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Abstract - In this chapter, we focused on the posture estimation problem of a body moving in 

3D space. This study is devoted to the reconstruction of the body attitude and Dynamic Body 

Acceleration (DBA) in free ranging animal (application in Bio-logging) where the access to GPS 

locations is limited or impossible. A quaternion-based complementary filter is designed to 

provide a viable attitude estimation method. We claim that this approach is an alternative to 

overcome the limitations of the Extended Kalman Filter (EKF). The complementary filter 

processes data from small inertial/magnetic sensor modules that contains triaxial gyroscopes, 

accelerometers, and magnetometers without resorting to GPS data. The proposed algorithm 

incorporates a motion kinematic model and adopts a two-layer filter architecture. In the latter, the 

Levenberg Marquardt Algorithm (LMA) pre-processes acceleration and local magnetic field 

measurements to produce what will be called the modelling error. This error together with the 

angular rate measurements becomes measurement signals for the complementary filter. By this 

way, the overall approach design is greatly simplified. The efficiency of the approach is 

experimentally investigated through a free motion of animal. The complementary filter 

performance is shown also quantitatively using the Root Mean Square Difference (RMSD). The 

estimated attitude is used after to calculate the DBA for future evaluation of the energetic index 

of animal and its 3D position.  

 

 

 

Key words - Attitude and posture estimation, quaternion, MEMS inertial and magnetic sensors, 

multi-sensors data fusion, complementary filter, Bio-logging. 
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1. Introduction 

The rigid body attitude and orientation estimation problems are highly motivated from various 

applications. For example, in rehabilitation and biomedical engineering (Zhou et al. 2006), the 

attitude is used in stroke rehabilitation exercises to record patient’s movements in order to 

provide adequate feedback for the therapist. In human motion tracking and biomechanics 

(O’Donovan et al. 2007), the attitude serves as a tool for physicians to perform long-term 

monitoring of the patients and to study human movements during everyday activities. Moreover, 

the attitude estimation is extensively used in tracking of handheld microsurgical instrument (Ang 

et al. 2004). In aerial and marine vehicles (Mahony et al. 2008), the attitude is used to achieve a 

stable controller. 

Recently, the problem of attitude and orientation tracking has been treated in Bio-logging. The 

latter stands in the intersection of animal behavior and bioengineering and aims at obtaining new 

information from the natural world and providing new insights into the hidden lives of animal’s 

species (Rutz and Hays 2009; Ropert-Coudert et al. 2009). Bio-logging generally involves a free-

ranging animal-attached electronic device (called also bio-logger) that records aspects of the 

animal’s biology (behavior, movement, physiology) (Halsey et al. 2007; Bost et al. 2007) and its 

environment. Thirty years ago, several tagging technologies such as satellite tracking (the Argos 

system) (Le Boeuf et al. 2009) and Time-Depth-Recorders (TDRs) (Kooyman 2004) have been 

used to provide a basic knowledge on the function of free-ranging organisms. The recent 

advances in electronic miniaturization, sensors and digital information processing allowed 

researchers studying animal’s biology with a high level of detail and across the full range of 

ecological scales. 

Many marine and terrestrial animals are studied during their daily activities. The posture and 
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orientation tracking of these free-ranging animals represents one of the recent biology aspects 

studied in Bio-logging. Indeed, some scientific researches started to focus on this topic using 

low-cost sensors based on Micro Electro-Mechanical System (MEMS) technology as a 3-axis 

accelerometer and a 3-axis magnetometer. The obvious advantage of this new approach is the 

gain access to the third dimension space, which is the key to a good understanding of the diving 

strategies observed in these predators (Elkaim et al. 2006). The main question to answer is how it 

is possible to extract the gravity components of the body animal (Johnson and Tyack 2003; 

Watanabe et al. 2005; Wilson et al. 2008)? This information is exploited after to deduce the 

corresponding attitude and consequently the DBA.  

In this chapter, we propose the addition of 3-axis gyroscope measurements to the sensors already 

used (a 3-axis accelerometer and a 3-axis magnetometer) in Bio-logging. The use of gyroscope 

with accelerometer and magnetometer, mounted in triad configuration, in Bio-logging has not 

been considered yet in the author’s knowledge. In our opinion, it can improve the estimation 

precision of the attitude especially during dynamic situation of the animal motion (Mahony et al. 

