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1. Introduction

In Newton’s theory of gravity, the second and third laws suggest that, by an appropriate

choice of units, one may equate the active and passive gravitational masses and the

inertial mass of any material particle. This reveals the existence of a well-defined

acceleration field at each space-time point which any such (free) particle under the action

of a gravitational field must obey independently of its mass, make-up and velocity. In

Einstein’s general theory of relativity, such a behaviour of particles led, once the concept

of a space-time manifold equipped with a Lorentz metric had been formulated, to the

assumption that the paths of such particles were timelike geodesics with respect to the

Levi-Civita connection of the metric.

This Newton-Einstein principle of equivalence leads to the following mathematical

question. Suppose that space-time is described, as in general relativity, by a 4-

dimensional (smooth, connected, hausdorff) manifold M admitting a (smooth) Lorentz

metric g of signature (−1,+1,+1,+1) and associated Levi-Civita connection ∇.

Suppose that g′ is another (smooth) Lorentz metric onM with Levi-Civita connection ∇′

such that the (unparametrised) geodesics of ∇ and ∇′ coincide. What is the relationship

between ∇ and ∇′ and between g and g′? Under these conditions ∇ and ∇′ (or g and

g′, or (M, g) and (M, g′)) are said to be projectively related. Thus the above problem is

to determine the relationship between ∇ and ∇′ and between g and g′ for projectively

related space-times. In the event that this condition forces the result ∇′ = ∇, ∇′ and

∇ (or g and g′) will be referred to as trivially projectively related (or affinely related). It

will also be useful on many occasions to have the concept of local projective relatedness.

Let (M, g) be a space-time and U a connected open submanifold of M . A metric g′ on

U (respectively, its Levi-Civita connection ∇′) will be said to be (locally) projectively

related (on U) to g (respectively, to its Levi-Civita connection) if the space-time (U, g′) is

projectively related in the above sense to the space-time (U, g) consisting of the manifold

U with the metric g restricted to it. This reduces to the previous definition if U = M

and then this situation is sometimes referred to as global projective relatedness. There

is a technical point here in that if the original manifold M is specified, the calculations

performed on U are somewhat indifferent to M and the metric g so found may not be

extendible toM . In such a case, M may have to be redefined as (restricted to) some open

submanifold V of M with U ⊂ V and on which g is defined. This will be understood

in what is to follow. In the event that (M, g) and (M, g′) are projectively related and

if, as a consequence, ∇ = ∇′, holonomy theory can be used to find the relationship

between g and g′ [1]. [It is remarked here that there are solutions to the above type

of problem with g and g′ of differing signature. Here, however, it will assumed that g

and g′ are each of Lorentz signature.] It is convenient to introduce the definition that a

space-time is non-flat if its curvature tensor, Riem, does not vanish over any non-empty

open subset of M (and is not to be confused with not flat, which means exactly that).



Projective Structure and Holonomy in General Relativity 3

2. Mathematical Preliminaries

In order to solve the problem raised in the last section let (M, g) be a space-time with

Levi-Civita connection ∇ and curvature tensor Riem. A solution of the problem in the

general case seems to be rather difficult and the idea is to consider certain special cases

in order to make the problem more tractable. For the important situation when (M, g)

is a vacuum space-time a very strong result is available and has been discovered, to a

large extent independently, in [2, 3, 4, 5]. This result says that if (M, g) is vacuum and

not flat and if a space-time (M, g′) with Levi-Civita connection ∇′ is projectively related

to it then ∇ = ∇′ (and so (M, g′) is also vacuum) and, with exclusion of the case when

(M, g) is a pp-wave, g′ = cg for some constant c [3, 4]. Thus, with c taken positive, g

and g′ are the same up to “units of measurement”. [In fact a little more can be said, see

e.g. [4].] In another important class of metrics, the FRWL cosmological metrics, one

can still solve the problem, at least in the local sense mentioned earlier, but now ∇ and

∇′ need not be equal but the relation between g and g′ can still be found ([6]-see also

[7, 8]).

A more general attack on the problem was initiated in [9] where (M, g) was first

classified according to its holonomy group type and curvature class and the projective

relatedness problem was then studied for each such type and class. In this paper a brief

description of the completion of this study is given and where it will be shown that

the problem can essentially be solved for all holonomy types except the most general

one. The full details are somewhat lengthy and may be of limited interest to relativists

and will be published elsewhere ([9] and [11]) but summarised here in a form which it

is hoped will be useful to those working in Einsteins theory. The possible holonomy

groups for a space-time (more precisely for its connection) may be classified into 15

mutually exclusive and exhaustive types and are labelled, following [10], by the symbols

R1,...R15 with R1 being the trivial flat space-time case and R15 the most general case

(and R5 cannot occur for a space-time). Since full details of this classification scheme

are available [1] (and a summary has been given in [9, 11]) no further review need be

given here. The holonomy type of a space-time is a global statement about it and it

is useful to introduce a supplementary (pointwise) classification in M determined by

the curvature tensor Riem with components Ra
bcd. This classification has also been

given in detail in [1] (and summarised in [9, 11]) but will be partially repeated here

in order to clarify notation. The remainder of the paper is devoted to a summary of

the main results and techniques regarding projective relatedness, to demonstrating the

(close) relationship between the holonomy types of projectively related metrics, to a

uniqueness theorem which exists in the more complicated R9 and R14 cases of section

4, to a “rigidity” result for projective relatedness which exists for what might be called

“generic” space-times and to an application of these results to the study of projective

symmetry in space-times. The last four of these are believed to be new.

Let m ∈ M and consider the curvature map f which is the linear map from the

vector space of bivectors (skew-symmetric second order tensors) at m to itself and given
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by f : F ab → Rab
cdF

cd. The rank of the map f is referred to as the curvature rank

(of Riem) at m [1]. Let Bm denote the range space of f at m so that dimBm equals

the curvature rank at m and is ≤ 6. This leads to a convenient algebraic classification

of Riem at m into five mutually exclusive and disjoint curvature classes. For this it is

convenient to denote a simple bivector F ab = paqb− qapb for p, q ∈ TmM by p∧ q. (It is

remarked for later purposes that a non-simple bivector F may be written as the sum of

two simple bivectors whose blades are, respectively, timelike and spacelike and mutually

orthogonal. These blades, which are uniquely determined by F , are referred to as the

canonical pair of blades of F .) On occasions, round and square brackets will be used to

denote the symmetrisation and skew-symetrisation of the indices they enclose.

Class A This covers all possibilities not covered by classes B, C, D and O below. For

this class, the curvature rank at m is 2, 3, 4, 5 or 6.

Class B This occurs when dimBm = 2 and when Bm is spanned by a timelike-spacelike

pair of simple bivectors with orthogonal blades (chosen so that one is the dual

of the other). In this case, one can choose a null tetrad l, n, x, y ∈ TmM such

that these bivectors are F = l ∧ n and
∗
F = x∧ y, so that F is timelike and

∗
F

is spacelike and then (using the algebraic identity Ra[bcd] = 0 to remove cross

terms) one has, at m,

Rabcd = αFabFcd + β
∗
F ab

∗
F cd (1)

for α, β ∈ R, α 6= 0 6= β.

