
HAL Id: hal-00690198
https://hal.science/hal-00690198

Submitted on 22 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Knowledge revision in systems based on an informed
tree search strategy : application to cartographic

generalisation
Patrick Taillandier, Cécile Duchêne, Alexis Drogoul

To cite this version:
Patrick Taillandier, Cécile Duchêne, Alexis Drogoul. Knowledge revision in systems based on an in-
formed tree search strategy : application to cartographic generalisation. Knowledge Revision; Problem
Solving; Informed Tree Search Strategy; Cartographic Generalisation., 2008, Paris, France. pp.273-
278, �10.1145/1456223.1456281�. �hal-00690198�

https://hal.science/hal-00690198
https://hal.archives-ouvertes.fr

Knowledge revision in systems based on an informed tree
search strategy: application to cartographic generalisation

Patrick Taillandier
COGIT IGN

2/4 avenue Pasteur
94165 Saint-Mandé Cedex - France

Patrick.taillandier@gmail.com

Cécile Duchêne
COGIT IGN

2/4 avenue Pasteur
94165 Saint-Mandé Cedex - France

cecile.duchene@ign.fr

Alexis Drogoul
IRD, UR 079

FI/MSI, ngo 42 Ta Quang Buu, Hai
Ba Trung, Ha Noi, Viet Nam

alexis.drogoul@gmail.com

ABSTRACT

Many real world problems can be expressed as optimisation

problems. Solving this kind of problems means to find, among all

possible solutions, the one that maximises an evaluation function.

One approach to solve this kind of problem is to use an informed

search strategy. The principle of this kind of strategy is to use

problem-specific knowledge beyond the definition of the problem

itself to find solutions more efficiently than with an uninformed

strategy. This kind of strategy demands to define problem-specific

knowledge (heuristics). The efficiency and the effectiveness of

systems based on it directly depend on the used knowledge

quality. Unfortunately, acquiring and maintaining such knowledge

can be fastidious. The objective of the work presented in this

paper is to propose an automatic knowledge revision approach for

systems based on an informed tree search strategy. Our approach

consists in analysing the system execution logs and revising

knowledge based on these logs by modelling the revision problem

as a knowledge space exploration problem. We present an

experiment we carried out in an application domain where

informed search strategies are often used: cartographic

generalisation.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control methods

and Search – Graph and tree search strategies, Heuristic methods

General Terms
Algorithms, Experimentation, Theory.

Keywords
Knowledge Revision, Problem Solving, Informed Tree Search

Strategy, Cartographic Generalisation.

1. INTRODUCTION
Problem-solving is one of the central topics of artificial

intelligence. Among solving approaches, some are based on an

informed search strategy. The principle of this kind of strategy is

to use problem-specific knowledge (heuristics) beyond the

definition of the problem itself to find solutions more efficiently

than with an uninformed strategy.

The efficiency of systems based on this kind of strategy directly

depends on the used knowledge quality. Unfortunately, it is

usually very difficult to acquire expert knowledge. Eward

Feigenbaum formulated this problem in 1977 as the knowledge

acquisition bottleneck problem. Indeed, the expert knowledge is

rarely formalised and its translation into a formalism usable by

computers is very complex.

The work presented in this paper deals with the problem of

knowledge revision in systems based on a specific informed

search strategy. We propose an approach of automatic knowledge

revision for such systems.

In part 2, we introduce the general context in which our work

takes place and the difficulties that we must face. Part 3 is devoted

to the presentation of our approach. Part 4 describes an

application of our approach to cartographic generalisation. In this

context, we present a real case study that we carried out as well as

its results. Part 5 concludes and presents the perspectives for this

work.

2. CONTEXT

2.1 Context and formalisation of the revision

problem

2.1.1 Description of the considered optimisation

problems
Many real world problems can be expressed as optimisation

problems. The goal in this kind of problems is to find, among all

possible solutions, the one that maximises an evaluation function.

In this paper, we are interested in a family of optimisation

problems, which consist in finding, by action application, the state

of an entity that maximises an evaluation function.

Let P be an optimisation problem class that is characterised by:

 An entity class EP

 {action}P: a set of actions that can be applied on an entity

belonging to EP. The result of the application of an action is

supposed non-predicable.

 QP: a function that defines the state quality of an entity

belonging to EP

An optimisation problem p of class P is defined by an entity ep of

class EP, which is characterised by its current state. Solving p

consists in finding the state s of ep that optimises QP, by applying

actions from {action}P to the initial state of ep.