2008; Fourati et al. 2009; Fourati et al. 2011(a)). The main idea of the algorithm is to use a 

complementary filter coupled with a Levenberg Marquardt Algorithm (LMA) to process the 

measurements from a 3-axis gyroscope, a 3-axis magnetometer and a 3-axis accelerometer. The 

proposed approach combines a strap-down system, based on the time integral of the angular 

velocity, with the LMA that uses the Earth’s magnetic field and the gravity vector to compensate 

the attitude predicted by the gyroscope. It is important to note that the resulting structure is 

complementary: high bandwidth rate gyro measurements are combined with low bandwidth vector 

observations (gravity and Earth’s magnetic field) to provide an accurate attitude estimate. Thanks 

to the knowledge of the estimated attitude, it is now possible to reconstitute the DBA of the 
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animal in order to evaluate its daily diary (Wilson et al. 2008) (sleeping, walking/flying, running, 

and hunting) and provide important insights into some of the stresses faced by free-ranging 

animals especially the King Penguin and Badger. Based on the values of DBA, the problem of 3D 

position estimation in the case of pedestrian locomotion can be addressed in future works in Bio-

logging to reconstruct the trajectory of animal.  

This chapter is organized as follows: section 2 describes the problem statement and our 

motivations for motion estimation in Bio-logging. Section 3 details the attitude parameterization 

and the sensor measurement models used in this work. Section 4 details the structure of the 

proposed complementary filter for the attitude estimation. Section 5 is devoted to experimental 

results and comparisons to illustrate the effectiveness of the proposed algorithm. Finally, section 6 

summarizes the main conclusions of the chapter. 

2. Motivations and problem formulation 

Recent technological advances have revolutionized the approach of the animals in their 

environment, and have enabled researchers in biology and eco-physiology to leave their 

laboratories to study these adaptations on the animal models living freely in their natural 

environment. Bio-logging has been introduced as the science that studies the behavior, 

physiology, ecology and environment properties of free-living animals (bioclimatic, global 

change, etc…) that are often beyond the border of our visibility or experience. Bio-logging has 

found its origin in the marine environment (Kooyman 2004) and has diversified into the study of 

flying and terrestrial species. This scientific area refers often to the study of free-ranging animals 

in their natural environment through miniaturized electronic devices, called bio-loggers (Naito, 

2004), and usually attached to their bodies. These systems measure and record biological 

parameters or physico-chemical properties related to the individual and/or its environment using 
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various types of sensors (luminosity, pressure, velocity, etc…). The loggers provide time 

tracking of physical and biological parameters over periods ranging from several hours to several 

months or sometimes a year and at sampling rates ranging from minutes to several times per 

second. The King Penguin and Badger are the major biological models studied in Strasbourg 

University thanks to the Bio-logging technology. Biologists are recently interested to reconstruct 

the motion of these animals (3D attitude and position) under several acceleration profiles, to be 

able to study their behaviour during long periods. 

In this chapter, one is interested to propose a robust alternative approach to estimate the attitude 

or orientation of rigid body (Fourati 2010), which represents the animal body, to be applied after 

in the case of penguin (see Fig. 1). To achieve this goal, we use a wearable inertial and magnetic 

MEMS sensors assembly based on an IMU composed of a 3-axis accelerometer, a 3-axis 

magnetometer and a 3-axis gyroscope. Furthermore, the estimated attitude is used to calculate 

three components of DBA of the animal, which provides for biologists important information 

about the energy budgets of free-living animals. This work will serve in future to address the 

problem of 3D position estimation in the case of animal pedestrian locomotion, based on attitude 

and DBA estimations.  