Class C In this case dimBm = 2 or 3 and Bm may be spanned by independent simple

bivectors F and G (or F , G and H) with the property that there exists

0 6= r ∈ TmM such that r lies in the blades of
∗
F and

∗
G (or

∗
F ,

∗
G and

∗
H).

Thus Fabr
b = Gabr

b(= Habr
b) = 0 and r is then unique up to a multiplicative

non-zero real number.

Class D In this case dimBm = 1. If Bm is spanned by the bivector F then, at m,

Rabcd = αFabFcd (2)

for 0 6= α ∈ R and Ra[bcd] = 0 implies that Fa[bFcd] = 0 from which it may be

checked that F is necessarily simple.

Class O In this case Riem vanishes at m.

This classification is, of course, pointwise and may vary over M . A space-time

(M, g) (or some subset of it) which has the same curvature class at each point of M is

said to be of that class. The subset of M consisting of points at which the curvature

class is A is an open subset of M ([1], p 393) and the analogous subset arising from

the class O is closed (and has empty interior in the manifold topology of M if (M, g)

is non-flat). It is important in what is to follow that the equation Rabcdk
d = 0 at m

has no non-trivial solutions for k ∈ TmM if the curvature class at m is A or B, a

unique independent solution (the vector r above) if the curvature class at m is C and
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two independent solutions if the curvature class at m is D (and which span the blade of
∗
F in (2)). If dimBm ≥ 4 the curvature class at m is necessarily A.

The following result will be useful in what is to follow and the details and proof

can be found in [1].

Theorem 1 Let (M, g) be a space-time, let m ∈ M and let h be a non-zero second

order, symmetric, type (0,2) (not necessarily non-degenerate) tensor at m satisfying

haeR
e
bcd + hbeR

e
acd = 0.

(i) If the curvature class of (M, g) at m is D and u, v ∈ TmM span the 2-space at m

orthogonal to F in (2) (that is, u ∧ v is the blade of
∗
F ) there exists φ, µ, ν, λ ∈ R

such that, at m,

hab = φgab + µuaub + νvavb + λ(uavb + vaub) (3)

(ii) If the curvature class of (M, g) at m is C there exists r ∈ TmM (the vector

appearing in the above definition of class C) and φ, λ ∈ R such that, at m,

hab = φgab + λrarb (4)

(iii) If the curvature class of (M, g) at m is B there exists a null tetrad l, n, x, y (that

appearing in the above definition of class B) and φ, λ ∈ R such that, at m (and

making use of the associated completeness relation),

hab = φgab + λ(lanb + nalb) = (φ+ λ)gab − λ(xaxb + yayb) (5)

(iv) If the curvature class of (M, g) at m is A there exists φ ∈ R such that, at m,

hab = φgab (6)

[Thus if g′ is another metric on M whose curvature tensor Riem′ equals the

curvature tensor Riem of g everywhere on M then the conditions of this theorem are

satisfied for h = g′(m) at each m ∈M and so the conclusions also hold except that now

one must add the restriction φ 6= 0 in each case to preserve the non-degeneracy of g′ at

m and maybe some restrictions on φ, µ, ν and λ if the signature of g′ is prescribed. If

(M, g) is of class A, (6) gives g′ = φg for some function φ : M → R and the Bianchi

identity may be used to show that φ is constant on M [1].

3. Projective Relatedness

It is natural to think that the problem of projective relatedness should be related in

some way to holonomy theory and it is the object of this paper to show that the problem

of determining all space-times projectively related (or locally projectively related) to a

given space-time (M, g) can essentially be solved when the connection ∇ of (M, g) is

of any holonomy type except the most general one R15 and that some progress can be

made even in this latter case. Some of the proofs are lengthy and technical and an

attempt will be made to keep such details to a minimum.

So suppose that (M, g) is projectively related to (M, g′) with g′ of Lorentz signature

(in fact it will be clear from the calculations below that the signature of g′, projectively
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related to g, need not always be Lorentz but this will not be discussed further here).

Then M necessarily admits a smooth global 1-form ψ such that, in any coordinate

domain, the Christoffel symbols Γ and Γ′ of ∇ and ∇′, respectively, satisfy [12, 13, 14]

Γ′a
bc − Γabc = δabψc + δacψb (7)

and, conversely, if (7) holds in any coordinate domain for some global 1-form ψ, (M, g)

and, (M, g) and (M, g′) are projectively related. Since ∇ and ∇′ are metric connections

ψ is an exact 1-form on M (see, e.g. [14]) and so ψ = dχ for some smooth function χ

on M . Equation (7) can, by using the identity ∇′g′ = 0, be written in the equivalent

form

g′ab;c = 2g′abψc + g′acψb + g′bcψa (8)

where a semi-colon denotes a covariant derivative with respect to ∇. Equation (7)

reveals a relation between the type (1, 3) curvature tensors Riem and Riem′ of ∇ and

∇′, respectively, given by

R′a
bcd = Ra

bcd + δadψbc − δacψbd (⇒ R′
ab = Rab − 3ψab) (9)

where ψab ≡ ψa;b − ψaψb = ψba and where Rab ≡ Rc
acb and R′

ab ≡ R′c
acb are the Ricci

tensor components of ∇ and ∇′, respectively.

Thus the problem considered has been reduced to the solving of (8) for g′ and

ψ. However, the problem can, to some extent, be simplified by adopting the Sinjukov

transformation ([15], see also [4, 5, 8, 9]). This technique involves introducing another

non-degenerate second order symmetric tensor a and another 1-form λ to replace g′ and

ψ and which are defined in terms of them by

aab = e2χg′cdgacgbd λa = −e2χψbg′bcgac (⇒ λa = −aabψb) (10)

where an abuse of notation has been used in that g′ab denotes the contravariant

components of g′ (and not the tensor g′ab with indices raised using g) so that g′acg
′cb = δ b

a .

Then (10) may be inverted to give

g′ab = e−2χacdg
acgbd ψa = −e−2χλbg

bcg′ac (11)

The condition (8) for projective relatedness is now, from (10) and (11), equivalent to

Sinjukov’s equation [15]

aab;c = gacλb + gbcλa (12)

from which it easily follows that λ is an exact 1-form, being the global gradient of
1
2
aabg

ab. The object now becomes to solve (12) for a and λ. With a and λ thus found,

one first defines a type (2.0) tensor a−1 on M which is, at each m ∈ M , the inverse

matrix of a (aaca
−1cb = δba). Then one defines a related type (0,2) tensor on M by

a−1
ab = gacgbda

−1cd. Finally, one defines a global function χ = 1
2
log |(det g

det a
)| and a global

exact 1-form ψ ≡ dχ on M . Then g′ab = e2χa−1
ab , which is a global metric on M , and ψ

together satisfy (11) and constitute the required solution of (8) on M .
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It is useful here to note that, using (12), and applying the Ricci identity to a, one

finds (see, e.g.[5])

(aab;cd − aab:dc =)aaeR
e
bcd + abeR

e
acd = gacλbd + gbcλad − gadλbc − gbdλac (13)

where λab = λa;b = λba. This leads to the following lemma, part of which is a special

case of a result in [3] and for which a definition is required. A (real) bivector F at

m ∈ M is called a (real) eigenbivector of Riem (or of the curvature map f) at m if

Rab
cdF

cd = αF ab at m and α ∈ R is called the associated eigenvalue.

