Gabriel Peyré
email: gabriel.peyre@ceremade.dauphine.fr

Le traitement numérique des images

Les appareils numériques photographient de manière très précise le monde qui nous entoure. L'utilisateur souhaite pouvoir stocker avec un encombrement minimal ses photos sur son disque dur. Il souhaite également pouvoir les retoucher afin d'améliorer leur qualité. Cet article présente les outils mathématiques et informatiques qui permettent d'effectuer ces différentes tâches.

Les pixels d'une image

Une image numérique en niveaux de gris est un tableau de valeurs. Chaque case de ce tableau, qui stocke une valeur, se nomme un pixel. En notant n le nombre de lignes et p le nombre de colonnes de l'image, on manipule ainsi un tableau de n × p pixels. La figure 1, gauche, montre une visualisation d'un tableau carré avec n = p = 240, ce qui représente 240 × 240=57600 pixels. Les appareils photos numériques peuvent enregistrer des images beaucoup plus grandes, avec plusieurs millions de pixels.

Les valeurs des pixels sont enregistrées dans l'ordinateur ou l'appareil photo numérique sous forme de nombres entiers entre 0 et 255 = 2 8 -1, ce qui fait 256 valeurs possibles pour chaque pixel. La valeur 0 correspond au noir, et la valeur 255 correspond au blanc. Les valeurs intermédiaires correspondent à des niveaux de gris allant du noir au blanc. La figure 1 montre un sous-tableau de 6 × 6 pixels extrait de l'image précédente. On peut voir à la fois les valeurs qui composent le tableau et les niveaux de gris qui permettent d'afficher l'image à l'écran. Stocker de grandes images sur le disque dur d'un ordinateur prend beaucoup de place. Les nombres entiers sont stockés en écriture binaire, c'est-à-dire sous la forme d'une succession de 0 et de 1. Chaque 0 et chaque 1 se stocke sur une unité élémentaire de stockage, appelée bit. Pour obtenir l'écriture binaire d'un pixel ayant comme valeur 179, il faut décomposer cette valeur comme somme de puissances de deux. On obtient ainsi 179 = 2 7 + 2 5 + 2 4 + 2 + 1, o ù l'on a pris soin d'ordonner les puissances de deux par ordre décroissant. Afin de faire mieux apparaître l'écriture binaire, on ajoute "1×" devant chaque puissance qui apparaît dans l'écriture, et "0×" devant les puissances qui n'apparaissent pas

179 = 1 × 2 7 + 0 × 2 6 + 1 × 2 5 + 1 × 2 4 + 0 × 2 3 + 0 × 2 2 + 1 × 2 1 + 1 × 2 0 .
Avec une telle écriture, la valeur de chaque pixel, qui est un nombre entre 0 et 255, nécessite log 2 (256) = 8 bits. La fonction log 2 est le logarithme en base 2, et ce calcul exprime le fait que 256 = 2 8 L'écriture binaire de la valeur 179 du pixel est ainsi (1, 0, 1, 1, 0, 0, 1, 1), o ù chaque 1 et chaque 0 correspond au facteur multiplicatif qui apparaît devant chaque puissance.

On peut écrire toute valeur entre 0 et 255 de cet manière, ce qui nécessite d'utilisation de 8 bits. Il y a en effet 256 valeurs possibles, et 256 = 2 8 . Pour stocker l'image complète, on a donc besoin de n × p × 8 bits. Pour l'image montrée aux figure précédentes, on a ainsi besoin de 256 × 256 × 8 = 524288 bits.

On utilise le plus souvent l'octet (8 bits) comme unité, de sorte que cette image nécessite 57,6ko (kilo octets). Nous avons déjà vu que l'on pouvait représenter toute valeur entre 0 et 255 à l'aide de 8 bits en utilisant l'écriture binaire. De fac ¸on similaire, on vérifie que toute valeur entre 0 et 3 peut se représenter à l'aide de 2 bits. On obtient ainsi une réduction d'un facteur 8/2=4 de la place mémoire nécessaire pour le stockage de l'image sur un disque dur. La figure 3 montre les résultats obtenus en utilisant de moins en moins de niveaux de gris. Tout comme pour la réduction du nombre de pixels, la réduction du nombre de niveaux de gris influe beaucoup sur la qualité de l'image. Afin de réduire au maximum la taille d'une image sans modifier sa qualité, on utilise des méthodes plus complexes de compression d'image. La vignette Klein de ce numéro détaille une méthode qui exploite la décomposition en valeurs singulières des matrices.

Sous-échantilloner une image

Enlever le bruit

Moyenne locale

Les images sont parfois de mauvaise qualité. Un exemple typique de défaut est le bruit qui apparait quand une photo est sous-exposée, c'est-à-dire qu'il n'y a pas assez de luminosité. Ce bruit se manifeste par de petites flucturation aléatoires des niveaux de gris. La figure 5, gauche, montre une image bruitée.

