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 

Abstract—The aim of the paper is to develop and to validate an 

estimation approach of human body segments motion (also known 

as attitude). The challenge of the proposed approach is that it uses 

only a wearable Inertial Measurement Unit (IMU) and without 

resorting to GPS data. This unit consists of Micro-Electro-

Mechanical-Systems (MEMS) sensors as a 3-axis accelerometer, a 

3-axis magnetometer and a 3-axis gyroscope. Based on these 

sensors, the final objective is to design a low-cost and lightweight 

prototype and easy to use by persons. The prototype can then be 

used in many applications as ambulatory monitoring of human 

body motion in order to evaluate the corresponding mechanical 

work. To reach this goal, a quaternion-based Complementary 

Sliding Mode Observer (CSMO) is designed with a multiplicative 

quaternion correction technique. This algorithm will continuously 

correct the quaternion estimates obtained by integration of the 

angular velocity. The correction is performed using a quaternion 

obtained from the accelerometer and the magnetometer data 

fusion based on the Levenberg Marquardt Algorithm (LMA). 

The efficiency of the CSMO is illustrated through simulation tests 

using a theoretical example. Moreover, a set of experiments is 

performed on a robot and human limbs motion through sensor 

measurements provided by an IMU. 

 
Index Terms—Motion capturing, human limbs motion sensing, 

Complementary Sliding Mode Observer, Inertial Unit, wearable 

inertial/magnetic MEMS sensors, quaternion, rehabilitation. 

I. INTRODUCTION 

The determination of moving objects orientation is involved 

in several fields: among them, of interest here, ambulatory 

human motion tracking and analysis [1]. Moreover, the current 

information of orientation still one of the central assessment 

tools in many related application as stroke rehabilitation to 

help patients to restore motor functions of the affected limbs 

[2], gait analysis [3], monitoring of daily living [4], and 

measurement of neurological disorders in medicine [5]. 

A literature survey shows that there are currently several 

fundamental technologies embedded within human movement 
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tracking systems, which consistently update spatio-temporal 

information with regard to human motion. These technologies 

can contain mechanical tracking, electromagnetic tracking, 

acoustic tracking, optical tracking, and inertial/magnetic 

tracking [1]. Among these techniques, inertial/magnetic 

tracking technology has currently attracted many interests 

since such method is free of most of the problems occurring 

with the other technologies. An inertial/magnetic tracking 

system uses a combination of accelerometers, rate gyros, and 

magnetic sensors and is suitable for ambulatory measurement 

of human body segments orientation without restrictions [6]. 

There is no inherent latency associated with inertial/magnetic 

sensing and all delays are due to data transmission and 

processing. Another benefit with inertial/magnetic sensing is 

its sourceless, whereas electromagnetic, acoustic, and optic 

devices require emissions from source to track objects. 

Nowadays, due to the recent technological advances of 

MEMS, inertial and magnetic sensors have become generally 

available with a low cost, small size, light weight and low 

energy consumption. Consequently, human motion estimation 

can be tracked continuously outside of a laboratory with quite 

smaller and ambulatory measurement system. Each of these 

sensors has different advantages and disadvantages. 

Accelerometers measure acceleration and gravity [7] and can 

be used as an inclinometer for movements in which the 

acceleration can be neglected with respect to the gravity [8]. 

However, this way to do leads to unacceptable errors in 

dynamic human motion. Gyroscopes measure angular velocity 

and can be used to estimate a change in orientation. The 

drawback of gyroscopes is that the estimation of orientation 

change is prone to integration drift [9]. Magnetometers are 

used to measure the local earth magnetic field vector. This 

provides additional information about orientation [10]. 

Several advanced signal processing fusion approaches for 

integrating the sensors described above to estimate human 

segments orientation have been proposed in order to overcome 

the drawbacks of the separate sensors and to improve the 

performance of existing sensing hardware. The basic idea 

behind complementary filtering is that orientation drift errors 

resulting from gyro output errors can be bounded by aiding the 

gyros with additional sensors, the information from which 

allows correcting the gyro orientation solution. In [11], the 

authors combined sensors such as 3-axis accelerometer and 3-

axis magnetometer to measure the body orientation. A 3-axis 
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gyroscope and 3-axis accelerometer were applied by [12] and 

the proposed works are developed based on a Kalman filter for 

measuring orientation. The main idea in [3] concerns the use 

of the cyclical nature of human gait to provide attitude 

estimation based on angular velocity rate and acceleration 

measurements. The change in orientation obtained using 

gyroscopes was fused with the inclination measured by the 

accelerometers, yielding an inclination estimate that was 

sufficiently accurate even in the presence of accelerations. 

The main purpose in [13] deals with the addition of 

magnetometers to gyroscopes and accelerometers to overcome 

this problem. A linear Kalman Filter was designed to process 

the sensor signals to estimate desired sensing variables of 

gravity and magnetic field, and further yields orientation of the 

body segment. Heading errors due to magnetic field 

disturbance can be effectively rejected by an adequate model-

based sensor fusion [14]. This triad of sensors is used also in 

[15], [16] to develop an Extended Kalman Filter (EKF). 

Another method to obtain kinematics between 2 body 

segments is to estimate the orientations of each segment using 

a multiple sensor system and to use anatomical constraints to 

link the different segments [2], [3]. 

Quaternion has been the subject of studies in many attitude 

and motion capturing systems using various filtering theories. 

Due to the unconventional nature of quaternion kinematics, 

filter models have been synthesized in two different ways 

related to the objectives, the formulation of the measurement 

error vector and the update of the state estimates. The first way 

is based on additive quaternion correction [15], [17]. This 

approach is easy to implement but it is considered as localized 

approximation since it is valid only for small attitude changes. 

The second way uses multiplicative quaternion correction [18], 

[19] and can be applied for larger attitude maneuvers. 