Lemma 1 Let (M, g) and (M, g′) be space-times with g and g′ projectively related.

(i) Suppose at m ∈ M that F is a (real) eigenbivector of Riem of (M, g) with zero

eigenvalue (so that F is in the kernel, ker f , of the map f). Then the blade of F

(if F is simple) or each of the canonical (orthogonal, timelike/spacelike) pair of

blades of F (if F is non-simple) is an eigenspace of the symmetric tensor λab with

respect to g at m. (That is, if p∧q is any of these blades (p, q ∈ TmM) there exists

µ ∈ R such that for any k ∈ p ∧ q, λabkb = µgabk
b).

(ii) Suppose ker f is such that TmM is forced to be an eigenspace of λa;b at each m′ in

some connected open neighbourhood U of m, then each of the following conditions

are satisfied on U for some c ∈ R

(a) λab(= λa;b) = cgab, (b) λdR
d
abc = 0, (c) aaeR

e
bcd + abeR

e
acd = 0 (14)

If (14) holds at each m ∈ M either λ vanishes identically on M or it does not.

In the latter case, whether c is zero or not, any point of M at which it does vanish is

topologically isolated and the subset of such points constitutes a closed subset of M

with empty interior. Further, Riem vanishes on some neighbourhood of any such point.

If λ vanishes on some non-empty open subset of M it vanishes on M .

The results in the last part of lemma 1 rely on the fact that λ is either covariantly

constant (c = 0) or a proper homothetic (co)vector field (c 6= 0) with zero homothetic

bivector on U [1]. It is important to note here that the conditions of lemma 1 which

lead to (14) hold at any m ∈M if M is of holonomy type R2, R3, R4, R6, R7, R8, R10,

R11, R12 or R13 or if it is of curvature class B, C or D and is thus of wide applicability.

Let S denote the set of all pairs (a, λ) which are, together, solutions of (12)

but without the restriction that a is non-singular. Then with additon and scalar

multiplication by real numbers defined for (a, λ) and (b, µ) ∈ S and α ∈ R by

(a, λ) + (b, µ) = (a + b, λ + µ) and α(a, λ) = (αa, αλ), S becomes a real vector space.

Now one can show from (13) that λa, λ
a
;a and aab are controlled by a first order system

of differential equations and hence any global solution for these quantites is uniquely

determined by their values at any point of M ([8], see also [11]). It can then be seen that

the vector space S is finite dimensional. [A special case of this result is the “rigidity”

of the homothetic vector field in the above lemma (that is, if it vanishes over some non-

empty open subset of M it vanishes on M).] From this remark one has the following

theorem.
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Theorem 2 Let (M, g) be a space-time. If the pairs (a, λ), (b, µ) ∈ S and if there exists

a non-empty open subset U ⊂ M such that b = a + αg (α ∈ R) on U then b = a + αg

and λ = µ on M . In particular, if a = b on U then a = b and λ = µ on M and

so (a, λ) = (b, µ). Thus, if M admits a non-empty, open subset U such that the only

solution of (12) on U is λ = 0 and a = αg (0 6= α ∈ R) then ∇ = ∇′ on M (that is,

the only solution of (12) on M is λ = 0 and a = αg).

4. Projective Relatedness and Holonomy

The following theorem serves to concentrate attention onto the holonomy types R9,

R14, R15 and special subcases of the holonomy types R10, R11 and R13. It is noted with

regard to this result that, for the holonomy types R10, R11 and R13, the curvature rank

at any m ∈ M is at most 3.

Theorem 3

(i) Let (M, g) be a space-time of holonomy type R2, R3, R4, R6, R7, R8 or R12 which

is projectively related to (M, g′). Then ∇ = ∇′ on M .

(ii) Let (M, g) be a space-time of holonomy type R10, R11 or R13 such that there exists

m ∈M at which the curvature rank of (M, g) is 2 or 3 (equivalently the curvature

class at m is C). Then ∇ = ∇′ on M .

Since ∇ = ∇′ the relationship between g and g′ can be written down in each case [1].

To complete the solution for all holonomy types except R9, R14 and R15 one needs

only to consider the situation when (M, g) is of holonomy type R10, R11 and R13 and

when the curvature rank is ≤ 1 at each m ∈M . If such is the case, and since (M, g) is

not flat, there exists m ∈M and hence an open neighbourhood U of m on which Riem

is everywhere of curvature rank 1. Again the conclusions of the lemma hold on M and

if (M, g) is projectively related to (M, g′), λ is homothetic on M . It follows from lemma

1 that either λ is identically zero on M (and hence ∇ = ∇′ on M) or λ cannot vanish at

any point of U (since Riem does not vanish at any point of U). This argument improves

on that in [9] which may now be used to show the following results [11]. In the event

that (M, g) is of holonomy type R11 each point of U admits a coordinate neighbourhood

with coordinates u, v, x3, x4 on which ∂/∂u is g-null and ∇-covariantly constant and g

and g′ take the following forms. For g one has (with Greek indices taking the values 3

and 4)

ds2 = 2dudv + u2hαβ(x
3, x4)dxαdxβ (15)

where h represents a positive definite metric in the hypersurfaces of constant u and v.

Next one has for the 1-form ψ(= dχ)

ψ = dχ, χ =
1

2
lnF, F = κ4

[
1 + 2cuv + 2e1u+ (e21 − ce2)u

2
]−1

(16)
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and for the metric g′, projectively related to g,

ds′2 = κFg − κ−3F 2(cv2 + 2e1v + e2)du
2

−κ−3F 2cu2dv2 − κ−3F 22u(cv + e1 + (e21 − ce2)u)dudv (17)

for a positive constant κ and constants c, e1 and e2 with c as in (14).

The metric in (17) can be tidied up by going to new coordinates U, V, x3, x4.

In the case that c 6= 0 this change is given by u = U(1 − cUV )−1,

v = (ce2U + 2cV − 2e1 − U(e1 − cV )2)(2c(1 − cUV ))−1 and the metric g′ in (17)

becomes, up to a constant scaling,

ds′2 = 2dUdV + cU2dV 2 + U2hαβ(x
3, x4)dxαdxβ (18)

For the case c = 0 the coordinate change is u = U(1 − e1U)−1,

v = (V + e2U/2)/(1 − e1U) and g′ in (18) becomes

ds′2 = 2dUdV + U2hαβ(x
3, x4)dxαdxβ (19)

Thus the metric g′ in the new coordinates U, V, x3, x4, for c = 0, takes a form similar to

that for g in (15).

In the event that (M, g) is of holonomy type R10 or R13 each point of U admits

a coordinate neighbourhood with coordinates t, z, x3, x4 on which g and g′ take the

following forms. To deal with both simultaneously, the constants ε1 and ε2 are introduced

each of which may take either of the values ±1 and ∂/∂t is (∇-) covariantly constant.

For g one has

ds2 = ε1dt
2 + ε2dz

2 + z2hαβ(x
3, x4)dxαdxβ (20)

where h represents a positive definite metric in the hypersurfaces of constant t and z.

