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Abstract.
The occurrence of a bounce in the FRW cosmology requires modifications of general

relativity. An example of such a modification is the recently proposed Hořava-Lifshitz theory of
gravity, which includes a “dark radiation” term with a negative coefficient in the analog of the
Friedmann equation. This paper describes a phase space analysis of models of this sort with
the aim of determining to what extent bouncing solutions can occur. It is found that they are
possible, but not generic in models under consideration. Apart from previously known bouncing
solutions some new ones are also described. Other interesting solutions found include ones which
describe a novel sort of quasi stationary, oscillating universes.

1. Introduction

The standard ΛCDM model has solved many issues in cosmology. However, in spite of all this
success, it also leaves a number of issues unaddressed. Perhaps the most significant is the problem
of initial singularity, where general relativity breaks down. There have been many attempts to
modify Einstein’s theory to avoid this singularity. Some are made at classical level, some involve
quantum effects. Examples include the ekpyrotic/cyclic model ([1, 2, 3, 4, 5, 6, 7, 8, 9]) and loop
quantum cosmology ([10, 11, 12, 13, 14, 15]), which replace the Big Bang with the Big Bounce.
Attempts to address these issues at the classical level include braneworld scenarios ([16, 17]), where
the universe goes from an era of accelerated collapse to an expanding era without any divergences
or singular behavior. There are also higher order gravitational theories and theories with scalar
fields (see [18] for a review of bouncing cosmologies). It is however fair to say that the issue of the
initial singularity remains one of the key questions of the early Universe cosmology, and the idea
that it is avoided due to a bounce is an elusive (and promising) notion. As discussed below, it is
clear that close to the singularity the Friedmann equation has to be modified for a bounce to be
possible.

In the recent year much effort has been devoted to studies of a proposal for a UV complete
theory of gravity due to Hořava [19, 20, 21] and modifications of the theory [22, 23, 24, 25, 26, 27]
(for a recent review see [28, 29]). Because in the UV the theory possesses a fixed point with
an anisotropic, Lifshitz scaling between time and space, this theory is referred to as the Hořava-
Lifshitz gravity. Soon after this theory was proposed many specific solutions have been found,
including cosmological ones ([30, 31, 32, 22, 33, 34, 35, 36]). It was also realized that the analog
of the Friedmann equation in the HL gravity contains a term which scales in the same way as
dark radiation in braneworld scenarios [30, 31, 32] and gives a negative contribution to the energy
density. Thus, at least in principle it is possible to obtain non-singular cosmological evolution
within the Hořava theory, as it was pointed out in [30, 32, 37]. Propagation of linear cosmological
perturbations through the bounce was studied in [38], and it was shown that their evolution
remains non-singular throughout, despite a singularity in perturbations’ equation of motion at the
bounce point. The scale invariance of the perturbation spectrum is preserved during the bounce
– without the need for inflation. Thus, the HL gravity can provide a realization of the “matter
bounce” scenario.
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The Hořava theory evolved in many aspects attempting to solve problems and inconsistencies
appearing in the original formulation [25, 39, 40, 41]. Numerous sophisticated versions contain
new terms added to the original Lagrangian with attempt to make the proposal more general [25]
and to solve the so called strong coupling problem [39, 42, 43, 44]. The latter one seems to be
the key problem of Hořava theory. It concerns the extra scalar degree of freedom arising from the
explicit breaking of the general covariance and appearing when expanding about flat space-time
[25, 39, 41]. While approaching the classical IR limit this mode becomes strongly coupled [39].
Blas et al proposed an extension of Hořava theory [44] (the so called healthy extension), showing
in [26, 45] that fluctuations about Minkowski space-time can be made well-behaved and this extra
mode does not lead to any phenomenological inconsistencies. Another solution to this problem was
proposed by Hořava and Melby-Thompson. In [27] they investigate the possibility of extending
the gauge group by a local U(1) symmetry, which eliminates scalar graviton. The presence of
this new symmetry forces the coupling constant λ to be equal to one (however this result was
questioned in [48], where an action with the extended gauge symmetry and λ 6= 1 is formulated).
On the other hand it was shown e.g. in [28, 26] that to avoid instabilities of the scalar graviton λ
has to be very close to 1+ at low energies. The question on the value of λ – whether it has to be
fixed at 1 – is still a matter of debate.