Afin d'enlever le bruit dans les images, il convient de faire subir une modification aux valeurs de pixels. L'opération la plus simple consiste à remplacer la valeur a de chaque pixel par la moyenne de a et des 8 valeurs b, c, d, e, f, g, h, i des 8 pixels qui entourent a . La figure 4 Le moyennage des pixels est très efficace pour enlever le bruit dans les images, malheureusement il détruit également une grande partie de l'information de l'image. on peut en effet s'apercevoir que les images obtenues par moyennage sont floues. Ceci est en particulier visible près des contours, qui ne sont pas nets.

Médiane locale

Afin de réduire ce flou, il faut remplacer le moyennage par une opération un peu plus complexe, que l'on nomme mediane. Etant donné la valeur a d'un pixel, et les valeurs b, c, d, e, f, g, h, i, on commence par les classer par ordre croissant. Dans l'exemple du voisinage de 9 pixels utilisé à la section précédente, on obtient les 9 valeurs classées 47, 54, 79, 153, 166, 189, 190, 192, 203. La médiane des neuf valeurs a, b, c, d, e, f, g, h, i est la 5 e valeur de ce classement (c'est-à-dire la valeur centrale de ce classement). Dans notre cas, la médiane est donc 166. Notez que ce nombre est en général différent de la moyenne, qui vaut, pour notre exemple 141,4. Afin d'enlever plus de bruit, il suffit de calculer la médiane sur un nombre plus grand de pixels voisins, comme montré à la figure 6. On constate que cette méthode est plus performante que le calcul de moyennes, car les images résultantes sont moins floues. Cependant, tout comme avec le calcul de moyennes, si l'on prend des voisinages trop grands, on perd aussi de l'information de l'image, en particulier les bords des objets sont dégradés. La figure 8 montre une image dont la valeur des pixels est min(ℓ, 255). On a ainsi affiché ces valeurs avec du noir quand ℓ = 0, du blanc quand ℓ est grand, et on a utilisé des niveaux de gris pour les valeurs intermédiaires. On peut voir que dans l'image de droite, les contours des objets ressortent en blanc, car ils correspondent aux grandes valeurs de ℓ.

Détecter les bords des objets

Image d'origine

Carte de contours ℓ Afin d'afficher une image couleur à l'écran à partir des trois canaux (c, m, j), on doit utiliser la synthèse soustractive des couleurs. La figure 11, droite, montre les règles de composition cette synthèse soustractive. Elle correspondent en peinture à l'absorption de la lumière par les pigments colorés, d'o ù le qualificatif « soustractif ». Le cyan, le magenta et le jaune sont appelés couleurs primaires.

On peut donc stocker sur un disque dur une image couleur en stockant les trois canaux, correspondant aux valeurs (r, g, b) ou (c, m, j). On peut modifier les images couleur tout comme les images en niveaux de gris. La fac ¸on la plus simple de procéder consiste à appliquer la modification à chacun des canaux.

Manipulations du contraste en niveaux de gris

Il est possible de faire subir différentes modifications à l'image afin de changer son contraste. On considère ici une image en niveaux de gris. Un manipulation simple consiste à remplacer chaque valeur a d'un pixel d'une image par 255 -a ce qui correspond à l'intensité de gris opposée. Le blanc devient noir et vice-et-versa, ce qui donne un effet similaire à celui des négatifs d'appareils photos argentiques, voir figure 13, gauche.

On éclaircit ou assombrit l'image en utilisant une fonction croissante de [0, 255] dans [0, 255] que l'on applique aux valeurs des pixels. On peut assombrir l'image en utilisant la fonction carré. Plus précisément, on définit la nouvelle valeur d'un pixel de l'image comme a 2 /255, voir figure 13, centre. Il est important d'effectuer la division par 255 pour assurer que le résultat reste dans l'intervalle [0,255]. Notons également que le résultat n'est en général plus un nombre entier. Afin de le stocker dans un fichier, il faut arrondir chaque valeur des pixels de l'image à l'entier le plus proche. Pour éclaircir l'image, on définit la nouvelle valeur d'un pixel de l'image comme √ 255a. La figure 13, droite montre l'éclaircissement obtenu. On pourra noter que ces deux opérations (éclaircissement par carré et assombrissement par racine carrée) sont inverses l'une de l'autre.

Manipulations du contraste en couleur

Afin de manipuler le contraste d'une image couleur, il est important de respecter autant que possible les teintes des couleurs. On souhaite donc ne manipuler que la composante de luminance a = (r + v + b)/3, en conservant constant le résidu (r -a, v -a, b -a). On peut par exemple définir un changement de contraste en élevant la luminance a à la puissance γ > 0, afin d'obtenir 7 Images et matrices

Symétrie et rotation

Une image est un tableau de nombres, avec n lignes et p colonnes. Il est donc facile d'effectuer certaines transformations géométriques sur l'image. Les valeurs des pixels qui composent ce tableau (noté A) peuvent être représentées sous la forme A = (a i,j) i,j ou l'index i décrit l'ensemble des nombres {1, . . . , n} (les entiers entre 1 et n) et l'index j les nombres {1, . . . , p}. On dit que a i,j est la valeur du pixel à la position (i, j).