In this paper, an alternative sensing method for the human 

limbs motion estimation is developed then validated. This 

approach is based on a fusion technique of inertial and 

magnetic sensors. The main goal is to use the obtained results 

to monitor human movements during rehabilitation exercises. 

One of the interests of this work is also to look for the 

ambulatory monitoring of the elderly movements. Hence, we 

propose a robust method recovering the full attitude 

represented by a quaternion and which represents the rigid 

body motion. The main idea is to use a Complementary 

Sliding Mode Observer (CSMO) instead of Extended Kalman 

Filter that presents some drawbacks such as the difficulty to 

guarantee the global convergence of the filter due to the linear 

approximation of the nonlinear process model [20].  

The proposed CSMO exploits the multiplicative quaternion 

correction technique to recover the full rigid body orientation. 

The designed observer is fed with inertial and magnetic 

measurements and takes into account the complementary 

spectra of the signals. In fact, the estimation algorithm idea 

uses 3-axis gyroscope measurements to derive the attitude 

(strap-down system). The correction was performed using a 

quaternion continuously derived from a 3-axis accelerometer 

and a 3-axis magnetometer data fusion method that is based on 

Levenberg Marquardt Algorithm (LMA). This reduces the 

integration drift that originates from the angular velocity. 

This paper is organized as follows: section II describes the 

problem statement and our motivations. Section III presents 

the physical system including the rigid body kinematic 

equation and the design model. Section IV details the structure 

of the proposed CSMO for motion estimation. In section V, 

some simulation tests are presented to illustrate the 

performance of the proposed approach. Experimental trials are 

designed on a robot and a human subject in section VI to 

demonstrate the efficiency of the developed filtering 

technique. Finally some conclusions are given in section VII. 

II. MOTIVATION AND PROBLEM DEFINITION 

The main contribution of the performed work in this paper 

is to propose available approach to estimate the movement 

patterns (attitude or orientation) of human body segments. 

Each segment can be represented by a rigid body. Generally, 

the body attitude is an essential quantity that serves as tool, for 

biologists, to estimate the power transferred between the 

human body and the environment at any time and the energy 

expenditure. This is of great interest in a number of 

applications, including sport (stride analysis), physical labor, 

fitness management and rehabilitation [18], [21]. 

Indeed, we have conducted some researches for human 

motion tracking with the use the minimum of wearable sensors 

assembly [20]. Since inertial and magnetic devices have 

become generally available due to the recent technological 

advances of MEMS [22], human movement can be measured 

continuously outside a specialized laboratory with ambulatory 

systems. Then, the use of Inertial Measurement Unit that 

contains a 3-axis accelerometer, a 3-axis magnetometer and a 

3-axis gyroscope is suitable for the considered application 

related to the human motion tracking (see Fig. 1).  
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Fig. 1. Schematic representation of the body segments-mounted sensing unit 

for motion estimation 

Since each sensor shows some advantages and drawbacks, 

the key of the work is how to combine these three data to 

improve the quality of the motion reconstruction. 

III. THE PHYSICAL SYSTEM 

A. Rigid body kinematic motion equation 

The motion of a rigid body can be described by the 

following attitude kinematic differential equation [23]:  

1

2
g

q
q

t



 


        (1) 
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where: 

 0
 
 

T
T

vectq q q  is the unit quaternion that denotes the 

mathematical representation of the rigid body attitude 

between two frames: body-fixed frame B  and Earth-fixed 

frame N . Note that 1 2 3   
T

vectq q q q  represents 

the vector part of q . It is customary to use quaternions 

instead of Euler angles since they provide a global 

parameterization of the body orientation, and are well-

suited for calculations and computer simulations. More 

details about quaternion and the used frames are presented 

in appendixes A and B. 

 0
T

g g  
 

 is the quaternion form of the angular 

velocity vector 
T

g gx gy gz    
 

 expressed in B . 

Recall that g  is measured by a 3-axis gyroscope and can 

be often corrupted with noises and bias  γ t  [20]. 

 The operator   represents the quaternion product and is 

defined in appendix A (equation (25)). 

Equation (1) describes the time rate of change of the attitude, 

expressed in a quaternion term q , as a result of the rigid body 

angular rates measured by the gyroscope. 

Now, including gyroscope disturbances and using the 

quaternion product  , (1) can be written such as: 

 
3 3 0

1

2 



 
  

   
  

T

vect

g

vect

qq
w t

t I q q
      (2) 

where 1 2 3   
T

vectq q q q  and vectq
 

 
 represents the skew-

symmetric matrix defined as [24]: 

1 3 2

2 3 1

3 2 1

0

0

0

vect

q q q

q q q q

q q q





   
       
    
     

     (3) 

and 3 3I  is the identity matrix of dimension 3. 

B. The design model 

Let us consider the following nonlinear system model  Σ  

composed of (2) with the output y  that represents the linear 

measurement model: 

 
 

3 3 0

1

Σ 2




     
   
  


 

T

vect

g

vect

qq
ω γ t

: t I q q

y C q ν

    (4)  

where q  represents the quaternion vector. 4 4C I  and   

represents the noises vector. Then, the linear measurement 

model y  is taken as follows 4 1

my q


   . Note that the 

rigid body quaternion measurements mq  may be determined 

from a 3-axis accelerometer and a 3-axis magnetometer data 

fusion method (see the next part for more details).  

By considering the rigid body kinematic equation and the 

linear measurement model y , the proposed system  Σ  can 

take advantage from the good short term precision given by the 

rate gyros integration and the reliable long term accuracy 

provided by accelerometers and magnetometers measurements 

fusion [20] which leads to improve the quaternion estimation. 