Nevertheless the influence of the dark radiation term on the existence and stability of a
cosmological bounce remains an interesting issue. This contribution to the modified Friedmann
equations appears both in the projectable formulation [25] and in the non-projectable healthy
extension of the HL theory [29]. The dynamics of the version exhibiting U(1) symmetry has
not been adequately studied yet (though one expects that for cosmological solutions the terms
suggested in [27] will not contribute to the equations of motion). In this paper we are going to
analyze how this specific modification of equations of motion affects the dynamics of the system.
As a starting point we will take the Friedmann equations of the projectable HL theory with
detailed balance. This allows us to explore implications of the “dark radiation” contribution and
this formulation is convenient if one is interested in homogeneous and isotropic solutions. The
dynamics of the system in the IR limit will be visualized with the help of the phase portrait
techniques described in [60, 61] and compared to the standard GR cosmology. For the purpose of
illustration we will assume that matter in the pre-bounce epoch is described by a scalar field ϕ with
a quadratic potential. In order to concentrate on modifications created by the “dark radiation”
terms and to simply the analysis we will take the cosmological constant Λ→ 0 limit. Such scenario
is as an approximation to a general case with non-vanishing Λ, valid in the regime of small scale
factor a, when standard curvature and Λ terms are not relevant. Thus, the present analysis can
be regarded as an exploration of the cosmologies with modified equations of motion, where the
modifications considered are inspired by Hořava cosmology.

Related analysis of Hořava-Lifshitz cosmology have also appeared in [46] and [47], which we
become aware of while this work was being typed. Those papers address a somewhat different
set of issues from what we have pursued. The analysis presented in [46] and [47] consider the full
4-dimensional phase space of HL cosmology. The results presented here focus on the region close
to where the scale factor vanishes, which admits a critical simplification: the number of dynamical
equations under study can be reduced from 4 to 3 (as discussed in more detail in Section 3). This
makes it possible to visualize the possible phase space trajectories in a 3-dimensional space.

The structure of this note is following: in Section 2. we briefly sketch the Hořava-Lifshitz
gravity and cosmology. In Section 3. the possibility of bounce is discussed. In Section 4 we
discuss phase portraits of the discussed system of equations and describe different families of
phase trajectories.

2. Hořava-Lifshitz cosmology

The metric of Hořava-Lifshitz theory, due to anisotropy in UV, is written in the (3+1)-dimensional
ADM formalism:

ds2 = −N2dt2 + gij(dxi −N idt)(dxj −N jdt), (1)
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where N , Ni and gij are dynamical variables. The general action of the Hořava-Lifshitz theory of
gravity is ([20])

Ig =
2
κ2

∫
dtd3x

√
gN

{
(KijK

ij − λK2 − Vg(gij , N)
)
, (2)

where Kij = 1
N

[
1
2 ġij −∇(iNj)

]
is an extrinsic curvature of a spacelike hypersurface with a fixed

time, covariant derivatives are defined with respect to the spatial metric gij , λ is a dimensionless
running coupling, κ is a gravitational coupling.

Potential Vg is a function of the metric gij , lapse N and their spatial derivatives. It shall
contain terms at least sixth order in spatial derivatives due to requirements set by power counting
renormalizability. There are many possible forms of Vg, different choices leading do different
version of the theory. In the original proposal [20] the potential V was written in the so-called
“detailed balance” form, derivable from a superpotential W :

Vg = EijGijklEkl, (3)

where

Eij =
1
√
g

δW

δgij
, (4)

and Gijkl is a generalized De Witt metric

Gijkl =
1
2
(
gikgjl + gilgjk − λgijgkl

)
. (5)

This leads to the gravitational action in the form:

SDB =
∫
dtd3xN

√
g

{
2
κ2

(KijK
ij − λK2) +

κ2µ2(ΛR− 3Λ2)
8(1− 3λ)

+
κ2µ2(1− 4λ)
32(1− 3λ)

R2 − κ2

2ω4
ZijZ

ij

}
, (6)

where

Zij = Cij −
µω2

2
Rij , (7)

µ, ω and Λ are constant parameters and the Cotton tensor, Cij , is defined by

Cij = εikl∇k
(
Rjl −

1
4
Rδjl

)
= εikl∇kRjl −

1
4
εikj∂kR. (8)

Imposing detailed balance condition reduces highly the number of terms in the potential part V of
the action (2) and additionally introduces a superpotential W which may simplify quantization of
the system. Although there is nothing fundamental in this formulation [25, 28, 29] it is convenient
if one is interested in homogeneous and isotropic solutions.

