage is composed of four sub-stages:  

• Construction of example sets by analysis of the problems 

solved during the exploration stage 

• Partitioning of the measure sets values into areas using 

the example sets (and taking into account the initial 

knowledge base) 

• Exploration of the space of possible weights to affect to 

each area, in order to find the best 

• Simplification of the rule bases by rule aggregation  

 

3.2 Exploration stage 
During this stage, the system solves a sample of problems with a 

minimal pruning. The pruning is defined so that the system, for 

each problem, constructs all possible states according to the 

actions set and to the initial state of the problem while ensuring 

the action cycle converge. In this way, it is be possible to simulate 

each possible knowledge base by rearranging the states, without 

having to run again the system with this knowledge set. 

This minimal pruning is chosen so the results obtained with it are 

independent of the initial pieces of knowledge: whichever the 

initial pieces of knowledge are, the state tree obtained with the 

minimal pruning is composed of the same states (which could be 

set in a different order). 

Concerning the choice of the problem sample, we use a sampling 

method that is not developped in this paper. 

3.3 Analysis stage 

3.3.1 Proposed approach 
During the analysis stage, the system revises the knowledge base 

thanks to the problems solved during the exploration stage. We 

propose to formulate the revision problem itself as a search 

problem. We will then search the knowledge base that optimises 

the function Perf(S,Pn) defined in part 2.1.3, with Pn, the sample 

of n problems solved during the exploration stage.  

Let us remind that we deal with the revision of the action 

application knowledge. Each action has a rule base, which defines 

the weight of the action for each value of its measure set (see part 

2.1.2). The difficulty comes from the distributed nature of this 

knowledge. Actually, if the application rule bases of each action 

are not dependent on each other in their expression (each action 

has a rule base which only depends on its own measure set), the 

results (the weight) can only be analysed if compared to the 

weight of the other actions. In fact, Given a system which has two 

actions A1 and A2 to solve a class of problems, knowing that, for a 

given entity state, the weight of A1 is equal to 4 has no meaning if 

we do not know that for the same entity state, A2 has a weight of 

3. Therefore, it is not possible to revise the knowledge of each 

action independently: we have to take into account all actions at 

the same time.  

In order to reduce the search space, we propose to decompose the 

measure set space into areas by partitioning it while taking into 

account the initial rules and information obtained from solved 

problems. For example, consider a system that can propose only 

the action A that depends on a measure set composed of just one 

real measure M. An example of partitioning can be to decompose 

the domain of M (and thus the measure set space of A) into two 

areas: (M < 0) and (M ≥ 0). 

The revision problem then consists in assigning, for each action, 

the best possible weight to each area of its measure set. We call 

solution, a complete assignment, for each action, of weights for 

each area of its measure set. After finding the best solution, it is 

possible to simplify the resulting rule bases by rule aggregation. 

The partitioning of the measure sets is based on the results 

obtained from the solved problems during the exploration stage. 

In fact, we build example sets from the solved problems and we 

use them for the measure sets decomposition. The next part 

introduces the construction of the example sets. 

3.3.2 Construction of the example sets 
The construction of the example sets is achieved by the analysis of 

the state trees obtained during the exploration stage. An example 

set is build per action. For each action, an example is composed of 

a state and is labelled with a “decision”. A state is described by 

the measure set linked to the action. A “decision” is either a 

“success” or a “failure”. We define the notion of best path: a best 

path is a sequence of at least two states, which has the root of a 



tree (or of a sub-tree) for initial state and the best state of this tree 

(or sub-tree) for final state. The construction of our example set 

for a state tree consists, in a first step, in extracting the best paths 

from the tree. The next step consists in analysing each state of 

each best path. If, from one of these states, one of the actions 

proposed leads to another state of the same best path, the action is 

noted as having a success. Otherwise, it is noted as having a 

failure. Figure 4 gives a simplified example of the example sets 

built from the resolution of a problem p with two actions A1 and 

A2. 

 

Figure 4.Example of a built example sets  

3.3.3 Partitioning of the measure set space 
Our general revision approach requires, as a first step, to partition 

the measure set into disjoint areas. The areas are defined by 

production rules.  

One constraint of this partitioning is to take into account the 

initial action application rules. We impose for that, that each rule 

defining a partition of the measure set space must be either one 

the initial rules or either a specialisation of one of the initial rules. 

The interest of this constraint is to keep the possibility to obtain 

rules similar to the initial rules after the revision process. Several 

approaches based on the utilisation of the example sets, can be 

used to solve this problem.  

The partitioning approach that we propose consists in discretising 

each measure, and in recomposing rules while taking into account 

the initial rules (the measures used and their cut). For example, 

consider an action A which is linked to two measures M1 and M2. 