Le tableau de pixels ainsi indexé se représente de la fac ¸on suivante On peut également effectuer une rotation d'un quart de tour dans le sens des aiguille d'une montre à l'image. Ceci est obtenu en définissant une matrice C = (c i,j) j,i de p lignes et n colonnes par c j,i = a n-i+1,j . La figure 15, droite, montre l'action de cette rotation sur une image.

A =             a 1,1 a 1,p . . . a i-1,j . . . a i,j-1 a i,j a i,j+1 . . . a i+1,j . . . a n,1 a n,p             , ce qui

Fondu entres deux images

On souhaite effectuer une transition entre deux images A et B de même taille. On suppose donc que les deux images ont le même nombre n de lignes et le même nombre p de colonnes. On note A = (a i,j) i,j les pixels de l'image A et B = (b i,j) i,j les pixels de l'image B.

Pour une valeur t fixée entre 0 et 1, on définit l'image C = (c i,j) i,j comme c i,j = (1 -t)a i,j + tb i,j .

Il s'agit de la formule d'une interpolation linéaire entre les deux images. Pour une image couleur, on applique cette formule à chacun des canaux R, V et B. On peut constater que pour t = 0, l'image C est égale à l'image A. Pour t = 1, l'image C est égale à l'image B. Lorsque la valeur t progresse de 0 à 1, on obtient ainsi un effet de fondu, puisque l'image, qui au départ est proche de l'image A ressemble de plus en plus à l'image B. La figure 16 montre le résultat obtenu pour 6 valeurs de t réparties entre 0 et 1.

FIG. 1 :2

 1 FIG. 1: Sous image de taille 5 × 5

 FIG. 2: Sous-échantillonnage d'une image

 FIG. 3: Quantification d'une image

 FIG. 4: Voisinage de pixels. un exemple de voisinage de 9 pixels. On obtient ainsi une image modifiée en remplac ¸ant a par a + b + c + d + e + f + g + h + i 9 puisque l'on fait la moyenne de 9 valeurs. Dans notre exemple, cette moyenne vaut 190 + 192 + 79 + 54 + 47 + 153 + 203 + 189 + 166 9 ≈ 141, 4. En effectuant cette opération pour chaque pixel, on supprime une partie du bruit, car ce bruit est constitué de fluctuations aléatoires, qui sont diminuées par un calcul de moyennes. La figure 5, en haut à gauche, montre l'effet d'un tel calcul. Tout le bruit n'a pas été enlevé par cette opération. Afin d'enlever plus de bruit, on peut moyenner plus de valeurs autour de chaque pixel. La figure 5 montre le résultat obtenu en moyennant de plus en plus de valeurs.

 FIG.6: Filtrage médian de plus plus en plus fort.

 FIG. 7: Exemple d'un voisinage de 5 pixels.

FIG. 8 :

 8 FIG. 8: Détection des bords.

 FIG. 12: Canaux CMJ 6 Changer le contraste d'une image 6.1 Luminance On peut calculer une image en niveaux de gris à partir d'une image couleur en moyennant les trois canaux. On calcule donc, pour chaque pixel, une valeur a = r + v + b 3 qui s'appelle la luminance de la couleur. La figure 9 montre le passage d'une image couleur à une image de luminance en niveaux de gris.

FIG. 14 :

 14 FIG. 13: Changement de contraste. que pour γ = 1/2 (respectivement γ = 2) on retrouve le changement de contraste par passage au carré (respectivement à la racine carrée) introduit à la section précédente. On constate également que pour γ = 1, la luminance est inchangée, i.e. ã = a. Ce changement de contraste est ensuite répercuté sur l'image couleur en définissant trois canaux (r, ṽ, b) d'une nouvelle image par    r = max(0, min(255, r + ã -a)), ṽ = max(0, min(255, v + ã -a)), b = max(0, min(255, b + ã -a)). Il est important de prendre le maximum avec 0 et le minimum avec 255 afin que le résultat reste dans l'intervalle [0, 255], et soit affiché de manière correcte. La figure 14 montre le résultat obtenu pour différentes valeurs de γ. Pour γ < 1, l'image est éclaircie, alors que pour γ > 1, l'image est assombrie.

 FIG. 15: Transposition et rotation.

 FIG. 16: Interpolation linéaire.

http://www.numerical-tours.com/

Quantifier une image

Une autre fac ¸on de réduire la place mémoire nécessaire pour le stockage consiste à utiliser moins de nombres entiers pour chaque valeur. On peut par exemple utiliser uniquement des nombres entier entre 0 et 3, ce qui donnera une image avec uniquement 4 niveaux de gris. On peut effectuer une conversion de l'image d'origine vers une image avec 3 niveaux de valeurs en effectuant les remplacements :