In the HL gravity, opposite to GR, there is no direct prescription on how to couple matter
to gravitational field. In GR there is the Lorentz invariance that provides arguments on how to
couple matter, but in the Hořava theory there are no such guides for choosing a particular type
from among the general family of couplings between the gravity and matter sectors. In some
approaches the minimal coupling is assumed ([44, 49]) to make more easy contact with GR, there
are also considered particular couplings [50, 51, 52, 53, 54, 55]. This issue has been recently
addressed in [56]. We follow the procedure described in [30, 31, 32], and for the scalar field take
the same anisotropic scaling as the one chosen for the gravity sector. Thus the action for matter
is

Im =
∫
dtd3x

√
gNLm, (9)

where

Lm =
3λ− 1

2

[
1
N2

(ϕ̇−N i∂iϕ)2 − F (∂iϕ,ϕ)
]
. (10)
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The potential F can in principle contain arbitrary combinations of ϕ and its spatial derivatives.
The UV renormalizability indicates that F should contain up to six derivatives, but otherwise
arbitrary powers of the scalar field.

In the IR, the terms with less number of spatial derivatives in the gravitational
action (6) dominate. Thus the leading terms would be the kinetic one Ik =
2
κ2

∫
dtd3x

√
gN

{
(KijK

ij − λK2
)
, the cosmological constant Λ term and the Ricci scalar term,

the forth and six spatial derivative terms being irrelevant. Therefore the following action describes
the IR behavior of the theory:

SIR =
∫
dtd3xN

√
g

{
2
κ2

(KijK
ij − λK2) +

κ2µ2ΛR
8(1− 3λ)

− 3κ2µ2Λ2)
8(1− 3λ)

}
. (11)

Comparing the action of the Hořava-Lifshitz theory near its IR limit to the Einstein-Hilbert
action of General Relativity, one can see that the speed of light, Newton’s constant and the
cosmological constant are

c =
κ2µ

4

√
Λ

1− 3λ
, G =

κ2

32πc
, ΛE = − 3κ4µ2

3λ− 1
Λ2

32
, (12)

respectively. Setting dynamical constant λ = 1, reduces the terms in (11) to the usual ones of
Einstein’s relativity.

The equations for Hořava-Lifshitz cosmology are obtained by imposing conditions of
homogeneity and isotropy of the metric. The associated ansatz is N = N(t), Ni = 0, gij = a2(t)γij
where a(t) is a scale factor and γij is a maximally symmetric constant curvature metric, with a
curvature k = {−1, 0, 1}. On this background

Kij =
H

N
gij , Rij =

2k
a2
gij , Cij = 0 , (13)

where H ≡ ȧ/a is the Hubble parameter.
The non-linear function F in the scalar action (9) reduces effectively to a potential V (ϕ) and

matter Lagrangian Lm takes the form:

Lm =
3λ− 1

2

(
ϕ̇2

2N2
− V (ϕ)

)
(14)

The energy density and pressure of the scalar field may be defined in the following way:

ρ =
3λ− 1

4
ϕ̇2 + V (ϕ), (15)

p =
3λ− 1

4
ϕ̇2 − V (ϕ) (16)

In numerical calculations presented further on a specific form of the scalar potential will be assumed
(see eq. (25)).

The total action becomes:

SFRW =
∫
dtd3xNa3

{
3(1− 3λ)

2κ2

H2

N2
+

3κ2µ2Λ
4(1− 3λ)

(
k

a2
− Λ

3

)
− κ2µ2

8(1− 3λ)
k2

a4

}
+
∫
d3xdtNa3 3λ− 1

2

{
ϕ̇2

2N2
− V (ϕ)

}
. (17)

The equations of motion are obtained by varying the action (17) with respect to N , a and ϕ,
then setting N = 1 at the end of the calculations.

H2 =
κ2ρ

6(3λ− 1)
+

κ4µ2Λ
8(3λ− 1)2

k

a2
− κ4µ2

16(3λ− 1)2

(
Λ2 +

k2

a4

)
, (18)

Ḣ = − κ2(ρ+ p)
4(3λ− 1)

− κ4µ2Λ
8(3λ− 1)2

k

a2
+

κ4µ2

32(3λ− 1)2
k2

a4
, (19)

and also equation of motion for the scalar field:

ϕ̈+ 3Hϕ̇+
2

3λ− 1
V ′ = 0, (20)



Phase portrait of a matter bounce in Hořava-Lifshitz cosmology 5

where H = ȧ/a, a prime denotes the derivative with respect to scalar field ϕ.
Equations (18-19) are the non-relativistic Friedmann equations. They are derived from the

general HL action (not the one in IR limit) and thus they differ from the GR Friedmann equations
by the presence of the parameter λ and the (1/a4) terms. Taking the IR limit first would only
reproduce the standard Friedmann equations, loosing additional structure. The (1/a4) terms,
produced by the R2 term in the HL action, are reminiscent of the dark radiation term in braneworld
cosmology [57] and are present only if the spatial curvature of the metric is non-vanishing.