Then ψ is given by

ψ = dχ, χ =
1

2
lnF, F = κ4

[
1 + ε2(c+ ε1(c2c− c21))z

2 + ε1(ct
2 + 2c1t + c2)

]−1
(21)

and the metric g′, projectively related to g, is given by

g′ = κFg − κ−3F 2(ct2 + 2c1t + c2 + ε2(cc2 − c21)z
2)dt2

−κ−3F 2(c+ ε1(cc2 − c21))z
2dz2 − κ−3F 22ε1ε2(ct+ c1)zdtdz (22)

where κ is a positive constant and c, c1 and c2 constants with c as before. To get

the R13 case one takes ε1 = −1 and ε2 = 1 and vice-versa for the R10 case. Again a

coordinate transformation may be used to cast g′ into a form similar to that for g in

(20). First define q ≡ c + ε1(cc2 − c21) and then a function Q(T ) by it being a solution

of the differential equation dQ/dT = 1 + ε1(cQ
2 + 2c1Q+ c2). The coordinate change is

then t = Q(T ), z = Z
√

(1 + ε1(cQ2 + 2c1Q+ c2)(1 − ε2qZ2)−1 and g′ becomes, up to a

constant scaling,

ds′2 = ε1(1 − ε2qZ
2)dT 2 + ε2(1 − ε2qZ

2)−1dZ2 + Z2hαβ(x
3, x4)dxαdxβ (23)

In the event that q = 0 this becomes, up to a constant scaling

ds′2 = ε1dT
2 + ε2dZ

2 + Z2hαβ(x
3, x4)dxαdxβ (24)
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For the remainder of this section (M, g) is assumed to be of holonomy type R9

or R14. The problem of (local) projective relatedness for a space-time (M, g) of one

or the other of these holonomy types will be solved in the following sense. Suppose

that U is some non-empty, connected, open subset of M and let g′ be a metric on U

which is projectively related to (the restriction of) g to U . First let A, B, C, D and O

denote the subsets of M on which the curvature class is A, B, C, D and O, respectively.

The subset A is necessarily open (section 2). One then has the disjoint decompositions

M = A ∪ B ∪ C ∪ D ∪ O = A ∪ intB ∪ intC ∪ intD ∪ intO ∪ F where int denotes

the interior operator in the manifold topology on M and F is the closed subset of M

determined by the disjointness of the decomposition and can be shown to have empty

interior [1]. Thus, M \ F is open and dense in M . Now decompose U disjointly as

U = A′ ∪B′ ∪ C ′ ∪D′ ∪O′ = A′ ∪ intB′ ∪ intC ′ ∪ intD′ ∪ intO′ ∪ F ′ where A′ = A ∩ U ,

etc and int here means the interior operator in the subspace topology of U (but this is

the same as the original interior operator in M since U is open in M). Clearly A′ is

open in U (and also in M), intB′ = intB ∩ U , etc, and again one can show that F ′ has

empty interior and so U \F ′ is open and dense in U . If (M, g) has holonomy type R9 it

can be shown that B = B′ = ∅ and that ∇′ = ∇ on intC ′ and intD′ whereas if (M, g)

has holonomy type R14, ∇′ = ∇ on intB′ and intC ′ [11]. In the holonony R14 case, the

situation in intD′ is essentially as for the holonomy type R11 (curvature class D case)

described above [9]. Thus the interesting cases concern the set A′.

The theory of section 3 now applies to g and g′ on U and attention is here focussed

on the open subset A′ of U . Let W be some non-empty, connected, open subset of

A′. If the space-time (M, g) has holonomy type R9, the (restricted) space-time (W, g)

can also be checked to have this holonomy type whilst, if (M, g) is of type R14, (W, g)

has holonomy type R9, R12 or R14. These results follow since W ⊂ A′. Suppose the

associated 1-form λ vanishes on W (so that ∇a = 0 on W , from (12)). It then follows

from theorem 1(iv) and the comments following it that a = αg on W (α ∈ R). Theorem

2 then shows that the “trivial” solution λ = 0 and a = αg on U is the only possible

solution to the problem. So it will be assumed that λ does not vanish over any non-

empty open subset of A′. It then follows that if W is a non-empty open, connected

subset of A′ on which λ is nowhere zero, the holonomy type of (W, g) is R9 or R14 (the

R12 possibility is ruled out by theorem 3(i) [9]). Then because (M, g) has holonomy

type R9 or R14 each point of A′ admits an open neighbourhood V on which there exists

a nowhere-zero, null (unique up to a scaling) ∇-recurrent vector field l and which is

hence hypersurface-orthogonal, l[a;blc] = 0. Thus this neighbourhood may be chosen so

that a scaled version of l (also labelled l) exists on it and which is normal and satisfies

la = u,a and la;b = βlalb on V for functions u, β : V → R. Now on any such open set V

the Ricci identity for l gives ldR
d
abc = laFbc with Fab = 2l[aβ,b] on V (where a comma

denotes a partial derivative) and since V ⊂ A′, F and β,a are each nowhere-zero on V .

Now one may also assume that V is chosen so that, in addition to the above, it admits

a global smooth null tetrad l, n, x, y based on the null vector field l and then it follows

that the bivectors l ∧ x and l ∧ y are in the kernel of the curvature map f at each point
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of V . It then follows from lemma 1 that

λa;b = ρgab + σlalb (25)

on V for functions ρ and σ on V which are easily shown to be smooth. On substituting

(25) into (13) one finds

aaeR
e
bcd + abeR

e
acd = σ(gaclbld + gbclald − gadlblc − gbdlalc) (26)

On contracting (26) with la and defining La = aabl
b (noting that it is nowhere-zero on V

since a is non-degenerate on V ) one finds that LeR
e
bcd = LbFcd on V . A contraction of

this equation first with Lb shows that L is null and second with lb shows that LeleFab = 0

and hence that Lal
a = 0, on V . It follows that La and la are proportional on V and so

aabl
b = φla for some clearly smooth function φ on V which is nowhere zero on V because

of the non-degeneracy of a. A differentiation of this last equation and use of (12) (and

la;b = βlalb) gives

gabλcl
c + λalb = laφ,b (⇒ λa = φ,a = φ′la) (27)

A rank argument and the fact that l is nowhere zero on V gives λalb = laφ,b and so φ

is a (nowhere-zero) function of u only (and a prime denotes d/du). Here φ′ is a smooth

nowhere-zero function of u on V . Thus the function ρ in (25) vanishes on V .

It was assumed above that the 1-form λ does not vanish over any non-empty open

subset of A′. Thus if A′′ denotes the open (necessarily dense) subset of A′ over which

λ is nowhere zero, λ may represent the null recurrent (unique up to a not necessarily

constant scaling) vector field l that arises from either of the holonomy types considered

on A′′. (Of course, choices other than λa = la are available from (27). This problem

of uniqueness is dealt with in section 6.1.) Then the function β may be taken as that

associated with λ (λa;b = βλaλb) on each such V . Now β is defined on A′′ and can be

checked not to vanish over any non-empty open subset of A′′. Similar remarks apply

to the function β,al
a and so one may restrict, for later convenience, to an open dense

subset
∗
A of A′ on which λ, β and β,al

a are all nowhere zero. Neighbourhoods such as

V above will now be assumed to be subsets of
∗
A and, since β,al

a is nowhere zero on V

(and so the bivector F is timelike on V ), the tetrad l, n, x, y will be assumed chosen so

that F is a non-zero multiple of l ∧ n on V .