3. Materials and methods 

3.1. Rigid body attitude and coordinate systems 

A rigid body is considered as a solid formed from a finite set of material points with deformable 

volume (Goldstein 1980). Generally, the rigid body attitude represents the direction of its 

principal axes relative to a reference coordinate system and its dynamics expresses the change of 

object orientation. In the navigation field, the attitude estimation problem requires the 

transformation of measured and computed quantities between various frames. The rigid body 
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attitude is based on measurements gained from sensors attached to this latter. Indeed, inertial 

sensors (accelerometer, gyroscope, etc…) are attached to the body-platform and provide inertial 

measurements expressed relative to the instrument axes. In most systems, the instrument axes are 

nominally aligned with the body-platform axes. Since the measurements are performed in the 

body frame, we describe in Fig. 2 the orientation of the body-fixed frame ( ), ,B B BB X Y Z  with 

respect to the Earth-fixed frame ( ), ,N N NN X Y Z , which is tangent to the Earth’s surface (Local 

Tangent Plane, LTP). This local coordinate is particularly useful to express the attitude of a 

moving rigid body on the surface of the Earth (Grewal 2001). The NX -axis points true north. 

The NZ -axis points towards the interior of the Earth, perpendicular to the reference ellipsoid. 

The NY -axis completes the right-handed coordinate system, pointing East (NED: North, East, 

Down). 

3.2. Mathematical model of attitude representation 

In this chapter, the quaternion algebra is used to describe the rigid body attitude. The unit 

quaternion, denoted by q , is expressed as: 

   0 0 1 2 31vectq q q q q i q j q k H= + = + + + ∈     (1) 

where 1 2 3vectq q i q j q k= + +  represents the imaginary vector, 0q  is the scalar element and H  can 

be written such as: 

                [ ]{ }3 1
0 0 1 2 3/ 1,  ,  ,  

T TT T
vect vectH q q q q q q q q q q q ×� �= = = ∈ ℜ = ∈ ℜ� �   (2) 

The rotation matrix in term of quaternion can be written as: 

  ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

2 2
0 1 1 2 0 3 1 3 0 2

2 2
1 2 0 3 0 2 0 1 2 3

2 2
0 2 1 3 2 3 0 1 0 3

2 1 2 2

2 2 1 2

2 2 2 1

B
N

q q q q q q q q q q

M q q q q q q q q q q q

q q q q q q q q q q

� �+ − + −
� �
� �= − + − +
� �
� �+ − + −� �

     (3) 
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We invite the reader to refer to (Kuipers 1999) for a more details about quaternion algebra. 

3.3. 3-axis inertial/magnetic sensors package measurement models 

The sensors configuration consists of a 3-axis accelerometer, a 3-axis magnetometer and a 3-axis 

gyroscope containing MEMS technologies. A detailed study of these sensors is given in (Beeby 

2004). 

3.3.1. 3-axis accelerometer 

An accelerometer measures the acceleration of the object that it supports. If three accelerometers 

are mounted in orthogonal triad in a rigid body, such that their sensitive axes coincide with the 

principal axes of inertia of the moving body. The output of a 3-axis accelerometer in the body-

fixed frame ( )B  is given by the following measurement vector (Guerrero-Castellanos 2008): 

( ) ( )B
N ff M q a G �= + +             (4) 

where [ ]0 0
T

G g=  and 
T

x y za a a a� �= � �  represent, respectively, the gravity vector and the 

DBA of the rigid body, given in the Earth-fixed frame ( )N . 3
f� ∈ ℜ  is a noise vector assumed 

to be independent, white and Gaussian. ( )B
NM q  is the rotation matrix defined in (3) and 

reflecting the transition between the frames ( )N  and ( )B . 

3.3.2. 3-axis magnetometer 

A magnetometer is a device for measuring the direction and intensity of a magnetic field and 

especially the Earth's magnetic field. The output of a 3-axis magnetometer in the body-fixed 

frame ( )B  is given by the following measurement vector (Guerrero-Castellanos 2008): 

( )B
N hh M q m �= +     (5) 

where m  is the magnetic field expressed in the Earth-fixed frame ( )N  by: 
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[ ] ( ) ( )0 cos 0 sin
TT

x zm m m m I m I= = � �� �         (6) 

h�  is a white Gaussian noise and ( )B
NM q  is expressed in (3). The parameters of the theoretical 

model of the geomagnetic field m  closest to reality can be deduced from (Astrosurf 2012). 