The coupling constant λ is dimensionless. In general, it runs (logarithmically in the UV) and
may eventually reach one the three IR fixed points ([19]): λ = 1/3, λ = 1 or λ = ∞. The range
1 > λ > 1/3 leads to ghost instabilities in the IR limit of the theory [58]. However, this range
of λ is exactly the flow-interval between the UV and IR regimes. The only physically interesting
case that remains, allowing for a possible flow towards GR – at λ = 1 – is the regime λ ≥ 1.
Region λ ≤ 1/3 is disconnected from λ = 1 and cannot be included in realistic considerations.
Moreover, to avoid instabilities of the scalar graviton λ has to be very close to 1+ at low energies.
Additionally, in one of the recent extensions of Hořava theory [27] λ is only a coefficient in the
action, forced by an imposed U(1) symmetry to be equal to 1 (though this result was questioned
in [48]).

Nonetheless the phenomenologically relevant range is∞ > λ ≥ 1. In this range the qualitative
description of the above system does not depend on the specific value of λ: equations (18) and
(19) show different behavior for λ > 1/3 and λ < 1/3. Therefore if we want to stay within the IR
limit we may simplify further calculations and set the value λ = 1. This leads to:

H2 =
κ2ρ

12
+
κ4µ2Λ

32
k

a2
− κ4µ2

64

(
Λ2 +

k2

a4

)
, (21)

Ḣ = − κ2(ρ+ p)
8

− κ4µ2Λ
32

k

a2
+
κ4µ2

128
k2

a4
, (22)

and an equation of motion for the scalar field:

ϕ̈+ 3Hϕ̇+ V ′ = 0. (23)

where in this limit ρ = ϕ̇2/2 + V (ϕ) and p = ϕ̇2/2− V (ϕ).

3. Existence of bounce

New terms in the cosmological equations introduce the possibility of a bounce. The form of (21),
with k = ±1 implies that it is possible that H = 0 at some moment of time. This is a necessary
condition for the realization of the bounce. It was pointed out in [30], that it may happen in the
presence of matter, at the critical time t∗, a = a∗, when the critical energy density is equal to

ρ = ρ∗ =
3κ2µ2

2

(
−Λ

4
k

a2
∗

+
Λ2

8
+

1
8
k2

a4
∗

)
, (24)

which is determined by the couplings of the theory.
From the continuity equation it follows that at the bounce point Ḣ > 0. Therefore a transition

from a contracting to an expanding phase may be possible. It was shown in [37] that the necessary
condition for a cosmological bounce is that the energy density of regular matter increases less fast
than a−4 as the scale factor decreases and ( ρ12 − p) > 0 .

We begin our considerations during a contracting phase. At the beginning the scale factor is
quite large and the contribution of dark radiation to the total energy density is quite small. As
the universe contracts, the energy density increases and the scale factor decreases rapidly. When
a critical density is achieved, a bounce is about to take place.

One would expect that near the bounce, when the scale factor a is sufficiently small, the
leading term in (21) and (22) would be the dark radiation one, with curvature and cosmological
constant terms neglectable small. Specifically, assuming for a moment an equation of state of the
form p = wρ with constant w, it is well known that H2, Ḣ and ρ scale as a−3(1+w). Therefore
we may keep the density term and omit the curvature term ∼ 1/a2 if w > − 1

3 . In the case of



Phase portrait of a matter bounce in Hořava-Lifshitz cosmology 6

a quadratic potential considered below (for which w 6= const, so the above argument does not
directly apply) we have checked numerically that in all bounce scenarios discussed in this paper,
this approximation is valid near bounce point (up to 10−7).

We will model the matter sector in this pre-bounce epoch by assuming it is described by a
scalar field ϕ with a potential

V (ϕ) =
1
2
m2ϕ2. (25)

For calculational simplicity we put m = 1.
This way we have the following equations modeling the bounce in the Hořava-Lifshitz

cosmology.