Let the initial rules be:  

if (M1 < 5) then weight = 2 

if (M1 ≥ 5) and (M2 < 3) then weight = 1 

if (M1 ≥ 5) and (M2 ≥ 3) then weight = 0 

If the discretisation algorithm decomposes M1 in two areas {]-

∞;0] and ]0;∞[} and M2 into one area {]-∞, ∞[}, the resulting 

rules would be :   

if (M1 ≤ 0) then weight = 2 

if (M1 < 0)  and (M1 < 5) then weight = 2 

if (M1 ≥ 5) and (M2 < 3) then weight = 1 

if (M1 ≥ 5) and (M2 ≥ 3) then weight = 0 

Others approaches can be used for the partitioning. For example, 

it is possible to use a supervised learning algorithm to decompose 

the measure set to specialise them a posteriori by comparing them 

to the learnt rules. 

Once the partitioning carried out, the revision process consists in 

assigning, for each area of each measure set, the best possible 

weight. 

3.3.4 Exploring stage 
We defined our revision problem as an optimisation problem in 

which we search, for a given problem class P and a given system 

S, the solution sol among the possible solutions set Sol, that 

maximises the quality function Perf(Ssol,Pn). According to the fact 

that for each area, we have to assign a weight value between 0 and 

WEIGHT _MAX, the size of the solutions space (size of Sol) is 

equals to (1+ WEIGHT _MAX)number of areas.  

To help this search, we dispose of an initial solution (the initial 

knowledge base) that will often be good. There are numerous 

methods to solve a problem of this kind. Due to the size of the 

solution space, it is impossible to use a complete approach. Thus, 

we use an incomplete approach. Indeed, in order to solve this 

problem, we propose to use a reactive local search algorithm [3]. 

Others algorithms such as hill climbing, tabu search [10], 

simulated annealing [11], can also be used to solve this problem. 

The principle of this kind of algorithm is to start with an initial 

solution and try to improve it by exploring its neighbourhood. 

They are, most of the time, very effective for this kind of 

exploration problem. 

Local search approaches require defining a notion of 

neighbourhood for a solution. For our problem, it means the set of 

solutions for which only one of the areas will have its weight 

value changed with a neighbour value. For a given weight W, the 

neighbour weights are W + 1 and W - 1. 

3.3.5 Rule base simplification 
The exploring stage allows the system to assign a good weight to 

each area. The last step of the analysis stage consists in 

simplifying the obtained (revised) rules bases by aggregating the 

rules.  

For example, if the resulting weight assignment for an action is 

the following:  

if (M1 < 5) then weight = 1 

if (M1 ≥ 5) and (M2 < 3) then weight = 3 

if (M1 ≥ 5) and (M2 ≥ 3) then weight = 3, 

the last two rules are aggregated and the final rule base is: 

if (M1 < 5) then weight = 1 

if (M1 ≥ 5) then weight = 3 

4. APPLICATION TO CARTOGRAPHIC 

GENERALISATION 

4.1 Automatic cartographic generalisation 

 

Figure 5.Cartographic Generalisation 



Cartographic generalisation a process that aims at decreasing the 

level of details of geographic data in order to produce a map at a 

given scale. Figure 5 gives an example of cartographic 

generalisation. As illustrated in the figure, cartographic 

generalisation is not a simple size reduction. The application of 

numerous operations such as local scaling, displacements or 

elimination of objects are needed in order to ensure the readability 

of the map while keeping the essential information of the initial 

map.  

The automation of this process is a complex problem, which has 

been the core of numerous research works in the recent years. 

Some of these works try to solve it by a local, step-by-step and 

knowledge-based approach [4, 18]. The difficulty then consists in 

choosing the best sequence of generalisation operations to apply 

on the various geographic objects. An approach to solve this 

problem is to use an informed search. Nowadays, the procedural 

knowledge used to guide the search is entered ”by hand” by 

generalisation experts. Its tuning is often long and fastidious 

because it demands to face the problem of knowledge collecting 

and formalizing [18]. Several works have already used machine 

learning to learn the relevant procedural knowledge [12, 18] but 

few among them propose to automatically revise existing 

knowledge. One of them is [5] that proposes to use previously 

generalised objects to build a case base. Concerning the rule base 

revision, the only work existing is [15]. It proposes to use 

experience to learn new rules that are added in the system. This 

work does not propose to revise the existing rules, but just to add 

new ones. 

The automation of cartographic generalisation is a particularly 

interesting industrial application context. In fact, first, it is a 

problem which is far from being solved. Moreover, it directly 

concerns many mapping agencies that wish to improve their map 

production lines. Finally, it touches the problem of on-demand 

mapping that takes a more and more important place with the 

multiplication of the possibilities to create one’s own map on the 

web.  