C. Quaternion mq  calculation from accelerometer and 

magnetometer measurements 

The problem of optimal attitude determination algorithm 

using two vectors (or more), known in a fixed frame (vector 

observations) and measured in a mobile frame is called in the 

literature Wahba’s problem [25]. In the present case, the 3-

axis magnetometer is a sensor that provides the direction of the 

Earth’s magnetic field h  in the body frame B  such as: 

 
T

B

x y z N hh h h h M q m    
 

     (5) 

where  
B

N
M q  is the rotation matrix that transforms the vector 

m  to the vector h : 

  

   

   

   

2 2

0 1 1 2 0 3 1 3 0 2

2 2

1 2 0 3 0 2 0 1 2 3

2 2

0 2 1 3 2 3 0 1 0 3

2 2 1 2 2

2 2 2 1 2

2 2 2 2 1

    
 

     

 
     

B

N

q q q q q q q q q q

M q q q q q q q q q q q

q q q q q q q q q q

 (6) 

and 3

h    is a vector of zero-mean white Gaussian noise. 

m  represents the magnetic field vector measured in the Earth-

fixed frame N  and can be represented such as: 

   0 cos 0 sin
TT

x zm m m m m       
         (7) 

The theoretical model of the magnetic field nearest to reality 

considers this vector with an inclination angle 60    and a 

norm vector 0.5m  Gauss [26]. The quantity h  is locally 

constant in the fixed frame N  and can be represented by the 

vector m  which denotes the first vector observation. 

The 3-axis accelerometer measures the specific force f  in 

the body frame B  as follows [7]: 

   
T

B

x y z N ff f f f M q a g     
 

               (8) 

where  0 0 9.81
T

g   represents the gravity vector and 

 
 x y za a a a  denotes the inertial acceleration of the 

body, expressed in the Earth frame N  [27]. The rotation 

matrix  
B

NM q  is as expressed in (6). 3

f    is a vector of 

zero-mean white Gaussian noise. For sufficiently low 

frequency bandwidths, the gravitational field g  dominates the 

accelerometer measurements f   
2 2
a g , as discussed 

in [17]. In this case, the quantity g  is also constant in the 

Earth frame N  and could provide the second vector 

observation. 

For this purpose, a Levenberg Marquardt Algorithm (LMA) 

is proposed to recover the optimal attitude, expressed in 

quaternion term, by using 3-axis accelerometer and 3-axis 
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magnetometer readings [28]. The LMA outperforms the 

Gauss-Newton Algorithm (G.N.A) and the method of gradient 

descent. It is more robust than G.N.A, which means that in 

many cases it finds a solution even if it starts very far of the 

final minimum [29]. The LMA is an estimator that uses the 

Earth’s magnetic field m  and the gravity vector g  as vector 

observations and the measurements f  and h  to deduce the 

attitude mq . It is based on the followings steps [30]: 

1) Measure accelerometer and magnetometer readings f  and 

h , respectively. 

2) Calculate ˆ ˆ ˆN
f q f q    and do the same for ˆ N

h . Note 

that ˆ N
f  and ˆ N

h  represent the estimated acceleration and 

magnetic field values in the Earth-fixed frame N .  

Note also that 0 1 2 3
ˆ ˆ ˆ ˆ ˆ     

T
q q q q q  represents the 

quaternion inverse of q̂ . 

3) Calculate the navigation error ˆ N
f g f    and do the 

same for ˆ N
h m h    in order to form    

T
z h f .  

4) Calculate the Jacobian matrix: 

ˆ ˆ2

T
T T

N N
J h f

                      

 

5) Calculate the pseudo-inverse 
1

3 3





  
 

T T
O J J I J . 

6) Calculate the quaternion error such as:  


erq t O z .   

is a smooth parameter chosen between 0 and 1 [25]. 

7) Calculate mq  such as:      ˆ 1  
 

T

m erq t q t q t .  q̂ t  

is estimated at each step by the observer that we will 

present in the next section. 

It is important to note that this algorithm is limited to the 

static or quasi-static situations (weak linear acceleration) [25]. 

Therefore, the values of mq  are disturbed in dynamic 

situations (high inertial acceleration periods). In this paper, the 

introduction of the term mq  in the system (4) aims to take 

advantage from the reliable long term accuracy provided by 

accelerometers and magnetometers measurements and the 

good short term precision given by rate gyros integration. 

IV. 3-AXIS INERTIAL/MAGNETIC SENSORS PACKAGE FOR 

HUMAN MOTION ESTIMATION: COMPLEMENTARY SLIDING MODE 

OBSERVER APPROACH 

In this section, the objective is to design an attitude 

estimation algorithm based on inertial and magnetic MEMS 

sensors. The application in mind is related to the human limbs 

motion estimation.  

By considering the rigid body kinematic model, a 

Complementary Sliding Mode Observer (CSMO) is proposed 

in order to take advantage from the good short term precision 

given by rate gyros integration and the reliable long term 

accuracy provided by accelerometers and magnetometers 

measurements. This leads to better attitude estimates [17]. 

A. Observer design 

The main emphasis of the proposed observer is based on the 

use of the multiplicative correction technique [31] which can 

be written as follows: 

'q q q               (9) 

Quaternion multiplication is used in (9) to correct and update 

the quaternion calculation. q  is the correction term which is 

a function of the measurement error. This technique is more 

convenient for the transition between two quaternions and can 

be applied for larger attitude motions [18]. 

To perform the quaternion estimates update, (9) can be 

transformed into the following form: 

ˆ ˆ ˆ
  
 q q q         (10) 

where ˆ


q  and ˆ


q  represent the post and pre-update values of 

the quaternion estimates, respectively. 

Finally, the CSMO for the system  Σ  in (4) can be 

designed based on (10). Generally, the choice of the sliding 

manifold is usually based on the state estimation error [32]. 

Thus, we choose the error quaternion as the sliding manifold. 