One is now in a position to write down an algebraic expression for Sinjukov’s tensor

a on
∗
A locally in terms of the null tetrad l, n, x, y. However, a problem arises because of

possible changes in the Segre type of a with respect to g and a consequent uncertainty

of the smoothness of the eigenvalues and eigenvector fields of a.

Such problems have been dealt with in [11] and a further, mild restriction on V is

necessary and will be assumed to have been made. It turns out that for holonomy type

R14 V may be chosen as a coordinate domain with coordinates u, z, x and y and the

metric form for g is [11]

ds2 = 2dudz +
√
zb(u)du2 + u2e2w(x,y)(dx2 + dy2) (28)
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for arbitrary smooth functions b and w, and for g′ it is, up to a constant scaling,

ds′2 =
2dudz

(1 + cu)3
+

(
√
zb(u)(1 + cu) − 2cz)du2

(1 + cu)4
+
u2e2w(x,y)(dx2 + dy2)

(1 + cu)2
(29)

After a coordinate transformation from u and z to U and Z where u = U/(1 − cU),

z = Z/(1 − cU), x and y unchanged, and with B(U) ≡ b(U/(1− cU))(1− cU)−3/2 , (29)

gives a form for g′ similar to that for g and is, up to a constant scaling,

ds′2 = 2dUdZ +
√
ZB(U)dU2 + U2e2w(x3,x4)(d(x3)2 + d(x4)2) (30)

If the holonomy type is R9 one gets for the metrics g and g′ either (28)-(30) with w a

harmonic function [∂2w/∂(x3)2 + ∂2w/∂(x4)2 = 0] or, in coordinates u, z, x, y on V , for

g [11]

ds2 = 2dudz +
√
zb(u)du2 + u2dx2 + (u− E)2dy2 (31)

where E = D−C=constant and with corresponding metric g′ given by, up to a constant

scaling,

ds′2 =
2dudz

(1 + cu)3
+

(
√
zb(u)(1 + cu) − 2cz)du2

(1 + cu)4
+

u2dx2

(1 + cu)2
+

(u− E)2dy2

(1 + cE)(1 + cu)2
(32)

After a coordinate transformation given by u = µU/(1 − cµU), z = µZ/(1 − cµU),

y = Y/µ, where µ =
√

1 + cE), B(U) = b(µU/(1 − cµU))(1 − cµU)−3/2 and E ′ = E/µ3

this becomes, up to a constant scaling,

ds′2 = 2dUdZ +
√
ZB(U)dU2 + U2dx2 + (U − E ′)2dY 2 (33)

In all cases, the 1-form ψ is a nowhere-zero multiple of ua on V . It is remarked here

that the ambiguity in the choice of λ contained in (27) and mentioned earlier is fully

accounted for in (29), (30), (32) and (33) (see section 6.1). It is also remarked that

that the metrics (28)-(30) are of type D in the Petrov classification, as are (31)-(33),

provided E = 0. The metrics (31)-(33) with E 6= 0 are of Petrov type II.

5. Holonomy Type Preservation under Projective Relationship

Suppose a space-time (M, g′) is locally projectively related to a space-time (M, g) on

an open subset U ⊂ M . Then, if U is not dense in M , there is little one can say

regarding the relationship between the holonomy types of (M, g) and (M, g′) except

that the holonomy type of (M, g) must reflect any holonomy restriction forced upon it

by the holonomy type of (U, g) which, in turn, is conditioned by the holonomy type of

(U, g′). But considerable freedom remains in the class of metrics on M which restrict to

g on U . Since finding metrics locally projectively related to flat metrics is, in principle,

straightforward, the assumption will be made that (M, g) is non-flat.

Another problem arises as to the effect of the assumption of non-flatness in the

study of projective relatedness. Suppose (M, g) and (M, g′) are projectively related and

let O ⊂M be the closed subset ofM consisting of all points ofM at which the curvature,
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Riem, from ∇ vanishes. If intO = ∅, (M, g) is non-flat so suppose that U ≡ intO is not

empty. Then if V is a (necessarily connected, open) component of U the (restricted)

space-times (V, g) and (V, g′) are projectively related and, since (V, g) is flat, (V, g′) is

of constant curvature [14]. It then follows that either (V, g′) is flat, and so (M, g′) is not

non-flat, or the rank of the curvature map f associated with ∇′ is 6 at each point of V

and so the holonomy type of (V, g′), and hence of (M, g′), is R15. The following lemma

is thus proven.

Lemma 2 Suppose (M, g) and (M, g′) are globally projectively related and neither is of

holonomy type R15. Then if one of them is non-flat, so also is the other (equivalently, if

(M, g) is non-flat then either (M, g′) is also non-flat or (M, g) has holonomy type R15).

Now suppose a space-time (M, g′) is (globally) projectively related to a space-time

(M, g). If (M, g) has holonomy type R2, R3, R4, R6, R7, R8 or R12, then ∇ = ∇′ and the

holonomy type of (M, g′) is obviously the same as that of (M, g). This section examines

the possibilities for the holonomy type of (M, g′) when (M, g) is non-flat and of one

of the other holonomy types. It is convenient here to note that if M̃ is the universal

covering manifold for M with projection π : M̃ →M one has a metric g̃ on M̃ which is

the pullback of g under π, g̃ = π∗g. Then (M̃, g̃) and (M, g) are locally isometric, under

the isometric immersion, π. It then follows that the restricted holonomy groups of (M, g)

and (M̃, g̃) are isomorphic [17]. But since M̃ is simply connected, the holonomy group

of (M̃, g̃) coincides with its restricted holonomy group and so the holonomy group of

(M̃, g̃) is connected and its holonomy algebra coincides with that of (M, g). In addition,

if ∇̃ is the Levi-Civita connection associated with g̃, the existence of the map π shows

that any geodesic in (M̃, g̃) projects, under π, to one in (M, g). It also shows that if τ is

a geodesic in (M, g) passing through m ∈ M and if m̃ ∈ M̃ is such that π(m̃) = m there

is a unique geodesic τ̃ in (M̃, g̃) passing through m̃ such that π(τ̃) = τ . It follows that

(M, g) and (M, g′) are projectively related if and only if (M̃, g̃) and (M̃, g̃′) are, where

g̃′ = π∗g′. Since the set of points where their respective Riemann tensors vanish coincide

under π, (M̃, g̃) is non-flat if and only if (M, g) is. Thus certain problems concerning

projective relatedness can be dealt with by considering simply connected space-times

and this simplifies the situation as far as holonomy groups are concerned.

Now suppose that (M, g) is non-flat and of holonomy type R9. Then so also is

the covering (M̃, g̃) and hence M̃ admits a global ∇̃-recurrent null vector field l̃ (since

the holonomy group of (M̃, g̃) is connected (see, e.g. [17, 1])). Suppose that (M, g′) is

projectively related to (M, g) and let g̃′ = π∗g′ so that (M̃, g̃) and (M̃, g̃′) are projectively

related. Let λ̃ and ã be a solution pair of (12) with associated 1-form ψ̃ and potential

χ̃ so that ψ̃ = dχ̃. Now, recalling the theory of such holonomy types described in

section 4, one may disjointly decompose with respect to the connection ∇ and in the

notation of that section, M = A ∪ intC ∪ intD ∪ F with M \ F open and dense in M .