3.3.3. 3-axis gyroscope 

A gyroscope is an inertial sensor that measures the angular velocity of reference attached to the 

sensor compared to an absolute reference frame along one or more axes (Titterton and Weston 

2004). The output of a 3-axis gyroscope in the body-fixed frame ( )B  is given by the 

measurement vector (Guerrero-Castellanos 2008): 

G G� � b �= + +   (7) 

where 3� ∈ ℜ  is the real angular velocity, 3b∈ ℜ  is a slowly time varying function (Beeby et al. 

2004) called also bias and G�  is a white Gaussian noise. 

4. Complementary filter for attitude estimation 

In this chapter, the objective is to design an attitude estimation algorithm based on inertial and 

magnetic MEMS sensors. The application in mind is related to a free-ranging animal case in Bio-

logging (Fourati et al. 2011(b)). By considering the rigid body kinematic model, a 

complementary filter is proposed in order to take advantage from the good short-term precision 

given by rate gyros integration and the reliable long-term accuracy provided by accelerometer 

and magnetometer measurements. This leads to better attitude estimates (Mahony et al. 2008). It 

is important to note that the resulting approach structure is complementary: high bandwidth rate 

gyro measurements are combined with low bandwidth vector observations to provide an accurate 

attitude estimate (Brown and Hwang 1997). 
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4.1. Rigid body kinematic motion equation 

The rigid body motion can be described by the attitude kinematic differential equation (Shuster 

1993), which represents the time rate of attitude variation, expressed in a quaternion term q , as a 

result of the rigid body angular rates measured by the gyroscope: 

3 3 0

1

2

T
vect

G

vect

q
q �

I q q×
×

� �−
= � �

� �+� �� �� �

�           (8) 

where 

•  0

TT
vectq q q� �= � �  is the unit quaternion that denotes the mathematical representation of the 

rigid body attitude between two frames: body-fixed frame ( )B  and Earth-fixed frame ( )N . 

Note that [ ]1 2 3

T

vectq q q q=  represents the vector part of q . It is customary to use 

quaternion instead of Euler angles since they provide a global parameterization of the body 

orientation, and are well-suited for calculations and computer simulations. 

•  G�  represents the angular velocity vector expressed in ( )B  and 3 3I ×  is the identity matrix of 

dimension 3. 

•  vectq×� �� �  represents the standard vector cross-product (the skew-symmetric matrix) which is 

defined such as: 

1 3 2

2 3 1

3 2 1

0

0

0
vect

q q q

q q q q

q q q

×

×

−� � � �
� � � �� � = = −� � � � � �
� � � �−� � � �

       (9) 

4.2. The design of state model 

Let us consider the following system model ( )1S  composed of (8) with the output y  that 

represents the linear measurement model. The output 6y ∈ ℜ  of this system is built by stacking 
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the accelerometer and magnetometer measurements. 

( )

1 2 30

0 3 21

3 0 12 3 3 01

1 2 03

1 1

2 2:

Gx Gy Gz
T
vect Gx Gy Gz

G
Gx Gy Gzvect

Gy Gx Gz

T

x y z x y z

q� q � q �q
q q � q � q �q

�
q � q � q�q I q qS
q� q � q �q

y f f f h h h

×
×

� − − −� �� �
� � �� � � �− − +� � �� � = =� �� � �+ −� � � �+� �� �	 � � � �� � − +� � �� � � �
�
� � �= � �A

�

�

�

�

      (10) 

By considering the rigid body kinematic equation and the linear measurement model y , the 

proposed system ( )1S  can take advantage from the good short term precision given by the rate 

gyros integration and the reliable long term accuracy provided by accelerometers and 

magnetometers measurements fusion (Brown and Hwang 1997; Fourati et al. 2010), which leads 

to improve the quaternion estimation. 