The proposed observer is given as follows: 

 
1 2

0

1

3 3 02

3

ˆ

ˆˆ 1
ˆ:

ˆ ˆ2ˆ

ˆ





  
     

      
          

          
    

 










T gx

vect

K K gy

vect

gz

q

ω
qq

C SM O q δ δ ω γ t
I q qq

ω

q

 (11) 

where q̂  is the estimated quaternion at time t  and ˆ
vectq
 

 
 is 

defined as in (3). 
1K represents the switching correction term  

and 
2K  is the linear correction term. In order to perform the 

quaternion multiplication, each correction term should be 

converted into a quaternion. This conversion is obtained using 

the forced normalization method given in [33]. 
1K  and 

2K  

are computed such as follows: 

1 1

1

1
K 


    ;    

2 2

2

1
K 


            (12) 

where 

,

1 1 1

T

e vectq
K sat



  
   

   

; 2 2 ,1
T

e vectK q  
 

      (13) 

with 

1

1

2

3

1 0 0 0

0 0 0

0 0 0

0 0 0

k
K

k

k

 

 

 
 

 
 

; 
4

2

5

6

1 0 0 0

0 0 0

0 0 0

0 0 0

k
K

k

k

 

 

 
 

 
 

        (14) 

Note that ,e vectq  in (13) represents the imaginary vector of the 

error quaternion eq . eq  measures the discrepancy between the 

complementary estimated quaternion 0 1 2 3
ˆ ˆ ˆ ˆ ˆ     

T
q q q q q  

and the measured attitude mq  (obtained from LMA), that is: 
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0 ,
ˆ

T

e m e e vectq q q q q   
 

       (15) 

The scalar parts of 1  and 2  are chosen very close to unit 

since the incremental quaternion corresponds to a small angle 

rotation [31]. The saturation function sa t  in (13) is used to 

avoid the high frequency chattering behavior around the 

sliding surface [32]: 

,

, ,

,

,

1               

     

1            




  

  
  

 


e vect

e vect e vect

e vect

e vect

q

q q
sat q

q




 



     (16) 

The parameter   is the sliding surface boundary layer. It 

determines the sliding behavior in the vicinity of , 0e vectq  . 

To preserve the unit quaternion norm, the estimated quaternion 

q̂  in (11) must be normalized to avoid a divergence caused by 

round-off errors. Normalization is obtained such as [34]: 

ˆ
ˆ

ˆ
norm

q
q

q
              (17) 

Finally, Fig. 2 illustrates the scheme of the proposed CSMO. 

Complementary Sliding

Mode Observer (11)

3-axis accelerometer

3-axis magnetometer

3-axis gyroscope
Rigid body

kinematic equation

Levenberg Marquardt

Algorithm

q

q̂g

f

h

q̂

g

m
q

g

m

 
Fig.2. Scheme of the estimation algorithm 

B. Performance analysis of the designed observer 

A frequency analysis of inertial and magnetic sensors shows 

that signals coming from the accelerometer-magnetometer pair 

and signals from the gyroscope have a complementary 

frequency spectrum [20]. Therefore, the resulting structure of 

the proposed CSMO in (11) blends the low frequency region 

(low bandwidth) of the accelerometer and magnetometer data, 

where the attitude is typically more accurate, with the high 

frequency region (high bandwidth) of the gyroscope data, 

where the integration of the angular velocity yields better 

attitude estimates. The proposed observer is derived from the 

complementary filtering theory [35]. It explores the sensor 

redundancy to reject measurement disturbances in 

complementary frequency regions without distorting the 

signal. If the measurements have complementary spectral 

characteristics, transfer functions may be chosen in such way 

as to minimize the estimation error [19]. The general 

requirement is that one of the transfer functions complements 

the sum of the others. Thus for n  measurements of a signal: 

       1 2 11 ... n nT s T s T s T s         (18) 

where s  is the Laplace operator. 

To study the performance of the CSMO, let us show the 

transform domain block diagram of the linearized quaternion 

observer (see Fig. 3). This diagram is obtained from Fig. 2.  


 m

q s

 g
s q s


+

+

1

s

 q̂ s

 q̂ s

1 2
K K K

+

-

Gyroscope

Accelerometer /   

Magnetometer

 
Fig. 3. Block diagram of the transform domain (Laplace) of the linearized 

quaternion estimation observer 

Let the Laplace transform of the quaternion mq  (obtained 

from accelerometer and magnetometer readings fusion) be 

 mq s , while  gq s  is the quaternion obtained by integrating 

gyroscope signals and  gsq s  is the Laplace transform of q  

in (2). Note that the accelerometer measures both gravitational 

and linear accelerations and the gyroscope suffers from bias. 

Therefore,  mq s  and  gq s  are both disturbed. From Fig. 3, 

the filter transfer function  1F s  based on accelerometer and 

magnetometer inputs is given by: 

 
 

 

1

1 1

ˆ

1m

q s K s K
F s

q s s KK s




  


          (19) 

Note that equation (19) has the form of first-order low-pass 

filter which proves that the perturbation effects due to high 

frequency components of accelerometer signal (linear 

acceleration) are filtered from  mq s .  

The gain K  can be written such as 1 2K K K , where 1K  and 

2K  are given in equation (14).  

Similarly, from Fig. 3, the filter transfer function based on 

gyroscope inputs can be written such as: 

 
 

 
2 1

ˆ 1

1g

q s s
F s

q s s KK s


  


      (20) 

Note that (20) has the form of first-order high-pass filter. 

The gyroscope measurements are high-pass filtered with 

respect to the output  q̂ s . So, the perturbations due to low 

frequency components of gyroscope signal (the noises and 

biases) are filtered from  gq s . 