4.2 The generalisation system 
The generalisation system that we use for our experiment is based 

on the AGENT model [2, 14] and follows the specification that 

we defined in part 2.2.2. It generalises a geographic object or a 

group of geographic objects by the mean of an informed tree 

search strategy.  

Each state represents the geometric state of the considered 

geographic objects and is evaluated by a satisfaction function, 

which translates the respect of cartographic constraints by the 

geographic objects. A cartographic constraint can be for a 

building to be big enough to be readable. The satisfaction of a 

state is ranged between 1 and 10 (10 represents a perfect state and 

a score lower than 5, a non acceptable state). The actions cycle 

used is the one presented figure 1. The stopping criterion is the 

following: the action cycle ends when the system reaches a perfect 

state (or when all possible states have been visited). The validity 

criterion depends of the cartographic constraints satisfaction 

improvement. The weight of the actions is ranged between 0 and 

5. 

4.3 Application of our revision approach 
We applied our revision approach to revise the action application 

knowledge of our generalisation system.  

Concerning the partitioning of the measure sets, we used the 

algorithm proposed by [8] to discretise the measures.   

We chose the reactive local search algorithm [3] for our search 

problem. 

The function Perf(SK,Pn) defined is the following : 














+×=

 StatesMean Nb of

factionMean Satis
),PPerf(S nK

1

10
3

4

1  

The mean satisfaction represents the effectiveness of the system. 

The higher the mean satisfaction, the more effective system is. 

The mean number of states represents the efficiency of the system. 

The higher the mean number of states, the less efficient the system 

is.  The function Perf(SK,Pn) is ranged between 0 (very bad 

results) and 1 (perfect results). We can explain this formula by the 

fact that the satisfaction is ranged between 1 and 10 and the 

number of state between 1 and ∞. In order to favour the 

effectiveness of the system rather than its efficiency, we introduce 

a factor 3 in favour of the satisfaction. 

4.4 Case study 
The real case study that we carried out concerned the 

generalisation of geographic object of the kind “building group”. 

The building group generalisation is an interesting case study 

because it is not yet well mastered and because it is very time 

consuming. 

We defined five actions for the building group generalisation as 

well as two knowledge bases: the first one is defined by a 

generalisation expert (Kexpert), the second one corresponds to the 

case where no actions are proposed for any state (KnoAction). The 

“expert” knowledge base revision corresponds to the classical 

scenario of knowledge revision where we have a good initial rule 

base that we want to refine. The revision of the “no action” 

knowledge base corresponds to the scenario where the initial 

knowledge base is the worst possible and where we want to 

acquire good knowledge to replace it. 

50 building groups were automatically selected among more than 

300 available for the revision process (the learning sample). We 

tested the initial and the revised knowledge on a different area 

than the one used for the revision (the test sample). The area used 

for the test was composed of 155 building groups.  

4.5 Results 

 

Figure 6.Revision results 

The results of this experiment (figure 6) show that our revision 

approach improved the system knowledge. In fact, with both 

Kexpert and KnoAction as initial knowledge, the results obtained with 



revised knowledge are better than the ones obtained with the 

initial knowledge base. These results validate our general 

approach. 

An interesting point concerns the way the initial knowledge base 

is taken into account. The revised knowledge obtained from the 

revision of Kexpert obtained better results than the one obtained 

from the revision of KnoAction. An explanation for that is that the 

expert integrated, in its knowledge base, information that was not 

present in the learning sample and that was kept by the revision 

process. This results show the interest of taking into consideration 

the initial knowledge base for the revision process.  

Figure 7 gives examples of building groups generalised with the 

different knowledge bases. These examples show that the 

generalisation obtained with both revised knowledge bases are 

better than the ones obtained with both initial knowledge bases. 

 

Figure 7. Building group generalisation examples 

5. CONCLUSION 
In this paper, we proposed a knowledge revision approach based 

on the exploration of the knowledge space. We showed the 

effectiveness and the efficiency of our approach on a real case 

study. 

If we revised the action application knowledge, we did not try to 

revise others pieces of knowledge like the validity criterion or the 

actions cycle ending criterion. Some adaptation of our approach 

could be proposed to revise as well this kind of knowledge. In the 

same way, adaptations could be proposed to revise knowledge 

expressed in others formalisms than production rules.  

A point that deserves more study is the problem sample choice. In 

fact, depending of the choice, the revision results that can be 

obtained can be very different in quality. Another point that 

deserves more study is the knowledge space partitioning. A bad 

partitioning does not allow to improve the initial knowledge. 
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