4.3. Attitude complementary filter design 

The aim of this approach is to ensure a compromise between the accuracy provided by short-

term integration of the gyroscope data and the long-term measurements precision obtained by the 

accelerometer and the magnetometer. To compensate for the drifts on the estimated quaternion 

that are observed during the integration of the differential equation (8), a correction term T  is 

introduced in this equation based on a quaternion product ⊗ . We propose the following 

complementary filter: 

( )

0 1 2 3

0 3 21

3 0 12

1 2 0
3

ˆ ˆ ˆ ˆ

ˆ ˆ ˆˆ 1
:

ˆ ˆ ˆ2ˆ
ˆ ˆ ˆˆ

x y z

x y z

x y z

y x z

q q� q � q �

q � q � q �q
F T

q � q � q�q
q� q � q �q

� � − − −� �
� � � �− +� � � �= ⊗� � � �+ −
� � � �− +� � � �� �� �

�

�

�

�

            (11) 

where [ ] 4
0 1 2 3ˆ ˆ ˆ ˆ ˆ T

q q q q q= ∈ ℜ  represents the estimated quaternion. The correction term T  is 

calculated from a fusion approach of accelerometer and magnetometer data. The quaternion 
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product introduced in (11) allows to merge the magnetic and inertial measurements. 

Let us present the method for calculating the correction term T . We consider the modeling error 

( ) ( )ˆ ˆ� q y y= − . The estimated output is given by ŷ : 

ˆ ˆ ˆ ˆ ˆ ˆˆ
T

x y z x y zy f f f h h h� �= � �
   (12) 

Measurements of the estimated accelerations x̂f , ˆ
yf  and ẑf  can be calculated by assuming that 

the DBA a  is low ( )2 2
a G�  (Fourati et al. 2010). Thus we obtain: 

1ˆ ˆ ˆ ˆ ˆ ˆ0
T

x y z qf f f f q G q−� �= = ⊗ ⊗� �         (13) 

where 

[ ]0 0 0 9.8
T

qG = : Quaternion representation of the gravity vector [ ]0 0 9.81
T

G = . 

Measurements of the estimated Earth’s magnetic field ˆ
xh , ˆ

yh  and ˆzh  can be calculated such as: 

1ˆ ˆ ˆ ˆ ˆ ˆ0
T

x y z qh h h h q m q−� �= = ⊗ ⊗� �        (14) 

where 

[ ]0 0
T

q x zm m m= : Quaternion representation of the Earth’s magnetic field 

[ ]0
T

x zm m m= . 

The minimization of the modeling error ( )ˆ� q  is performed from a regression method that 

minimizes the scalar squared error criterion function ( )ˆ� q  related to ( )ˆ� q : 

( ) ( ) ( )ˆ ˆ ˆT
� q � q � q=      (15) 

In this chapter, the LMA (Marquardt 1963) is used to minimize the non-linear function ( )ˆ� q . 

This choice reflects the robustness demonstrated by this algorithm compared to other methods 
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such as Gauss-Newton or gradient (Dennis et al. 1983). 

The unique solution to this problem can be written in the following form (Deutschmann et al. 

1992): 

( ) ( )ˆ ˆ� q K� q=   (16) 

where 
1

3 3
T TK k X X �I X

−

×� �= +� �  is the gain of the filter used to minimize the error ( )ˆ� q . 

6 3X ×∈ ℜ  is the Jacobian matrix defined by: 

0 0

2 2 0 0

0 0

T

z y z y
T

z x z x

y x y x

f f h h

X f h f f h h

f f h h

× ×

� �− −
� �� �� � � �= − = − − −� �� � � �� �
� �− −� �

    (17) 

The constant �  is chosen to ensure the non-singularity of the minimization problem. The 

constant k  determines the crossover frequency of the latter. It is used to tune the balance 

between measurement noises suppression and response time of the filter. Generally, it combines 

low bandwidth accelerometer/magnetometer readings with high bandwidth gyroscope 

measurements. Notice that, the complementary filter has a better convergence when k  is chosen 

somewhere between 0.1 and 1 (Mahony et al. 2008). ( )ˆ� q  represents a part of the correction 

term T . To achieve the quaternion product in (11), the term T  must be of dimension 4. So, T  is 

constructed as follows: 

( )

1 0 0 0 0 0 0

10

ˆ0

0

T
� qK

� �
� � � �� �= � �� � � �
� �
� �

        (18) 

The scalar part of quaternion error is chosen to 1 to force the error quaternion to represent small 

angles of rotation (Deutschmann et al. 1992). Finally, the complementary filter can be written as 

follows: 
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( )

( )
( )
( )
( )

( )