Finally, (18) can be verified: 

 

 

 

 

ˆ ˆ
1

m g

q s q s K s

q s q s s K s K
   

 
         (21) 

Note that (21) confirms the complementary aspect of the 

CSMO. The global transfer function of the observer is: 
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     ˆ
m g

K s
q s q s q s

s K s K

   
    

    
     (22) 

We conclude from (22) that the CSMO blends a low-pass 

filtering on the signals from the accelerometer/magnetometer, 

and a high-pass filtering on the signals from the gyroscope. 

V. SIMULATIONS RESULTS 

This section aims to illustrate the performance of the CSMO 

proposed in (4) to estimate the rigid body attitude based on 

inertial and magnetic measurements. Some numerical 

simulations were carried out according to the conditions of our 

application on human limbs. Therefore, one considers a triad 

of sensors composed of a 3-axis accelerometer, a 3 axis 

magnetometer and a 3-axis gyroscope that is attached to a 

body segment (see Fig. 4). The instrument axes are nominally 

aligned with the body-platform axes. 

 

Fig. 4. Simulation using a theoretical representation of the final application 

The simulations under Matlab begin with the generation of 

theoretical measurements of angular velocity, specific force 

and magnetic field taken respectively from gyroscope, 

accelerometer and magnetometer, during the human’s segment 

motion (see Fig. 5). We consider an attitude variation example 

taken from angular velocity data (see Table I) over 60sec. 

Then, the kinematic equation (2) is solved to obtain the 

continuous time motion in quaternion representation using the 

theoretical angular velocity measurements. The obtained 

quaternion is used as a reference to compare it with the 

estimated quaternion from the CSMO.  
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Fig. 5. Measurements taken during the human’s segment theoretical motion 

To represent the sensor imperfections, an additional random 

zero-mean white Gaussian noise was considered for all 

measurements (see Table II). The sampling rate was chosen as 

100Hz for all measurements. The boundary layer thickness is 

set to 
4

3.10


 . The constants in the observer gains 1K  and 

2K  (equation (14)) that guarantee convergent estimates, are 

set according to the sensor noise levels and sampling rate such 

as : 3

1 2 3 10k k k


    and 4

4 5 6 9.10k k k


   . 

TABLE I 

THEORETICAL ANGULAR VELOCITY VALUES 

Time Angular velocity 

t 15sec  

   

   

   

-2.5sin 1.5t

1.5cos 0.9t

1.5sin 1.2t

x

y

z

t

t

t

 






 







 

15sec 30 sect   

   

   

   

-1.5sin 1.5t

1.3cos 1.3t

2sin 2t

x

y

z

t

t

t

 






 







 

30sec 45 sect   

   

   

   

-2.5sin 1.5t

1.5cos 0.9t

1.5sin 1.2t

x

y

z

t

t

t

 






 







 

45sec 60 sect   

   

   

   

-1.5sin -1.5t

1.3cos 1.3t

2sin 2t

x

y

z

t

t

t

 






 







 

TABLE II 

CHARACTERISTICS OF THE VARIOUS NOISES FOR THE SENSORS MEASUREMENTS 

Sensors Parameters 
Standard 

deviations 
Units 

Accelerometer f  0.4 2
/m s  

Magnetometer h  0.4 G auss  

Gyroscope g  0.4 /rad s  

In this set of simulations, the theoretical components of the 

quaternion q  are initialized with different random values as 

well as those estimated from the CSMO. These conditions are 

given such as:    0 1 0 0 0
T

q t   ;    0
ˆ 0.2 0.5 0.7 0.3

T
q t  . 

Note that this choice allows us to illustrate the convergence 

of the observer even though it was initialized far from the 

actual states. In order to evaluate the overall performance of 

the attitude estimation, we plotted the time history evolution of 

the estimation errors on the quaternion. Fig. 6 depicts the 

convergence of these errors towards zero during the simulated 

motion. For more clarity, two scales are used, one for periods 

between 0 and 5sec and another for periods lasting longer than 

5sec. This zoom illustrates the convergence behavior early in 

the time course and shows the precision obtained after 

convergence as clearly as possible. Despite the fact that the 

CSMO and the theoretical model of the quaternion were 

initialized with different initial conditions, one can note that 

the estimated quaternion converges towards the theoretical 

values. The same performance was obtained when using 

different sets of initial conditions. The obtained results in Fig. 

6 represent Euler angles errors around 3°.  
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Fig. 6. Quaternion estimation errors using the CSMO (with a zoom between 5 

and 60sec)  

The observer copes well with the large noises introduced in 

the 3-axis gyroscope, the 3-axis accelerometer and the 3-axis 

magnetometer measurements.  

In order to show the improvements made by the CSMO 

compared to the only use of the Levenberg Marquardt 

Algorithm, we depict in Fig. 7 the quaternion estimation errors 

resulting from the LMA. It is important to note that the rate of 

errors committed by this approach is very large. Indeed, this 

approach fails to track the desired attitude because the noises 

from motion accelerations affect the accelerometer data. 

Hence, the obtained results show that the CSMO is an efficient 

method for improving the attitude estimation quality. 
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Fig. 7. Quaternion estimation errors using the Levenberg Marquardt 

Algorithm 

VI. EXPERIMENTAL VALIDATION 

In order to evaluate the efficiency of the proposed CSMO in 

real world applications, an experimental setup was developed 

resorting to an inertial and magnetic sensor assembly. The goal 

is to obtain an estimation of the quaternion that represents the 

orientation of a rigid body and to investigate its accuracy 

under various conditions. For the experiments, two Inertial 

Measurement Units (IMUs) were employed: the MTi and the 

MTi-G from Xsens Motion Technologies [36] which output 

data at a rate of 100Hz (see Fig. 8).  