Let’s consider the following example: Let Probot be a class of

problems where a robot, considering its initial position in a maze,

seeks to find the.

 EProbot : a kind of robot. A robot of the kind EP is

characterised by its initial position in the maze.

 {action}Probot: {move forward, turn left, turn right}

 QProbot: distance separating the robot from the exit of a maze

A problem of the class Probot is: Let eprobot be a robot of the kind

EProbot with an initial position in the maze. Its goal is to find the

exit or at least to reach the closest possible position to the exit.

There are many ways to solve problems of this kind. In this paper,

we are interested in systems that solve it by exploring a state tree

by means of an informed strategy. Such systems are often used for

real world problems thanks to their efficiency. In section 2.1.2, we

present the generic system for which our revision approach is

dedicated. Our revision approach could be used for other kinds of

systems with some adaptations.

2.1.2 Description of the considered systems
The generic system is based on informed depth-first exploration of

state trees. The passage from a state to another corresponds to the

application of an action. Figure 1 presents the action cycle.

It begins with the characterisation of the current state of the entity

and its evaluation using the function QP. Then, the system tests if

the current state is good enough or if it is necessary to continue

the exploration of others states. If the system decides to continue

the exploration, it tests if the current state is valid or not. If not,

the entity backtracks to its previous state, otherwise, the system

constructs a list of actions to apply. If the actions list is empty the

entity backtracks to its previous state, otherwise the system

chooses the best action, and applies it. Then it goes back to the

first step. The action cycle ends when the stopping criterion is

checked or when all actions have been applied for all valid states.

Figure 1.Action cycle

In this paper, we are interested in the pieces of procedural

knowledge used to construct the actions list. One knowledge base

KP is defined by optimisation problems class P. In many real

world applications, knowledge is expressed by production rules.

The interest of this kind of knowledge representation is to be

easily interpretable by domain experts and thus to facilitate the

knowledge validation and update. Therefore, we impose in our

system the knowledge to be expressed by production rules.

A knowledge base KP contains, for each action, a production rule

base that defines, for each state and according to a measure set, if

the action has to be applied and if so, with which weight. The

higher the weight, the higher priority the action has (and thus will

be applied first). The weight is an integer between 0 and

WEIGHT_MAX (0: the action is not proposed for the state,

WEIGHT_MAX: the action is applied first). A measure set is

defined per action. Several actions can depend of the same

measure set. The advantage of having one rule base per action and

not a unique rule base for all actions is to facilitate the definition

of the rules by domain experts, to have more readable knowledge

base and to improve the modularity of the system: it makes it

easier to update the knowledge base when removing or adding

new actions.

2.1.3 Formalisation of the knowledge revision
We define a function perf(S,p) that evaluates the performance of a

system S, for the resolution of a problem p. The function is linked

to the effectiveness and the efficiency of S for the resolution of p

and depends on the domain and on the users needs.

We define, in the same way, a function Perf(S,P) that evaluates

the performance of a system S, for the resolution of all problems

of class P. The computation of the function demands to compute

the function perf(S,p) for each p belonging to P. The knowledge

revision problem then consists in finding for an optimisation

problem class P, and with the help of the initial knowledge base,

among all possible knowledge bases for P, the one that optimises

Perf(S,P).

In practice, most of the time, it is impossible to compute

Perf(S,P). Indeed, it is rarely possible to compute perf(S,p) for

each p belonging to P. Thus, we will just estimate Perf(S,P) on a

sample of problems of class P. The more representative of all

problems of P the problems composing the sample, the better the

estimation will be.

The choice of the sample has a major importance for the possible

revision quality.

2.2 Related works
As we mention in part 2.1.2, we are interested in knowledge

represented by productions rules. If many learning algorithms

propose to induce production rules from examples labelled by

experts, very few among them allow taking into account initial

rules. However, a few works already dealt with this problem.

Among them, a few are interested in the inductive knowledge-

base refinement. The objective of these works is to improve the

expert system knowledge base. Most of them make the

assumption that the knowledge base is almost valid and that only

small improvements are needed [6]. Thus, some approaches

propose to improve rule bases only by refining or deleting

existing rules without giving the possibility to add new rules [9].