Similarly, and in an obvious corresponding notation, one may write with respect to ∇̃,

M̃ = Ã ∪ intC̃ ∪ intD̃ ∪ F̃ with M̃ \ F̃ open and dense in M̃ . It follows that π(Ã) = A,

π(C̃) = C, π(intC̃) = intC, etc. The work of section 4 applied to (M̃, g̃) then shows
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that ∇ = ∇′ (that is, λ̃ = 0) on intC̃ ∪ intD̃. Thus if Ã is empty ∇ = ∇′ on M and

so (M, g′) has holonomy type R9. If Ã is not empty it admits an open dense subset

each point of which admits an open coordinate neighbourhood V ⊂ Ã on which the

metric g takes the form (28) or (31) and in either case ψ̃a and λ̃a are nowhere zero and

proportional to l̃a. On V , (10) implies that λ̃a(= g̃abλ̃b) = −e2χ̃ψ̃′a, where ψ̃′a = g̃′abψb.

Thus λ̃a, l̃a, ψ̃a and ψ̃′a are each nowhere-zero and proportional (and hence g̃-null) on

V . Now l̃ is ∇̃-recurrent on V and, since l̃aψ̃a = 0, (7) gives (with a semi-colon denoting

a ∇̃-covariant derivative and a stroke denoting a ∇̃′-covariant derivative)

l̃a|b − l̃a;b = l̃c(δac ψ̃b + δab ψ̃c) = l̃aψ̃b (34)

Thus l̃ is ∇̃′-recurrent on V . Since ∇ = ∇′ on intC̃ ∪ intD̃, l̃ is ∇̃′-recurrent on an

open dense subset of M̃ and so, with l̃′a = g̃′abl̃
b, one gets the equivalent statement to

this recurrence condition l̃′[al̃′b]|c = 0 (where square brackets denote the usual skew-

symmetrisation of indices) for the vector field l̃ over an open dense subset of M̃ and

hence on M̃ . It follows that l̃ is ∇̃′-recurrent on M̃ . The existence of such a vector field

on M̃ shows that the holonomy type of (M̃, g̃′) is R9, R10, R11, R13 or R14 (the lower

dimensional holonomy types being excluded by theorem 3 since then (M̃, g̃) would not

have holonomy type R9).

Continuing, if (M̃, g̃′) has holonomy type R10, R11 or R13 (and recalling that M̃

is simply connected) it follows that M̃ admits a global nowhere-zero ∇̃′-covariantly

constant vector field k, ∇′k = 0, (and which is the only global ∇̃′-recurrent vector

field on M̃ up to the usual scaling). Thus, since l̃a is ∇̃′-recurrent, from the above

argument, it follows that l̃ and k are proportional on M̃ . Now again assuming that Ã

is non-empty, one returns to the neighbourhood V and recalls that ψ̃′a is nowhere-zero

and proportional to l̃a on V . It then follows that ψ̃′a is (∇̃′-recurrent and) proportional

to k on V , so that, ka = αψ̃′a on V for α : V → R with α smooth and nowhere

zero on V . Thus (αψ̃′a)|b = 0 on V . Then using (34) applied to αψ̃′a one finds that

ψ̃′a
;b = ψ̃′aβb where the 1-form β is the gradient of γ ≡ −(log |α|+ χ) on V . From this,

(e−γψ̃′a);b = 0 and then, from the Ricci identity, the curvature tensor ˜Riem of (M̃, g̃)

satisfies R̃a
bcdψ̃′d = 0 which contradicts the fact that the ∇̃-curvature class of V is A.

Thus Ã = ∅ and one achieves the result that ∇̃′ = ∇̃ on M̃ and which contradicts the

fact that (M̃, g̃) is of holonomy type R9. Thus (M̃, g̃′) is of holonomy type R9 or R14.

That the holonomy type of (M̃, g̃′), and hence of (M, g′), is R9 now follows from the

Ambrose-Singer theorem [18] (see also [17, 1]). Working with the original space-times

(M, g) and (M, g′), this theorem says, roughly speaking, that the holonomy algebra of

(M, g′) can be constructed by first choosing (any) m ∈ M and, for each m′ ∈ M and

each piecewise C1 curve c from m′ to m, computing the range space of the linear map f

(introduced in section 2) with respect to ∇′ at m′ and parallely transporting, using ∇′,

each member of it to m along c. If this is done for each such m′ and c, the collection

of bivectors accumulated at m spans the holonomy algebra of (M, g′). Now since the

holonomy type of (M, g) is R9 the range space of f for this space-time at any point

of A (is 3-dimensional and) consists of simple bivectors whose blades each contain the
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recurrent vector field evaluated at that point (from the curvature class and holonomy

conditions). The same is true for all other points of M (except that the bracketed

condition is replaced by “is 1- or 2-dimensional”). Now the metric g′ as displayed in

(30) and (33) is identical in form to that for g in (28) and (31) and this shows that the

range of the corresponding curvature map f ′ for the space-time (M, g′) at any point of

an open dense subset of A also consists of simple bivectors whose blades each contain the

direction spanned by the (common) recurrent null vector field evaluated at that point,

as described above. The same is true for the points in intC and intD since ∇′ = ∇ on

these subsets. It follows from a continuity argument on the range of f ′ together with

the Ambrose Singer theorem that (M, g′) also has holonomy type R9. It also follows

from lemma 2 that (M, g′) is non-flat.

Now suppose that (M, g) is non-flat, of holonomy type R14 and that (M, g′) is

projectively related to it. Then, as mentioned in section 4, one may disjointly decompose

M with respect to ∇ as M = A∪ intB ∪ intC ∪ intD ∪F where F is closed with empty

interior and ∇ = ∇′ on intB∪intC. If intD is empty the proof above in the R9 case shows

that, in the first instance, (M, g′) has holonomy type R9 or R14 and finally that it is R14,

otherwise a contradiction is obtained from the main result of the previous paragraph.

So suppose that intD is not empty. If A is not empty the above proof still reveals that

the holonomy type of (M, g′) cannot be Rn for n ∈ {2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13} and

so must be R14 or R15. This result also holds if A is empty. To see this note that the

possibilities Rn n ∈ {2, 3, 4, 6, 7, 8, 12} for (M, g′) are ruled out as before and R9 is ruled

out by the argument of the previous paragraph. So suppose that (M, g′) has holonomy

type R10 R11 or R13. Then for m ∈ intD there is an open neighbourhood V ⊂ intD of

m and a ∇′-covariantly constant, nowhere-zero vector field k on V and which, from the

Ricci identity for k, anihilates the associated curvature tensor Riem′ on V , R′a
bcdk

d = 0.