 
Fig. 8. IMUs with the sensor-fixed co-ordinate system - (a) MTi - (b) MTi-G 

Those MEMS devices are a miniature, light weight, 3D 

calibrated digital output sensor (3D acceleration from 

accelerometer, 3D angular rate from gyroscope, and 3D 

magnetic field data from magnetometer) with built-in bias, 

sensitivity, and temperature compensation. Note that the MTi-

G is a GPS enhanced Attitude and Heading Reference System 

(AHRS). In addition, these two devices are designed to track 

the body 3-D attitude output in quaternion representation. The 

calibration procedure to obtain the gains, offsets and non-

orthogonality of the 3-axis accelerometer, the 3-axis gyroscope 

and the 3-axis magnetometer was performed by the 

manufacturer of the sensor module. More details about the 

sensor data specifications in these two devices are given in 

appendix C.  

The MTi and the MTi-G can compute the attitude in 

quaternion representation by a traditional Kalman Filter (KF) 

and an Extended Kalman Filter (EKF), respectively, [36]. 

These algorithms exploit measurements from the 

inertial/magnetic sensors and GPS data (the GPS is only for 

the MTi-G). It is important to note that MT devices serve as 

tools for the evaluation of the Sliding Mode Observer 

efficiency and cannot be suitable for use in the field of 

ambulatory monitoring of human body motion and 

rehabilitation due to their dependences on an energy source as 

well as their heavy weights. In the following set of 

experiments, the calibrated data from the MTi and the MTi-G 

are used as input to the CSMO. 

A. Robot mounted tests 

In this section, the first experiment is achieved at the robotic 

laboratory of PSA Peugeot Citroën industrial base (Metz, 

France) under a popular industrial robot manipulator IRB 2400 

from ABB Group [37]. It offers an excellent motion control 

around six axes and gives a high performance in the material 

handling with a position repeatability of 0.06mm and 0.1°. 

Note that to avoid considering the results provided by the MTi 

as a reference for the attitude measurement, some tests are 

performed by considering PSA’s manipulator robot whose 

attitude and position are know exactly. 

Before starting the experiment, the MTi was attached to a 

wooden board and joined to the last axis of the robot. A lot of 

attention is given during the assembly to obtain the two 

aligned frames TooL0 and T_st_iner corresponding to the MTi 

and the last axis of the robot, respectively, (see Fig. 9). The 

reason is to get a ground truth orientation reference from the 

robot and to test the behavior of the inertial tracking approach. 

Notice that the length of the board is fixed to 20cm in order to 

place the unit far from the magnetic disturbance. 

The ABB robot axes are programmed to rotate in such way 

of performing a trajectory like a straight line by the last axis in 

the space and without changing its orientation. Since the two 

frames are aligned, the MTi describes also the same attitude as 
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done by the robot axis. This motion is repeated many times by 

the robot to investigate the accuracy of the proposed filtering 

approach. During the experiment, we choose to increase the 

robot velocity at each test. The recorded data (angular rates, 

accelerations, Earth’s magnetic fields) by the MTi are 

transmitted to a computer via USB port. Note that the robot 

gives the orientation of the frame TooL0 in quaternion form. In 

the last step, we feed the CSMO with the recorded data by the 

MTi to obtain an estimation of orientation and to compare it 

with the one given by the robot. 

      
Fig. 9. Experimental setup: the MTi is mounted on the robot for orientation 

tracking 

B. Results and performances analysis 

Figures 10(a) and 11(a) show two series of the estimated 

quaternion components (orientation) by the proposed filtering 

algorithm for two different robot velocities. The goal is to 

verify if the proposed observer is disturbed by the change of 

the velocity rate. We can see that the observer estimates the 

truth attitude stably and smoothly.  

We plotted also in the Figures 10(b) and 11(b) the 

corresponding residue after observer convergence, i.e., error 

between the CSMO and the reference (robot) for the 

quaternion components during the motion. This error is 

computed as the difference between the quaternion estimate 

produced by the CSMO and the robot. Note that this error is 

very small for the four quaternion components which proves 

the efficiency of the CSMO.  
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Fig. 10. (a) Comparison between quaternion components estimated from the 

CSMO and those given by the robot - (b) Quaternion estimation errors  
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Fig. 11. Comparison between quaternion components estimated from the 

CSMO and those given by the robot - (b) Quaternion estimation errors 

C. Human motion segments evaluation 

An experimental trial was designed to evaluate the human 

body motion of one subject by comparing the orientations 

obtained using the proposed observer in (11) with those as 

determined using the MTi-G [36]. To validate the effectiveness 

of the CSMO, the experiments were chosen to cover a wide 

part of 3D human motion. Then, the subject was asked to 

perform the 4 exercises outlined in Fig. 12. So, the 

investigated experiments are carried out on the followings 

human segments: The foot segment (Fig. 12. (a)), the lower leg 

segment (Fig. 12. (b)), the upper arm (Fig. 12. (c)) and the 

head (Fig. 12. (d)). In each exercise, the MTi-G was attached 

to the segment using an adhesive tape. In the first exercise, the 

subject performed many tasks as toe rise foot, clockwise ankle 

rotation, lateral foot rotation and eversion (see Fig. 13). In the 

second exercise, firstly the subject makes an extension of the 

knee and secondly he rotates its leg in clockwise and anti-

clockwise (see Fig. 14). The third exercise consists of the 

shoulder rotation, rotation around the axis defined along the 

upper arm and random motion (see Fig. 15). We finish this set 

of exercises with one performed on the head. The subject 

moves the neck firstly in two directions (clockwise and anti-

clockwise. After, he makes a rotation around the lateral axis of 

the head and the exercise is finished by a random motion (see 

Fig. 16). 