Ḣ = − κ2

8
ϕ̇2 +

κ4µ2

32
k2

a4
, (26)

H2 =
κ2

24
(ϕ̇2 + ϕ2)− κ4µ2

64
k2

a4
. (27)

The value of κ2 may be expressed near the IR limit in terms of cosmological constants (12):
κ2 = 32πGc. After the suitable time reparameterization we can set 8πGc = 1. Therefore the
Friedmann equations take the following form near the bounce:

Ḣ = − 1
2
ϕ̇2 +

µ2k2

2a4
, (28)

H2 =
1
6

(ϕ̇2 + ϕ2)− µ2k2

4a4
. (29)

Additionally, completing dynamics of the system, there is the equation of motion for the scalar
field and the definition of the Hubble parameter:

ϕ̈ = − ϕ− 3ϕ̇H, (30)
ȧ = aH. (31)

The value of the parameter µ may be kept arbitrary. This parameter does not alter solutions of
the system (28-31), but it specifies values of a on an obtained trajectory.

4. Phase portrait

4.1. Phase space

The local geometry of the phase portrait is characterized by the nature and position of its critical
points. These points are locations where the derivatives of all the dynamic variables, i.e. the
r.h.s. of (43-45), vanish. Moreover, they are the only points where phase trajectories may start,
end, or intersect. They can also begin or end in infinity, and then – after a suitable coordinate
transformation projecting the complete phase space onto a compact region (the so called Poincaré
projection) – there may be well defined infinite critical points. The set of finite and infinite critical
points and their characteristic, given by the properties of the Jacobian matrix of the linearized
equations at those points, provides a qualitative description of the given dynamical system.

Dynamics of our system is described by the following set of first order ODE’s:

u = ϕ̇, (32)
u̇ = − ϕ− 3uH, (33)
ȧ = aH, (34)

Ḣ = − 1
2
u2 +

µ2k2

2a4
, (35)

plus the constraint equation:

H2 =
1
6

(u2 + ϕ2)− µ2k2

4a4
. (36)
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If spatial curvature k = 0 one may consider a 2-dimensional subsystem:

u = ϕ̇, (37)
u̇ = − ϕ− 3uH, (38)

Ḣ = − 1
2
u2, (39)

(40)

with a constraint equation

H2 =
1
6

(u2 + ϕ2.) (41)

If k 6= 0 one may also consider a subsystem on variables (ϕ, u,H), obtained via reduction of the
original system with respect to constraint (36). Namely, substituting

µ2k2

4a4
=

1
6

(u2 + ϕ2)−H2 (42)

into the equation for Ḣ and omitting equation on dynamics of a leads the following set of equations:

u = ϕ̇, (43)
u̇ = − ϕ− 3uH, (44)

Ḣ =
1
3

(ϕ2 − u2

2
)− 2H2. (45)

This is a reduced 3-dimensional subset of (32-36) on variables (ϕ, u,H). If one wants to obtain also
dynamics of a, he needs to add to this system equation ȧ = aH and also the constraint equation
(36).

In subsequent considerations we shall focus on a case k 6= 0 (when HL corrections play
a significant role) and a phase portrait of solution of the system (43-45) in space of (ϕ, u,H),
following similar a similar procedure as that described in ([60, 61]). Reducing dimensionality of
phase space enables 3D phase portrait visualizations. Moreover, we will discuss shortly also a case
k = 0, which play a role of a limiting case for k 6= 0 dynamics.

We start by rewriting equations (43-45) in terms of the variables

x ≡ ϕ; y ≡ ϕ̇; z ≡ ȧ

a
, (46)

which gives three “evolution” equations

ẋ = y, (47)
ẏ = − x− 3yz, (48)

ż =
1
3

(x2 − y2

2
)− 2z2. (49)

The space of solution of the above dynamical system is a 3D region of the phase space (x, y, z).
This region is bounded by a 2D surface defined by a constraint equation (41) – space of trajectories
of a flat universe (k = 0). This limiting surface is a double cone z2 = 1

6 (x2 + y2), with the upper
branch corresponding to expansion and lower one to contraction. Those two branches connect
at a point: (0,0,0), which is a critical point (see below). Hence there are no trajectories passing
from one branch of the cone to the other. For k = ±1 all trajectories lie between the branches
of this cone. Dynamical equations (32-36) contain only k2, their solutions are the same for either
non-zero value of k: k = −1 or k = 1. This cone is also a limiting surface for trajectories with
large a. The further a trajectory lies from this cone, the smaller are the values of a along it.