Others do not aim at refining rule bases directly, but aim at

supporting the user during the refining process [1]. Many of these

works are based on logical operators and thus rarely deal with

noisy data [13]. Another drawback of many of these works is the

increase of the number of rules [17] that can lead to readability

problems. One common point of all these works is that they

concern the revision of a unique rule base and do not allow

revising several dependant rule bases simultaneously. It is thus

not possible to directly apply these approaches to our revision

problem.

3. PROPOSED APPROACH

3.1 General approach
Our objective is to automatically revise the knowledge base of a

system based on an informed tree search strategy. The system

already has a defined initial knowledge base that has to be taken

into account by the revision process.

Figure 2.General approach

Our revision approach is based on the analysis of the execution

logs. We do not seek on-line knowledge revision. Our approach

requires to stop the “normal” system functioning in order to

activate the process with a minimal pruning and thus get the most

complete and accurate information on the successes/failures met

by each piece of knowledge (figure 2).

Figure 3.Revision approach

Our approach is composed of two stages (figure 3):

 Exploration stage: consists in logging the process while the

system solves a great number of problems with minimal

pruning. This stage is composed of two sub-stages:

• Selection of the problem sample

• Resolution of the selected problems and logging

 Analysis stage: consists in analysing the logs obtained during

the previous stage and in using it to revise the knowledge. This

stage is composed of four sub-stages:

• Construction of example sets by analysis of the problems

solved during the exploration stage

• Partitioning of the measure sets values into areas using

the example sets (and taking into account the initial

knowledge base)

• Exploration of the space of possible weights to affect to

each area, in order to find the best

• Simplification of the rule bases by rule aggregation

3.2 Exploration stage
During this stage, the system solves a sample of problems with a

minimal pruning. The pruning is defined so that the system, for

each problem, constructs all possible states according to the

actions set and to the initial state of the problem while ensuring

the action cycle converge. In this way, it is be possible to simulate

each possible knowledge base by rearranging the states, without

having to run again the system with this knowledge set.

This minimal pruning is chosen so the results obtained with it are

independent of the initial pieces of knowledge: whichever the

initial pieces of knowledge are, the state tree obtained with the

minimal pruning is composed of the same states (which could be

set in a different order).

Concerning the choice of the problem sample, we use a sampling

method that is not developped in this paper.

3.3 Analysis stage

3.3.1 Proposed approach
During the analysis stage, the system revises the knowledge base

thanks to the problems solved during the exploration stage. We

propose to formulate the revision problem itself as a search

problem. We will then search the knowledge base that optimises

the function Perf(S,Pn) defined in part 2.1.3, with Pn, the sample

of n problems solved during the exploration stage.

Let us remind that we deal with the revision of the action

application knowledge. Each action has a rule base, which defines

the weight of the action for each value of its measure set (see part

2.1.2). The difficulty comes from the distributed nature of this

knowledge. Actually, if the application rule bases of each action

are not dependent on each other in their expression (each action

has a rule base which only depends on its own measure set), the

results (the weight) can only be analysed if compared to the

weight of the other actions. In fact, Given a system which has two

actions A1 and A2 to solve a class of problems, knowing that, for a

given entity state, the weight of A1 is equal to 4 has no meaning if

we do not know that for the same entity state, A2 has a weight of

3. Therefore, it is not possible to revise the knowledge of each

action independently: we have to take into account all actions at

the same time.

In order to reduce the search space, we propose to decompose the

measure set space into areas by partitioning it while taking into

account the initial rules and information obtained from solved

problems. For example, consider a system that can propose only

the action A that depends on a measure set composed of just one

real measure M. An example of partitioning can be to decompose

the domain of M (and thus the measure set space of A) into two

areas: (M < 0) and (M ≥ 0).

The revision problem then consists in assigning, for each action,

the best possible weight to each area of its measure set. We call

solution, a complete assignment, for each action, of weights for

each area of its measure set. After finding the best solution, it is

possible to simplify the resulting rule bases by rule aggregation.

The partitioning of the measure sets is based on the results

obtained from the solved problems during the exploration stage.

In fact, we build example sets from the solved problems and we

use them for the measure sets decomposition. The next part

introduces the construction of the example sets.