  
 (a) (b) 

  
 (c) (d) 

Fig. 12. Attachment of the MTi-G to the human limbs - (a) The foot segment - 

(b) The lower leg segment - (c) The upper arm - (d) The head 
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Fig. 13. Exercises performed during the foot segment motion - (a) Toe rise 

foot - (b) Clockwise ankle rotation - (c) Lateral foot rotation - (d) Eversion   

 
Fig. 14. Exercises performed during the lower leg segment motion - (a) Knee 

extension - (b) Clockwise and anti-clockwise rotation 

 
Fig. 15. Exercises performed during the upper arm motion - (a) clockwise and 

anti-clockwise shoulder rotation - (b) clockwise and anti-clockwise rotation 

around the dashed line axis defined along the upper arm segment - (c) random 

motion 

 
Fig. 16. Exercises performed during the head motion - (a) clockwise and anti-

clockwise neck rotation - (b) clockwise and anti-clockwise rotation around 

dashed line lateral axis of the head - (c) random motion 

The range of movement over which the technique was 

evaluated was large and comprehensive. Note that we have 

conducted several tests of these 4 exercises and that estimation 

results obtained were very similar. Therefore, we have chosen 

thereafter to represent only one illustrative example. During 

this experiment, the MTi-G recorded inertial/magnetic 

measurements and the 3D-orientation as a quaternion. 

D. Results and performances analysis 

The Matlab computing program was used for all post-trial 

data processing and analysis. The CSMO, proposed in section 

IV, is fed with calibrated data from the MTi-G to estimate the 

quaternion describing the orientation in each exercise. After 

that, the obtained estimations were compared to the 

orientations as determined using the MTi-G. In this section, we 

have chosen to represent the human motions orientation rather 

in Euler angles representation (roll, pitch and yaw) because it 

is more intuitive than quaternion for the reader. The 

mathematical transformation between quaternion and Euler 

angles is given in [38].  

Figures 17(a), 18(a), 19(a) and 20(a) show the time history 

evolution of the Euler angles obtained from the MTi-G and the 

CSMO. These figures represent the foot, lower leg, upper arm 

and head motions, respectively. Thus, one can deduce a strong 

correlation between the orientations measured using the MTi-G 

and the CSMO. Note that the convergence rate is very fast and 

is around 2 sec. The roll, pitch and yaw estimation errors are 

shown also in the Figures 17(b), 18(b), 19(b) and 20(b) to 

provide an overview of the overall performance of the 

proposed approach in the paper. These errors are computed as 

the difference between Euler angles estimates produced by the 

CSMO and the MTi-G.  

0 20 40 60 80
0

20

40

60

R
o

ll
 (

°)

(a)

 

 

MTi-G CSMO

0 20 40 60 80

-2

0

2
(b)

 

 

Difference: Roll (°)

0 20 40 60 80

0

20

40

P
it
c
h

 (
°)

 

 

MTi-G CSMO

0 20 40 60 80
-2

0

2

 

 

0 20 40 60 80
60

80

100

120

140

160

Y
a

w
 (

°)

Time (s)

 

 

MTi-G CSMO

0 20 40 60 80

-2

0

2

4

Time (s)

 

 

Difference: Yaw (°)

Difference: Pitch (°)

 
Fig. 17. (a) Comparison of Euler angles estimated from the CSMO and those 

obtained by MTi-G - (b) The corresponding estimation errors (Exercise on the 

foot segment)  
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Fig. 18. (a) Comparison of Euler angles estimated from the CSMO and those 

obtained by the MTi-G - (b) The corresponding estimation errors (Exercise on 

the lower leg segment) 
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Fig. 19. (a) Comparison of Euler angles estimated from the CSMO and those 

obtained by the MTi-G - (b) The corresponding estimation errors (Exercise on 

the upper arm) 
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Fig. 20. (a) Comparison of Euler angles estimated from the CSMO and those 

obtained by the MTi-G - (b) The corresponding estimation errors (Exercise on 

the head) 

The performance level consistency of the observer may be 

illustrated in these figures, even in dynamic situations, since 

the estimation errors are very small (around 2° for roll and 

pitch angles and 3° for yaw angle). It is important to note that 

although our approach didn’t exploit the GPS data as the 

internal algorithm of the MTi-G, it is able to reconstruct the 

orientation of the hand (given by the MTi-G) with a small 

error. Note that, we have already shown experimentally in [19] 

that the results provided by the MTi algorithms (Kalman Filter) 

in estimating orientation suffer from lack of robustness mainly 

during the dynamic motion (high inertial acceleration a ). 

The observer performance is shown quantitatively using the 

Root Mean Square Error (RMSE) of Euler angles measured by 

the CSMO when compared with the angles measured by the 

MTi-G. The RMSE was calculated as shown below [21]: 

    
2

1

ˆ
T

s s

k

A k A k

RM SE
T








     (23) 

where 

s : The exercise that was chosen. 

sA : The Euler angle being measured by the MTi-G. 

ˆ
sA : The Euler angle being estimated by the CSMO. 

T : The time interval chosen as 2T  . 

In Figures 21, 22 and 23, the distribution of the RMSEs of 

Euler angles (Fig. 21 for the roll angle, Fig. 22 for the pitch 

angle, and Fig. 23 for the yaw angle) is presented in box plots. 

These RMSEs are defined using the CSMO method when 

compared with the Euler angles measured by the MTi-G for 

each exercise. The tops and bottoms of each box are the 25
th

 

and 75
th

 percentiles of the samples, respectively. The distances 

between the tops and bottoms of the boxes are the inter-

quartile ranges (IQR). The horizontal lines in the middle of 

each box illustrate median values. The whiskers are lines 

extending above and below each box. Whiskers are drawn 

from the ends of the inter-quartile ranges to the furthest 

observations within the whisker length (the adjacent values). 