The bounce happens when a phase trajectory passes from the region z < 0 to the region
z > 0, intersecting the plane z = 0. At the crossing point ż > 0 must hold. Equation (49) implies
that this happens if the crossing point lays between the lines y =

√
2x and y = −

√
2x on the

plane z = 0. Those lines are the z = 0 section of an elliptic cone 1
6

(
x2 − y2

2

)
− z2 = 0, whose

interior consists of trajectories with ż > 0 (eq. (49)). The area outside this cone is filled with
trajectories along which ż < 0.
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To find the finite critical points we set all right-hand-sides of equations (47-49) to zero. This
gives rise to the conditions

x = y = z = 0. (50)

Stability properties of this point are determined by the eigenvalues of the Jacobian of the
system (47-49). More precisely, one has to linearize transformed equations (47-49) at each point.
Inserting ~x = ~x0 + δ~x, where ~x = (x, y, z), and keeping terms up to 1st order in δ~x leads to an
evolution equation of the form δ~̇x = Aδ~x. Eigenvalues of A describe stability properties at the
given point.

At the finite critical point O = (0, 0, 0), the matrix A has 2 purely imaginary eigenvalues,
which implies there are closed orbits in the xy-plane encircling the z-axis, i.e. point O lays on a
center line surrounded by closed orbits.

To find critical points that occur at infinite values of the parameters we rescale the infinite
space (x, y, z) into a finite Poincaré sphere by means of the coordinate change:

x =
X

1− r
, (51)

y =
Y

1− r
, (52)

z =
Z

1− r
, (53)

where

X = r sin θ cosϕ, (54)
Y = r sin θ sinϕ, (55)
Z = r cos θ, (56)
r2 = X2 + Y 2 + Z2. (57)

We shall use both Cartesian coordinates (X,Y, Z) and spherical ones: (r, θ, ϕ). We also rescale
the time parameter t by defining the new time parameter T such that: dT = dt/(1− r). In these
coordinates our phase space is contained within a sphere of radius one – infinity corresponds to
r = 1.

This is a conformal transformation, hence the limiting cone for phase trajectories is Z2 =
1
6 (X2 + Y 2); all physical trajectories are contained within this cone. Bounce points are located
on the plane Z = 0 within the region bounded by the lines Y =

√
2X and Y = −

√
2X. The

region containing trajectories with Ż > 0 (i.e. with H increasing) is bounded by the elliptic cone
1
6

(
X2 − Y 2

2

)
− Z2 = 0.

After Poincaré transformation, equations (47-49) take the following form, written in the
spherical coordinates (r, θ, ϕ):

r′ =
(r − 1)r2

48
cos θ [82 + 14 cos 2θ − 42 cos 2φ

+21 cos 2(θ − φ) + 21 cos 2(θ + φ)] , (58)

θ′ =
1
24
r sin θ(5 + 7 cos 2θ)(1 + 3 cos 2φ), (59)

φ′ = r − 1− 3r cos θ cosφ sinφ. (60)

The form of the above equations is similar to the ones obtained in [60, 61]. Taking the limit r = 1
and putting r.h.s. of equations for θ′ and φ′ to zero, we find 12 solutions for θ, φ at the Poincaré
sphere, shown in the Table 1. As we can see, there are 4 saddle points (more precisely saddle lines
with end points at S1, S2, S3, S4). In the contracting part of the phase portrait (z < 0) there are
two attracting nodes A2 and A4 and two repulsing lines starting at R1 and R3. Hyperbolic areas
near the nodes are bounded by repulsing lines which play role of separatrices. The expanding part
is a mirror (“reversed in time”) of the contracting one.

Stability properties of infinite critical points are described in the Table 1, their position in 3D
phase space, on a Poincaré sphere, is shown in Fig. 1.
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Point ϕ θ Stability
S1 arcsin

√
2/3 π/2 Saddle line

S2 π − arcsin
√

2/3 π/2 Saddle line
S3 π + arcsin

√
2/3 π/2 Saddle line

S4 2π − arcsin
√

2/3 π/2 Saddle line
A1 0 arccos

√
7

7 Attracting line
R1 0 π − arccos

√
7

7 Repelling line
R2 π/2 arccos

√
7

7 Repelling node
A2 π/2 π − arccos

√
7

7 Attracting node
A3 π arccos

√
7

7 Attracting line
R3 π π − arccos

√
7

7 Repelling line
R4 3π/2 arccos

√
7

7 Repelling node
A4 3π/2 π − arccos

√
7

7 Attracting node

Table 1. The properties of the infinite critical points.