3.3.2 Construction of the example sets
The construction of the example sets is achieved by the analysis of

the state trees obtained during the exploration stage. An example

set is build per action. For each action, an example is composed of

a state and is labelled with a “decision”. A state is described by

the measure set linked to the action. A “decision” is either a

“success” or a “failure”. We define the notion of best path: a best

path is a sequence of at least two states, which has the root of a

tree (or of a sub-tree) for initial state and the best state of this tree

(or sub-tree) for final state. The construction of our example set

for a state tree consists, in a first step, in extracting the best paths

from the tree. The next step consists in analysing each state of

each best path. If, from one of these states, one of the actions

proposed leads to another state of the same best path, the action is

noted as having a success. Otherwise, it is noted as having a

failure. Figure 4 gives a simplified example of the example sets

built from the resolution of a problem p with two actions A1 and

A2.

Figure 4.Example of a built example sets

3.3.3 Partitioning of the measure set space
Our general revision approach requires, as a first step, to partition

the measure set into disjoint areas. The areas are defined by

production rules.

One constraint of this partitioning is to take into account the

initial action application rules. We impose for that, that each rule

defining a partition of the measure set space must be either one

the initial rules or either a specialisation of one of the initial rules.

The interest of this constraint is to keep the possibility to obtain

rules similar to the initial rules after the revision process. Several

approaches based on the utilisation of the example sets, can be

used to solve this problem.

The partitioning approach that we propose consists in discretising

each measure, and in recomposing rules while taking into account

the initial rules (the measures used and their cut). For example,

consider an action A which is linked to two measures M1 and M2.

Let the initial rules be:

if (M1 < 5) then weight = 2

if (M1 ≥ 5) and (M2 < 3) then weight = 1

if (M1 ≥ 5) and (M2 ≥ 3) then weight = 0

If the discretisation algorithm decomposes M1 in two areas {]-

∞;0] and]0;∞[} and M2 into one area {]-∞, ∞[}, the resulting

rules would be :

if (M1 ≤ 0) then weight = 2

if (M1 < 0) and (M1 < 5) then weight = 2

if (M1 ≥ 5) and (M2 < 3) then weight = 1

if (M1 ≥ 5) and (M2 ≥ 3) then weight = 0

Others approaches can be used for the partitioning. For example,

it is possible to use a supervised learning algorithm to decompose

the measure set to specialise them a posteriori by comparing them

to the learnt rules.

Once the partitioning carried out, the revision process consists in

assigning, for each area of each measure set, the best possible

weight.

3.3.4 Exploring stage
We defined our revision problem as an optimisation problem in

which we search, for a given problem class P and a given system

S, the solution sol among the possible solutions set Sol, that

maximises the quality function Perf(Ssol,Pn). According to the fact

that for each area, we have to assign a weight value between 0 and

WEIGHT _MAX, the size of the solutions space (size of Sol) is

equals to (1+ WEIGHT _MAX)number of areas.

To help this search, we dispose of an initial solution (the initial

knowledge base) that will often be good. There are numerous

methods to solve a problem of this kind. Due to the size of the

solution space, it is impossible to use a complete approach. Thus,

we use an incomplete approach. Indeed, in order to solve this

problem, we propose to use a reactive local search algorithm [3].

Others algorithms such as hill climbing, tabu search [10],

simulated annealing [11], can also be used to solve this problem.

The principle of this kind of algorithm is to start with an initial

solution and try to improve it by exploring its neighbourhood.

They are, most of the time, very effective for this kind of

exploration problem.

Local search approaches require defining a notion of

neighbourhood for a solution. For our problem, it means the set of

solutions for which only one of the areas will have its weight

value changed with a neighbour value. For a given weight W, the

neighbour weights are W + 1 and W - 1.

3.3.5 Rule base simplification
The exploring stage allows the system to assign a good weight to

each area. The last step of the analysis stage consists in

simplifying the obtained (revised) rules bases by aggregating the

rules.

For example, if the resulting weight assignment for an action is

the following:

if (M1 < 5) then weight = 1

if (M1 ≥ 5) and (M2 < 3) then weight = 3

if (M1 ≥ 5) and (M2 ≥ 3) then weight = 3,

the last two rules are aggregated and the final rule base is:

if (M1 < 5) then weight = 1

if (M1 ≥ 5) then weight = 3

4. APPLICATION TO CARTOGRAPHIC

GENERALISATION

4.1 Automatic cartographic generalisation

Figure 5.Cartographic Generalisation

Cartographic generalisation a process that aims at decreasing the

level of details of geographic data in order to produce a map at a

given scale. Figure 5 gives an example of cartographic

generalisation. As illustrated in the figure, cartographic

generalisation is not a simple size reduction. The application of

numerous operations such as local scaling, displacements or

elimination of objects are needed in order to ensure the readability

of the map while keeping the essential information of the initial

map.