Observations beyond the whisker length are marked as 

outliers. By default, an outlier is a value that is more than 1.5 

times the inter-quartile range away from the top or bottom of 

the box. Outliers are displayed with a red (+) sign. 
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Fig. 21. Box plot of the RMSEs in degrees of the roll angle estimated by the 

CSMO when compared with the roll angle measured by the MTi-G 
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Fig. 22. Box plot of the RMSEs in degrees of the pitch angle estimated by the 

CSMO when compared with the pitch angle measured by the MTi-G 
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Fig. 23. Box plot of the RMSEs in degrees of the yaw angle estimated by the 

CSMO when compared with the yaw angle measured by the MTi-G 

The statistics from these figures are grouped in Tables III, 

IV, and V for roll, pitch and yaw angles, respectively. These 

Tables show that the RMSE and IRQ values are so small for 

each exercise. Therefore, we can conclude that accurate 

measurements of human body segment orientation can be 

achieved by the proposed technique based on the CSMO 

during a variety of human motion exercises. 
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TABLE III 

RMSES (MEDIAN) AND IRQS OF ROLL ANGLE FOR EACH EXERCISE 

 
Foot 

segment 

Lower leg 

segment 

Upper 

arm 
Head 

RMSEs (median) 0.661 0.787 0.862 0.577 

IQR 0.366 0.398 0.706 0.750 

TABLE IV 

RMSES (MEDIAN) AND IRQS OF PITCH ANGLE FOR EACH EXERCISE 

 
Foot 

segment 

Lower leg 

segment 

Upper 

arm 
Head 

RMSEs (median) 0.254 0.655 0.766 0.500 

IQR 0.272 0.247 0.387 0.413 

TABLE V 

RMSES (MEDIAN) AND IRQS OF YAW ANGLE FOR EACH EXERCISE 

 
Foot 

segment 

Lower leg 

segment 

Upper 

arm 
Head 

RMSEs (median) 0.586 1.146 0.721 1.177 

IQR 0.686 0.214 0.561 0.642 

VII. CONCLUSION 

This paper proposes a quaternion-based Complementary 

Sliding Mode Observer approach (CSMO) to recover the 

human body segments motions with a set of MEMS inertial 

and magnetic sensors. The suggested applications are for 

human motion monitoring and analysis in rehabilitation and 

sport medicine. The CSMO exploits readings with a view to do 

a trade-off between a good short term precision given by rate 

gyros integration and a reliable long term accuracy provided 

by accelerometer and magnetometer measurements. This 

alternative approach combines the kinematic equation of a 

rigid body with the Levenberg Marquardt Algorithm (LMA) 

that combines Earth’s magnetic field and gravity’s vector. The 

efficiency of the approach herein designed is demonstrated 

through some simulations using a theoretical example. 

Moreover, some experiments are carried out on a robot 

manipulator and some human body segments through sensor 

measurements provided by an Inertial Measurement Unit. The 

obtained results illustrate the performance of the proposed 

approach to estimate the main human movements with small 

errors.  

Future works will be focused on the application of the 

proposed approach firstly in the online ambulatory monitoring 

of human body motion for the elderly to prevent injuries or 

detect falls of persons for example.  

APPENDIX 

A. Quaternion algebra 

The unit quaternion, denoted by q , is expressed as: 

0 0 1 2 3      vectq q q q q i q j q k Q         (24) 

where 1 2 3  vectq q i q j q k  represents the imaginary vector, 

and 0q  is the scalar element. 

The quaternion product of 0 ,
 
 

T
T

a a a vectq q q  and 

0 ,
 
 

T
T

b b b vect
q q q  is defined such as: 

0 , 0

,, 3 3 0 ,





   
    

      

T

a a vect b

a b

b vecta vect a a vect

q q q
q q

qq I q q
   (25) 

where 3 3I   is the identity matrix and 
,

 
 a vectq  represents the 

standard vector cross-product which is defined as [7]: 

3 2

, 3 1

2 1

0

0

0



 
 

    
 

 
  

a a

a vect a a

a a

q q

q q q

q q

        (26) 

We invite the reader to refer to [31] for a more details about 

quaternion algebra. 

B. Main frames for attitude definition 

The attitude estimation requires the transformation of 

measured and computed quantities between various frames. 

The attitude of a rigid body is based on measurements gained 

from sensors attached to it. Indeed, inertial sensors are 

attached to the body-platform and provide measurements 

expressed relative to the instrument axes. In most systems, the 

instrument axes are nominally aligned with the body-platform 

axes. Since the measurements are performed in the body 

frame, we describe in Fig. 24 the orientation of the body-fixed 

frame  , ,B B BB X Y Z  with respect to the Earth-fixed frame 

 , ,N N NN X Y Z  which is tangent to the Earth’s surface.  

ZB

YB

XB

m

g

60° XN

ZN

(B)

YN

(N)

 
Fig. 24. The coordinate system (B) of a rigid body represented in the Earth- 

fixed frame (N) 

This local coordinate is particularly useful to express the 

attitude of a moving rigid body on the surface of the earth 

[17]. The NX -axis points true north. The NZ -axis points 

towards the interior of the Earth, perpendicular to the 

reference ellipsoid. The NY -axis completes the right-handed 

coordinate system, pointing east (NED: North, East, Down). 

C. MTi and MTi-G performances 

We show in the Table VI the performances of the MT 

Devices (MTi and MTi-G) [38].  

TABLE VI 

CALIBRATED DATA PERFORMANCE SPECIFICATION OF THE MT DEVICES 

Sensor 

performance 
Rate of turn Acceleration 

Magnetic 

field 

Full scale 300 deg/s  2
± 50 m /s  750m G auss  

Bias stability 1 deg/ s  2
0.02m / s  0.1m G auss  

Noise 0.05 deg/ s / Hz  2
0.002m / s / Hz  0.5m G auss  

Alignment error 0.1 deg  0.1 deg  0.1 deg  
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