Figure 1. Infinite critical points located on a Poincaré sphere

4.2. Trajectories

When spatial curvature k = 0 then phase trajectories lay on the limiting cone z̃2 = 1
6 (X2 + Y 2),

as shown in the Figure 2. In the contracting part all trajectories start winding around z-axis,
then some of them end at attracting node A2, some at A4. Those two families are separated by
repelling lines with end-points at R1 or R3, acting as separatrices. Expanding part is a mirror
reflection with time reversed of the contracting part.

Trajectories of non-flat universes lay inside the limiting cone of the flat space. In the
contracting part of the diagram (Z < 0), trajectories start spiraling outside from circles around
the Z-axis. There are two families of such trajectories, separated by repelling lines ending at R1

and R3. In each family, there are two possible scenarios for subsequent evolution. The first one,
shown in Figure 3a, is to end at an attractor node (A2 or A4), which also lays in the contracting
part of the phase diagram. On the way between O and A2 or A4, a trajectory may go up through
Z = 0 surface, undergoing a bounce there, and then recollapse, crossing the Z = 0 plane again, or
go straight to the attractor node, without bounce. In either case, the end is the Big Crunch.



Phase portrait of a matter bounce in Hořava-Lifshitz cosmology 10

Figure 2. Phase trajectories for flat HL universe

The second scenario is shown in the Figure 3c. Here, after some oscillations and H decreasing,
the trajectories reach an attractor – a repelling line (that ends either at R1 or R3), along which they
move until Ḣ = 0. Then they rapidly go up, crossing the Z = 0 (i.e. H = 0) plane, undergoing
a bounce. After that, and after a period of accelerated expansion, they reach another attractor –
an attracting line laying in the expanding part, with endpoint at either A1 or A3. Along this line
trajectories approach the Z-axis, winding around it. A subcase of this scenario is shown in the
Figure 3e, where trajectories do not go through accelerated contraction and expansion, but cross
the Z = 0 surface during oscillations around the Z-axis. This is in fact the scenario described in
[37].

Trajectories may also start at repelling nodes R2 or R4 in the expanding part of the diagram.
At those points H =∞, which corresponds to the Bing Bang. After that and a period of extreme,
but with decreasing rate, expansion, there are again two possible scenarios. One is shown in the
Figure 3b, where trajectories reach an attracting line and end up winding around the Z-axis.
Before that, some of them collapse, crossing the Z = 0 plane, then slow down and finally stop
contraction culminating in a bounce. Others show only slow expansion, without crossing Z = 0.

The last scenario is shown in the Figure 3d. Trajectories start at Big Bang points R2 or
R4, and after a period of slowing down expansion, reach a turning point and start accelerated
contraction, ending at Big Crunch points A2 or A4.

For better visualization we have gathered some described families of trajectories in Figure 3f.
Special attention has to be paid to circular motion around z-axis. As stability properties

of the point (0, 0, 0) and constraint equation (36) suggest, there may exist closed circular orbits
laying on a Z = 0 plane (H = 0). But they cannot. Equation (49) does not allow for this, as
Ż = 0 is fulfilled only on a class of curves laying on X2 − X2

2 − 6Z2 = 0, i.e. on a surface of
the elliptic cone mentioned before. Yet numerical simulations exhibit oscillating solutions, such as
X2 + Y 2 = const. and Z oscillated around zero, Ż > 0 between lines Y =

√
2X and Y = −

√
2X,

Ż < 0 outside this region. Such a trajectory resembles deformed circle. These solutions appear
for sufficiently small X and Y , for larger values of X and Y numerical simulations show slow
decreasing of the radius of this “circle” .

Finally, note that except for the special solution shown in Figure 3e – which is the bounce
described by Brandenberger [37], there are also other types of bounces. One, probably the most
interesting, is shown in Figure 3c. Here a big existing universe slowly starts to contract, but later
on the contraction becomes exponential, until a bounce is reached and an exponential expansion
begins, which finally slows down. Another type of bounce, shown in the Figure 3a, happens again
when a big universe slowly starts contracting, stops and goes through an expanding phase for a
while, then recollapses and ends at the Big Crunch. The last one, shown in the Figure 3b, happens
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Different types of phase trajectories for a non-flat Hořava-Lifshitz universe

during a transition from the Big Bang to a quasi stationary final stage (with H slowly decreasing),
however with a bounce on the way.