The automation of this process is a complex problem, which has

been the core of numerous research works in the recent years.

Some of these works try to solve it by a local, step-by-step and

knowledge-based approach [4, 18]. The difficulty then consists in

choosing the best sequence of generalisation operations to apply

on the various geographic objects. An approach to solve this

problem is to use an informed search. Nowadays, the procedural

knowledge used to guide the search is entered ”by hand” by

generalisation experts. Its tuning is often long and fastidious

because it demands to face the problem of knowledge collecting

and formalizing [18]. Several works have already used machine

learning to learn the relevant procedural knowledge [12, 18] but

few among them propose to automatically revise existing

knowledge. One of them is [5] that proposes to use previously

generalised objects to build a case base. Concerning the rule base

revision, the only work existing is [15]. It proposes to use

experience to learn new rules that are added in the system. This

work does not propose to revise the existing rules, but just to add

new ones.

The automation of cartographic generalisation is a particularly

interesting industrial application context. In fact, first, it is a

problem which is far from being solved. Moreover, it directly

concerns many mapping agencies that wish to improve their map

production lines. Finally, it touches the problem of on-demand

mapping that takes a more and more important place with the

multiplication of the possibilities to create one’s own map on the

web.

4.2 The generalisation system
The generalisation system that we use for our experiment is based

on the AGENT model [2, 14] and follows the specification that

we defined in part 2.2.2. It generalises a geographic object or a

group of geographic objects by the mean of an informed tree

search strategy.

Each state represents the geometric state of the considered

geographic objects and is evaluated by a satisfaction function,

which translates the respect of cartographic constraints by the

geographic objects. A cartographic constraint can be for a

building to be big enough to be readable. The satisfaction of a

state is ranged between 1 and 10 (10 represents a perfect state and

a score lower than 5, a non acceptable state). The actions cycle

used is the one presented figure 1. The stopping criterion is the

following: the action cycle ends when the system reaches a perfect

state (or when all possible states have been visited). The validity

criterion depends of the cartographic constraints satisfaction

improvement. The weight of the actions is ranged between 0 and

5.

4.3 Application of our revision approach
We applied our revision approach to revise the action application

knowledge of our generalisation system.

Concerning the partitioning of the measure sets, we used the

algorithm proposed by [8] to discretise the measures.

We chose the reactive local search algorithm [3] for our search

problem.

The function Perf(SK,Pn) defined is the following :














+×=

 StatesMean Nb of

factionMean Satis
),PPerf(S nK

1

10
3

4

1

The mean satisfaction represents the effectiveness of the system.

The higher the mean satisfaction, the more effective system is.

The mean number of states represents the efficiency of the system.

The higher the mean number of states, the less efficient the system

is. The function Perf(SK,Pn) is ranged between 0 (very bad

results) and 1 (perfect results). We can explain this formula by the

fact that the satisfaction is ranged between 1 and 10 and the

number of state between 1 and ∞. In order to favour the

effectiveness of the system rather than its efficiency, we introduce

a factor 3 in favour of the satisfaction.

4.4 Case study
The real case study that we carried out concerned the

generalisation of geographic object of the kind “building group”.

The building group generalisation is an interesting case study

because it is not yet well mastered and because it is very time

consuming.

We defined five actions for the building group generalisation as

well as two knowledge bases: the first one is defined by a

generalisation expert (Kexpert), the second one corresponds to the

case where no actions are proposed for any state (KnoAction). The

“expert” knowledge base revision corresponds to the classical

scenario of knowledge revision where we have a good initial rule

base that we want to refine. The revision of the “no action”

knowledge base corresponds to the scenario where the initial

knowledge base is the worst possible and where we want to

acquire good knowledge to replace it.

50 building groups were automatically selected among more than

300 available for the revision process (the learning sample). We

tested the initial and the revised knowledge on a different area

than the one used for the revision (the test sample). The area used

for the test was composed of 155 building groups.

4.5 Results

Figure 6.Revision results

The results of this experiment (figure 6) show that our revision

approach improved the system knowledge. In fact, with both

Kexpert and KnoAction as initial knowledge, the results obtained with

revised knowledge are better than the ones obtained with the

initial knowledge base. These results validate our general

approach.