1 2 3
0

0 3 21

2 3 0 1

3 1 2 0

ˆ ˆ ˆˆ 1 0 0 0 0 0 0
ˆ ˆ ˆˆ 101

:
ˆ02ˆ ˆ ˆ ˆ

0ˆ ˆ ˆ ˆ

x y z

x y z

x y z

y x z

q� q � q �q

q � q � q �q
F

� qKq q � q � q�

q q� q � q �

� �− + +� � � �� �� � � �� �− + � �� � � �� �= ⊗ � �� � � �� �+ − � �� � � �� �� � � �� �� � − +� �

�

�

�

�

         (19) 

5. Experimental validation 

5.1. Experimental tool for attitude estimation: Inertial Measurement Unit MTi-G 

In order to evaluate the efficiency of the proposed complementary filter in real world 

applications, an experimental setup was developed resorting to an inertial and magnetic sensor 

assembly. The goal is to obtain an estimation of the quaternion that represents the orientation of 

a rigid body and to investigate its accuracy under various conditions. For the experiments, the 

MTi-G from Xsens Motion Technologies (Xsens Technologies 2012) was employed. This 

MEMS device is a miniature, lightweight, 3D calibrated digital output sensor (3D acceleration 

from accelerometer, 3D angular rate from gyroscope, and 3D magnetic field data from 

magnetometer), a GPS enhanced Attitude and Heading Reference System with built-in bias, 

sensitivity, and temperature compensation. The MTi-G outputs data at a rate of 100 Hz and 

records them on a computer (see Fig. 3). In addition, this device is designed to track the body 3D 

attitude output in quaternion representation using an embedded Extended Kalman filter 

algorithm. The calibration procedure to obtain the gain, offsets and non-orthogonality of the 

sensors was performed by the manufacturer of the sensor module. 

It is important to note that the MTi-G device serves as tool for the evaluation of the 

complementary filter efficiency and cannot be suitable for use in Bio-logging field due to its 

dependence on an energy source as well as its heavy weight. In the following set of experiment, 

the calibrated data from the MTi-G are used as input to the complementary filter. 
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5.2. Evaluation test and estimation attitude analysis in free movement of animal 

In this set of experiments, the accuracy of the complementary filter is evaluated during the free 

motion of a domestic animal (a dog). The MTi-G is attached to the back of the animal with its xyz 

axes aligned with those of the dog. The path followed by the animal was carried out in a football 

stadium as shown in Fig. 4. Inertial/magnetic measurements and attitude (in quaternion 

representation) are recorded using the MTi-G during the motion of the dog (see Fig. 5) and 

transmitted to a computer via USB port. It should be noted that, based upon measurements 

recorded by the accelerometer, we note that the animal motion consists of two acceleration 

profiles, one corresponding to the low frequencies of motion (during walk) and the other rather 

to the high frequencies (during trot and canter). The acceleration profile varies between [-15, 15 

m/s2] for xf  and yf  and [-5, +25 m/s2] for zf . The increase in the acceleration level between the 

natural gaits is due to the DBA a  of the dog that is more important during the trot and the canter. 

The recorded inertial and magnetic measurements from the MTi-G are used to estimate the 

attitude using the proposed complementary filter. The calculated attitude from the MTi-G is 

considered as reference of the dog’s motion. Fig. 6 plots the evolution of the difference between 

the calculated quaternion using the MTi-G and the one estimated by the proposed approach. 

Although some parts of the motion are with high dynamics, we can remark that the errors on 

quaternion’s components don’t exceed 0.03 on 0q , 1q , 2q  and 0.05 on 3q . For more clarity to the 

reader, we also represent the attitude estimation results of the same movement using the Euler 

angles (roll, pitch and yaw). Fig. 7 shows the evolution of the difference between the Euler 

angles estimated by the complementary filter and the MTI-G. 

It is clear that this mismatch between the estimated attitude by our approach and the MTi-G is 

small. Then, one can conclude about the performance of the complementary filter in attitude 
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estimation of the animal body even in dynamic situations. Although our approach didn’t exploit 

a GPS data as done in MTi-G, it is able to reconstruct the orientation of the dog given by the 

MTi-G with a small error. 