Trajectories shown in the figures discussed above are numerical solutions of the equations
(58-60). To find a variety of bounce scenarios we investigated initial conditions: θ = π/2 ± 0.01,
φ = i π20 (i = 1 . . . 20), each for r = j/10 (j = 1 . . . 9) and r = 0, 9+ j ·0.01; time in range [−20, 20].
This procedure picked up the classes of trajectories discussed above. In general it may not be
exhaustive in the sense that qualitatively different behavior of solutions may be possible. However
it is sufficient for the purpose of understanding how bouncing scenarios emerge here due to the
specific modification of general relativity which appears in Hořava’s theory.
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5. Discussion and conclusions

In this paper we have investigated the cosmological bounce in the Hořava-Lifshitz gravity. Using
the 3D flow visualization technique we have found that phase portraits in the considered theory
have a different structure than in standard cosmology. Comparing to results from the paper [61], we
can see that there are additional repellers (R1 and R2) in the contracting part of a phase space,
and mirror attractors in the expanding part. Their presence allows the existence of a bounce,
because now there are possible new families of trajectories, starting at additional repellers in the
contracting part, and possibly ending at new attractors in the expanding part, or surrounding
the (0, 0, 0) point, which is now a center, compared to saddle in standard cosmology. Those are
realizations of the bounce. One of them is the solution with oscillatory behavior described in
([37]); there are however additional possibilities. The most interesting one contains a period of
rapid contraction, and – after a bounce – a period of rapid expansion, what may fit inflationary
scenario.

Nevertheless there are still initial conditions which lead to the Big Crunch, as shown in the
Figures 3a and 3d, or which start at initial singularity (Fig. 3b and 3d). Hence the existence of a
bounce is not generic for Hořava theory and depends on initial conditions.

Another interesting class of solutions consists of quasi stationary universes. These solutions
are described in phase space by closed orbits, winding around the critical point (0, 0, 0) - a center.
All trajectories in the neighborhood of this point end up as closed orbits, “deformed circles”.
Equations of motion do not allow closed orbits laying on Z = const. plane, resulting in slight
deformation of the circular orbits. The values of H oscillate around stationary stage, for sufficiently
small values of ϕ and ϕ̇. Values of the scale parameter a during this evolution are much bigger
than the regime for which our simplifications are valid. Therefore this behavior is not a feature
of the Hořava-Lifshitz theory, but of cosmologies with modified equations of motion, i.e. with the
additional term ∼ 1/a4 in the Friedmann equations. Still, presence of this term leads to a different
solution than induced by a negative potential as in [61], due to different stability properties of
finite critical points there.

The visualizations presented in this paper describe the dynamics of Hořava-Lifshitz universe
in the regime of small scale factor a, when standard curvature and Λ terms are not relevant.
Even in such slightly limited framework they answer the question of possible scenarios realizing a
bounce, and whether it is generic for the theory or not. It appears not, as we have found solutions
leading to infinite collapse, or starting at the initial singularity, both staying within the regime of
small a. There is also an interesting possibility of quasi stationary, oscillating universe, existence
of which is clearly implied by dark radiation term in the Friedmann equations.

The above portraits of the matter bounce in HL cosmology are attributed only to a
homogenous and isotropic model. Possible deviations from isotropy may become dominant in
the small volume limit, as it happens in GR [62, 63, 64, 65]. Thus the next step to be taken in the
research on the realistic matter bounce is to analyze the effects of anisotropies in the HL gravity,
extending the standard analysis of Belinskii, Khalatnikov and Lifshitz. The addition of shearing
components, due to anisotropies, may make the bounce unstable leading possibly to BKL chaotic
behavior at the Big Crunch singularity. On the other hand they may prevent the Universe from
collapsing to the singularity and thus avoiding the Big Crunch which is found in some solutions
of the theory.

It was shown [66, 67, 68] that adding (4R)2 (and possibly other) curvature terms to the
gravitational action in GR suppressed near the singularity chaotic behavior induced by the linear
curvature term. One would expect similar effect in the HL gravity, where the gravitational action
potential consists of higher order curvature terms. Indeed, the recent study of the mixmaster
universe in the Horava gravity [69] reveals that in certain case chaos is absent when the singularity
is approached, there are also possible harmonic oscillations around the fully isotropic model.
However different study [70] shows that in Hořava gravity with the zero cosmological constant the
presence of the higher curvature terms in the HL action cannot suppress chaotic behaviors induced
by the IR part of the action. Still there is possibility that extending the HL gravitational potential
beyond the detailed balance form, i.e. adding additional higher curvature terms as in modified
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HL theories [20, 22, 23, 24, 25, 26, 27] may have stabilizing effect. Clearly, further analysis is
necessary, although it is beyond the scope of this paper. For this purpose the singularity theorems
of General Relativity have to be revisited and examined under which conditions they remain valid
in theories with anisotroping scaling.
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