Also, V may be chosen so as to admit a nowhere zero, g-null, ∇-recurrent vector field l

for (M, g) and which, since (M, g) has holonomy type R14, can be shown to anihilate its

associated curvature tensor on V , (Ra
bcdl

d = 0) [9]. Then (9) contracted with kcld gives

at each m ∈ V ka(ψbcl
c) = la(ψbck

c) and so either (a) k and l are proportional at m or

(b) ψbcl
c = ψbck

c = 0 at m. If (a) holds then a contraction of (9) with kd easily leads

to ψab = 0 at m whilst if (b) holds a contraction of (9) with kb leads to Ra
bcdk

b = 0

and similarly one achieves R′a
bcdl

b = 0. Another contraction of (9) with kd finally gives

ψab = 0 at m. So in either case, ψab vanishes on V and hence on intD. However, ∇ = ∇′

on intB ∪ intC and so, on this latter subset, Riem′ = Riem and (9) then easily shows

that ψab = 0 on intB ∪ intC. It follows, since A is empty, that ψab = 0 on an open

dense subset of M and hence on M . Recalling the definition of ψab, one sees that, for

(M, g), ψa;b = ψaψb and so (e−ψψa);b = 0. Then using (7) one gets ψa|b = −ψaψb and so

(eψψa)|b = 0. Thus, either ψ ≡ 0 on M (⇒ ∇ = ∇′ on M) or (M, g) admits a global,

nowhere zero, covariantly constant vector field. Since (M, g′) is assumed of holonomy

type R10 R11 or R13, each of these contradicts the assumed R14 holonomy type of (M, g)

and so the desired result follows. Thus if (M, g) is of holonomy type R14, (M, g′) must

be of holonomy type R14 or R15. Again, lemma 2 shows that (M, g′) is non-flat. Further,
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and as mentioned earlier, (M, g′) can only be of holonomy type R15 if intD is not empty.

Finally suppose that (M, g) is non-flat and of holonomy type R10, R11 or R13.

Then from earlier remarks and the work of the previous paragraph, (M, g′) cannot be

of holonomy type Rn for n ∈ {2, 3, 4, 6, 7, 8, 9, 12, 14} and so must be of holonomy type

R10, R11, R13 or R15. One can say a little more here. In fact, if (M, g′) is not of type R15,

then for each m ∈ M there is an open neighbourhood V of m and two vector fields p

and q on V which are covariantly constant with respect to ∇ and ∇′, respectively. Thus,

from the Ricci identities on p and q, Ra
bcdp

b = 0 R′a
bcdq

b = 0 on V . Similar contractions

to those used in the previous paragraph give ψab = 0 on V and hence on M . Thus, as

seen above, e−ψψa and eψψa are global covariantly constant (co)vector fields on M for

∇ and ∇′, respectively. So either ψ = 0 ((⇒ ∇ = ∇′) or (M, g′) and (M, g′) are each,

somewhat curiously, forced to admit a global nowhere-zero, covariantly constant vector

field. Put another way, if (M, g) and (M, g′) are projectively related with each being

one of the holonomy types R10, R11 or R13 and with one of them not admitting a global

covariantly constant vector field, the projective relatedness is trivial.

Again suppose that each of the above projectively related space-times (M, g) and

(M, g′) is of one of the holonomy types R10, R11 or R13. Suppose, in addition, that

(M, g) of type R11. Then from the previous paragraph M admits a global ∇-covariantly

constant, g-null (co)vector field e−χψ which is a global gradient (of −e−χ). It follows

that either ψ ≡ 0 on M (and so ∇′ = ∇ and (M, g′) is also of holonomy type R11) or

ψ is nowhere zero on M and hence that, in some coordinate neighbourhood V of M ,

ψ is nowhere-zero and g and g′ are related as in (15)-(19). Further, in the notation of

these equations, since the gradient of e−χ is ∇-covariantly constant, χ and hence F is

a function only of the coordinate u. It follows that the constant c = 0 and that, from

(19), the (global, nowhere-zero, ∇′-covariantly constant) (co)vector field eχψ on M is

g′-null on V and hence on M . Thus (M, g′) has holonomy type R11. If, on the other

hand, (M, g) of type R13, M admits a global ∇-covariantly constant, timelike (co)vector

field e−χψ which is a global gradient (of −e−χ). Again, if ψ = 0, ∇ = ∇′. Otherwise,

an inspection of the metric g in (20) and (21) shows that F must be a function only of

t and hence that q = c + ε1(c2c − c21) = 0. Then the form for the metric g′ in (24) on

the open subset V reveals that the global covariantly constant vector field admitted by

(M, g′) must also be timelike on V and hence on M and so (M, g′) must have holonomy

type R13 and be of curvature class D. Similar comments apply, from (20)-(24), to the

holonomy type R10.

The following theorem has thus been established.

Theorem 4 Let (M, g) and (M, g′) be projectively related space-times. Then

(i) If (M, g) is of holonomy type R2, R3, R4, R6, R7, R8, or R12, or is of holonomy

type R10, R11 or R13 and there exists m ∈M such that the curvature rank at m is

≥ 2 then (∇ = ∇′ and) (M, g) and (M, g′) have the same holonomy type.

(ii) If (M, g) has holonomy type R9 and is non-flat, then (M, g′) has holonomy type

R9 and is non-flat.
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(iii) If (M, g) has holonomy type R14 and is non-flat with its curvature class D region

having empty interior, (M, g′) has holonomy type R14 and is non-flat. If the

restriction on the region D is dropped, (M, g′) has holonomy type R14 or R15 and

is non-flat.

(iv) If (M, g) has holonomy type R10 (respectively, R11 or R13) and is non-flat, (M, g′)

has holonomy type R10 (respectively, R11 or R13) or R15 and is non-flat.

(v) If (M, g) has holonomy type R15 , (M, g′) has holonomy type R9, R10, R11, R13,

R14 or R15 and cannot be of type R9 if it is non-flat.

It is remarked that a consideration of the metrics (18) and (23) shows that the possibility

of (M, g′) being R15 in part (iv) above can occur.

6. Some Concluding Remarks

6.1. Uniqueness results

In this section a useful observation is pointed out which shows that, in the holonomy

type R9 case and (with a certain clause inserted) the holonomy type R14 case studied

here, any two “non-trivial” solutions (a, λ) and (ã, λ̃) of (25) are, at least locally, tightly

related. Returning to the discussion following (25) and recalling how, for either of these

two holonomy types, one chose the special open neighbourhood
∗
A ⊂ A suppose that W

is an connected open subset of
∗
A on which l, λ and λ̃ are nowhere zero, l = du, λ = l and

λ̃ = φ̃λ where φ̃ is a nowhere-zero function of u only, on W , λa;b = βλaλb, λ̃a;b = σλ̃aλ̃b
for nowhere zero functions β and σ, where φ̃2σ = φ̃′ + φ̃β, on W and β,al

a and σ,al
a are

nowhere zero on W . Further, if a and g are proportional over some non-empty open

subset of W , (12), after some obvious contractions, reveals the contradiction that λ = 0

on this subset. Thus one may work on an open dense subset W ′ of W on which, in

addition to the above conditions, one also has that a and g are nowhere proportional on

W ′. Then, by comparing the corresponding versions of (13) for the solutions (a, λ) and