An interesting point concerns the way the initial knowledge base

is taken into account. The revised knowledge obtained from the

revision of Kexpert obtained better results than the one obtained

from the revision of KnoAction. An explanation for that is that the

expert integrated, in its knowledge base, information that was not

present in the learning sample and that was kept by the revision

process. This results show the interest of taking into consideration

the initial knowledge base for the revision process.

Figure 7 gives examples of building groups generalised with the

different knowledge bases. These examples show that the

generalisation obtained with both revised knowledge bases are

better than the ones obtained with both initial knowledge bases.

Figure 7. Building group generalisation examples

5. CONCLUSION
In this paper, we proposed a knowledge revision approach based

on the exploration of the knowledge space. We showed the

effectiveness and the efficiency of our approach on a real case

study.

If we revised the action application knowledge, we did not try to

revise others pieces of knowledge like the validity criterion or the

actions cycle ending criterion. Some adaptation of our approach

could be proposed to revise as well this kind of knowledge. In the

same way, adaptations could be proposed to revise knowledge

expressed in others formalisms than production rules.

A point that deserves more study is the problem sample choice. In

fact, depending of the choice, the revision results that can be

obtained can be very different in quality. Another point that

deserves more study is the knowledge space partitioning. A bad

partitioning does not allow to improve the initial knowledge.

6. REFERENCES
[1] Atzmüller M., Baumeister J. and Puppe F. 2006.

Introspective Subgroup Analysis for Interactive Knowledge

Refinement. FLAIRS. 402-407

[2] Barrault M., Regnauld N., Duchêne C., Haire K., Baejis C.,

Demazeau Y., Hardy P., Mackaness W., Ruas A. and Weibel

R. 2001. Integrating multi-agent, object-oriented, and

algorithmic techniques for improved automated map

generalisation’, ICC, 3, 2100–2116.

[3] Battiti Y. and Protasi M. 2001. Reactive local search for the

maximum clique problem, Algorithmica, 29, 610–637.

[4] Brassel K. and Weibel R. 1988. A review and conceptual

framework of automated map generalization’, IJGIS.

[5] Burghardt D. and Neun M. 2006. Automated sequencing of

generalization services based on collaborative filtering,

GIScience.

[6] Carbonara L. and Sleeman D. 1999. Effective and Efficient

Knowledge Base Refinement. Machine Learning. 37

[7] Dempster A. P., Laird, N. M. and Rubin D. B. 1977.

Maximum likelihood from incomplete data via the em

algorithm (with discussion). Journal of the Royal Statistical

Society, B 39 :1–38.

[8] Fayyad U.M. and Irani K.B. 1992. On the Handling of

Continuous-Valued Attributed in Decision Tree Generation,

Machine learning, 8, 87-102.

[9] Ginsberg A., Weiss S. M. and Politakis P. 1988. Automatic

knowledge base refinement for classification systems.

Artificial Intelligence, 35, 197-226.

[10] Glover F. 1989. Tabu search, Journal on Computing.

[11] Kirkpatrick S., Gelatt C.D. and Vecchi M.P. 1983.

Optimization by Simulated Annealing, Science.

[12] Mustière S. 2005. Cartographic generalization of roads in a

local and adaptive approach : A knowledge acquisition

problem. ISGIS, vol. 19, n.8-9, sept-oct.2005, pp.937-955.

[13] Ourston D. and Mooney R. J. 1990. Changing the rules: A

comprehensive approach to theory refinement. AAAJ-90.

[14] Ruas A. 1999. Modèle de généralisation de données

géographiques à base de contraintes et d’autonomie, Thèse

de l’UMLV.

[15] Ruas A., Dyèvre A., Duchêne C. and Taillandier P. 2006.

Methods for improving and updating the knowledge of a

generalization system, Autocarto.

[16] Ruas A. and Duchêne C. 2007. A Prototype Generalisation

System Based on the Multi-Agent Paradigm’, Generalisation

of Geographic Information: Cartographic Modelling and

Applications.

[17] Webb G.I. 1993. DLGref2: Techniques for Inductive Rule

Refinement. IJCAI Workshop W16: Machine Learning and

Knowledge Acquisition.

[18] Weibel R., Keller S. and Reichenbacher T. 1995.

Overcoming the Knowledge Acquisition Bottleneck in Map

Generalization : the Role of Interactive Systems and

Computational Intelligence’ knowledge of generalization,

COSIT, 13