5.2. Performance’s comparison with previous Bio-logging works 

We propose in this section a comparative study between the performance of the attitude 

estimation obtained from three methods: the complementary filter and two other approaches that 

have been proposed in Bio-logging that we called method_1 (Wilson et al. 2008) and method_2 

(Watanabe et al. 2005). Both approaches use only a combination of triaxial accelerometer and 

magnetometer and provide an attitude estimation in Euler angles representation. The purpose of 

this comparison is to analysis the performance of the complementary filter and to prove if it is 

possible to make an improvement of the attitude estimation in Bio-logging and show the interest 

to add gyroscope in such application. This comparison is performed in the case of experimental 

test on the dog, presented earlier and we used the measurements recorded by the MTi-G. To 

compare the three methods, the estimated quaternion from the complementary filter is converted 

to Euler angles using the formulas presented in (Phillips et al. 2001). The estimation results 

obtained separately from the three approaches (method_1, method_2 and the complementary 

filter) are compared with those provided by the internal algorithm of the MTi-G. 

5.2.1. Attitude estimation 

The results of this comparison, illustrated in Fig. 8, show the errors obtained from the difference 

between the estimates of Euler angles calculated by the MTi-G and those provided by the three 

methods. The smallest difference was obtained with the complementary filter. This error does 

not exceed 5 ° on the three Euler angles even in high-frequency movements of the animal, where 

the DBA is important. The estimation errors obtained by method_1 and method_2 are around 10° 
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for roll and pitch angles and 20° for the yaw angle. These large errors are mainly due to the 

approximations established in these two methods, since the accelerometer does not extract the 

attitude during the dynamic situations of movement. These high frequency dynamics are present 

during the motion of the dog. 

Performance’s analysis of each method can also be established using the Root Mean Square 

Difference (RMSD). This criterion quantifies the difference between the Euler angles calculated 

by the MTi-G, considered as reference, and those estimated by each method. The RMSD was 

calculated such as: 

 ( )
( )2

ˆ
n k

i i
i k

sliding

x x
RMSD k

N

+

=

−
=
B

   (20) 

where  

ix : The Euler angle measured by the MTi-G algorithm 

ˆix : The Euler angle estimated by the chosen method (complementary filter, method_1 or 

method_2) 

N : The time interval ( 2T = ) 

An average of slidingRMSD  on the Euler angles for each method is subsequently established in 

Table 1. Note that the slidingRMSD  values relating to the three Euler angles are obtained also with 

the complementary filter. This highlights the improvements we were able to make at the attitude 

estimation comparing to the two methods developed in Bio-logging. 

5.2.2. Dynamic Body Acceleration estimation 

In this subsection, we are interested to the calculation of the DBA of the animal during its 

movement. This acceleration relates solely to the movement of the animal’s body. To calculate 
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the DBA, we used the attitude estimation q̂  obtained from the complementary filter during the 

movement of the dog. The following equation is used: 

( )( )ˆ ˆB
Na inv M q f G= −       (21) 

where the rotation matrix ( )ˆB
NM q  is expressed in (3), 3G ∈ ℜ  is the gravity vector and 3f ∈ ℜ  

represents the measurements of the accelerometer. 

We calculate after the norm of the acceleration using the following equation: 

2 2 2

2
ˆ ˆ ˆ ˆx y za a a a= + +     (22) 

Similarly, we calculated the attitude by method_1 and method_2. The attitude values obtained 

from each method are used to calculate the DBA of the animal using (21). Finally, the norm of 

the acceleration is calculated using (22). We report in Fig. 9 the results of this comparison by 

establishing the difference between the norm of acceleration obtained from the MTi-G and the 

one provided by each method (complementary filter, method_1 and method_2). The smallest 

difference is obtained with the complementary filter. Indeed, the errors of the complementary 

filter do not exceed 0.7 m/s2 but they reach 3 m/s2 for method_1 and 2 m/s2 for method_2. These 

results demonstrate the improvements made by the proposed approach in calculating the DBA of 

the animal. We recall that a more precise calculation of the DBA will allow biologists a better 

assessment of energy expenditure of the animal. 