(ã, λ̃) of (12) on W ′ one finds that the combination f = ã− µa where µ ≡ σφ̃2

β
satisfies

fe(aR
e
b)cd = 0 on W ′ and hence, since the curvature is of class A on

∗
A, theorem 1(iv)

gives on W ′

ã− µa = νg (35)

for some smooth function ν on W ′. Then taking the covariant derivative of (35) and

substituting the corresponding versions of (12) for a and ã, one has

(φ̃− µ)(gaclb + gbcla) = aabµ,c + gabν,c (36)

Still on the set W ′, if at some point of it (and hence in some neighbourhood of this

point) (φ̃ − µ) does not vanish, contract (36) firstly with la and secondly with gab to

obtain two equations from which one can deduce that both dν and dµ are proportional

to l at m and hence that ν and µ are, in this neighbourhood, functions of at most u. A

contraction of (36) with lc then gives a contradiction and so (φ̃− µ) = 0 on W ′. Then
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(36) together with the above remarks about the tensors a and g shows that dµ and dν

vanish on W ′ and hence on W and with µ nowhere zero on W . Since W is connected,

ν and µ are constants on W with µ 6= 0. The conclusion, from (35) and (12) applied to

(a, λ) and (ã, λ̃), is that λ̃ = µλ on W . Thus if one solution pair (a, λ) of (12) exists on

W , the only others that may occur satisfy λ̃ = cλ and hence, from (12), ∇(ã−µa) = 0.

The curvature class A assumption (theorem 1(iv)) then shows that ã = µa + dg for

some constant d and so (ã, λ̃) is of the form (µa + dg, µλ). [This should be compared

to the uniqueness situation in such holonomy types for finding projective symmetries

[19]]. This argument covers the situation for both holonomy types R9 and R14 on (an

open dense subset of) A. Again for both these types, and on the subsets intC and intD

of M , one achieves the result ∇′ = ∇ and the relationship between g and g′ is easily

found from holonomy theory [1, 9]. For the holonomy type R14 and the subset intD the

situation is more complicated.

6.2. Generic Space-Times

If one puts the Whitney C∞ topology on the set LM of all smooth Lorentz metrics on

M there exists an open dense subset, L′
M , of LM (that is, of space-time structures on

M) in this topology, each member of which has the property that its curvature tensor

has rank at least 4 at each point of M [20] (see also [1]). A space-time (M, g) will be

called generic if g ∈ L′
M and, if U is a non-empty, connected, open subset of M , (U, g)

will be called a generic region of M if the restriction of g to U is in L′
U . It is then

clear from section 2 that no generic space-time or generic region of any space-time may

contain any covariantly constant type (0, 2) symmetric tensor field other than constant

multiples of the metric g since M (or U) must be of curvature class A. It is noted

here that if (M, g) is generic then, whether or not (U, g) is a generic region of M , the

curvature rank is at least 4 over U and the above remarks about covariantly constant

type (0, 2) symmetric tensor fields still hold on M and U .

Now suppose (M, g) is a space-time and U is a non-empty, connected, open subset

of M such that U is a generic region of M . One then has the following results, part (i)

of which may be regarded as a type of “rigidity” result for λ (in the sense that if ∇ = ∇′

over some “sufficiently general” subset U of M then ∇ = ∇′ on M). It is convenient

for their statements to introduce a definition regarding the vector space S introduced

in section 3. If (a, λ), (b, µ) ∈ S, write (a, λ) ∼ (b, µ) if b = a + αg on M (α ∈ R) (and

hence, from (12), λ = µ on M). It is easily checked that ∼ is an equivalence relation on

S. If V is an open subset of M , one may speak of the “restriction” of ∼ to V in terms

of solutions of (12) defined on V , in an obvious way.

Theorem 5 Let (M, g) be a space-time and (U, g) a generic region of M .

(i) If (a, λ), (b, µ) ∈ S and λ = µ on U then λ = µ on M and (a, λ) ∼ (b, µ) on M .

In particular, if (a, λ) ∈ S and λ = 0 on U , then a = αg (α ∈ R) and λ = 0, on

M .
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(ii) Let (a, λ) ∈ S and let (aU , λU) denote the restriction (in an obvious sense) of

(a, λ) to U . If (b′, µ′) is a solution of (12) on U and (b′, µ′) ∼ (aU , λU) on U then

(b′, µ′) is extendible to (b, µ) ∈ S and (a, λ) ∼ (b, µ) on M . Said another way, if

two solution pairs of (12) on U are related under ∼ on U and one is extendible

to being a member of S then so is the other and these extensions are then related

under ∼ on M .

Proof

(i) If λ = µ on U then ∇(b − a) = 0 on U . Since U is a generic region of M ,

b−a = αg on U (α ∈ R) and so (a+αg, λ) ∈ S and (a+αg, λ) = (b, µ) on U and hence

on M by theorem 2. But (a + αg, λ) ∼ (a, λ) and the first result follows. The second

part is similar.

(ii) If (aU , λU) ∼ (b′, µ′) on U then λU = µ′ on U and since U is a generic region

of M , b′ = aU + αg on U . Then (a + αg, λ) ∈ S and (a + αg, λ) = (b′, µ′) on U and

(a+ αg, λ) ∼ (a, λ) on M . So (b, µ) ≡ (a+ αg, λ) is the desired extension. �

6.3. Projective Symmetry

A global smooth vector field X on a space -time (M, g) is called projective if each local

flow diffeomorphism φt associated with X and with open domain U and range φt(U)

maps (unparametrised) geodesics of U to (unparametrised) geodesics of φt(U) each with

respect to (the restriction to U of) ∇. Then X is called affine if it is projective and if, in

addition, each map φt preserves affine parameters. If X is projective but not affine it is

called proper projective. If X is proper projective, there exists a non-empty open subset

U ⊂M on which a local flow φt is defined and which does not preserve affine parameters.

Then the metrics g and φ∗
t g can be seen to be locally (but non-trivially) projectively

related on U . This shows that if a proper projective vector field exists on (M, g) then ∇ is

locally (non-trivially) projectively related to some other (Levi-Civita) connection ∇′ on

some open subset U . The converse of this result is false. In fact, a comparison of [6] and

[21] reveals examples of FRWL space-times admitting (locally) non-trivially projectively

related (FRWL) metrics but with no proper projective vector fields. (Related references

on projective structure and FRWL metrics are [22] and [23].) Another example is the

metric (28) which always admits non-trivially projectively related metrics (29) but only

admits a proper projective symmetry for particular choices of the function b(u) [19].

The above result on local flows shows that if (M, g) satisfies either (i) it has one of the

holonomy types R2, R3, R4, R6, R7, R8 or R12, and is non-flat or, (ii) it has one of the

holonomy types R10, R11 or R13 and has curvature rank greater than 1 at each m ∈M ,

then the induced geometry on any connected open subset U of M also has one of these

properties and theorem 3 then shows that any projective vector field on M is affine. (cf

[19]).

Expressed in terms of the Lie derivative LX , the situation is that any proper

projective vector field X with associated projective 1-form dp gives rise to a Sinjukov

solution to (12) of the form (a ≡ LXg − 2pg, λ = dp), with the arbitrary constant in p
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chosen such that a is non-singular. The lack of a converse is due to there being, in

general, no guarantee of the existence of a vector field X satisfying LXg = a + 2lg for

a given Sinjukov solution (a, λ) where λ = dl for some smooth function l on M .
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