Similarly, we used the slidingRMSD  given in (20) to measure the difference between the norm of 

DBA calculated by the MTi-G (reference) and the one estimated by each method. 

We used for that the following notations: 

ix : The norm of DBA calculated by the MTi-G. 
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ˆix : The norm of DBA estimated by the chosen method (complementary filter, method_1 or 

method_2) 

Table 2 shows the averages of the slidingRMSD  corresponding to the norm of DBA for each 

method. Note that we obtained the smallest value of this average with the complementary filter. 

We conclude that this criterion reflects the filter's ability to provide a more accurate calculation 

of DBA. 

6. Conclusion 

This paper presents the design and experimental results of a quaternion-based complementary 

filter for animal body motion tracking using inertial/magnetic sensor modules containing 

orthogonally mounted triads of accelerometers, angular rate sensors, and magnetometers. The 

complementary filter was designed in order to be able to produce highly accurate orientation 

estimates without resorting to GPS data. The filter design makes use of a simple kinematic 

motion equation to describe the system model. The filter design is further simplified by 

preprocessing accelerometer and magnetometer data using the Levenberg Marquardt Algorithm. 

The modelling error produced by the LMA is provided as input to the filter along with angular 

rate data. Some experiments are carried out on a free motion of animal through sensor 

measurements provided by an IMU. From the experiments designed to validate filter 

performance, this approach was shown to work well. Future works will focus on designing a 

low-cost, lightweight and embedded prototype for this application.  
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Figure captions 
 
Fig.1 Schematic diagram of how an Inertial Measurement Unit is attached to a penguin 
 
Fig. 2 The coordinate system ( )B  of a rigid body represented in the Earth- fixed frame ( )N  

 
Fig. 3 Inertial Measurement Unit MTi-G 
 
Fig. 4 The MTi-G attached to the back of the dog - Description of the dog motion 
 
Fig. 5 Inertial and magnetic measurements recorded from the MTi-G 
 
Fig. 6 Differences between quaternion’s estimates provided by the complementary filter and the 
MTi-G during the motion of the dog 
 
Fig. 7 Differences between Euler angles estimates produced by the complementary filter and the 
MTi-G during the motion of the dog 
 
Fig. 8 Estimation errors of Euler angles during the motion of the dog - (a) difference between 
MTi-G and method_1 - (b) difference between MTi-G and complementary filter - (c) difference 
between MTi-G and method_2 
 
Fig. 9 Estimation error of the norm of DBA during the motion of the dog 
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Fig.1. Schematic diagram of how an Inertial Measurement Unit is attached to a penguin 
 
 
 

 

Fig. 2. The coordinate system ( )B  of a rigid body represented in the Earth- fixed frame ( )N  
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Fig. 3. Inertial Measurement Unit MTi-G 
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Fig. 4. The MTi-G attached to the back of the dog - Description of the dog motion 
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Fig. 5. Inertial and magnetic measurements recorded from the MTi-G 
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Fig. 6. Differences between quaternion’s estimates provided by the complementary filter and the MTi-G during the 
motion of the dog 
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Fig. 7. Differences between Euler angles estimates produced by the complementary filter and the MTi-G during the 
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     (a)                 (b)       (c) 

Fig. 8. Estimation errors of Euler angles during the motion of the dog - (a) difference between MTi-G and method_1 
- (b) difference between MTi-G and complementary filter - (c) difference between MTi-G and method_2 
 

 

Fig. 9. Estimation error of the norm of DBA during the motion of the dog 
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Table 1 
Average of the 

�������
���	 �corresponding to Euler angles for each method during the experiment on the dog 

Methods 
Complementary 

filter 
Method_1 Method_2 

Average of the 

�������
���	  (Roll) 0.934 1.6144 1.1846 

Average of the 

�������
���	  (Pitch) 0.8609 2.4962 1.8019 

Average of the 

�������
���	  (Yaw) 5.0426 19.1813 12.6655 

 
 
 
 
 
 
 
Table 2 
Average of the 

�������
���	 �corresponding to the norm of DBA for each method during the experiment on the dog 

Methods 
Complementary 

filter 
Method_1 Method_2 

Average of the 

�������
���	  0.1168 0.3351 0.1929 
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