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Abstract.
We use numerical simulations to investigate force and stress transmission in cohesive granular media covering a wide

class of materials encountered in nature and industrial processing. The cohesion results either from capillary bridges between
particles or from the presence of a solid binding matrix filling fully or partially the interstitial space. The liquid bonding is
treated by implementing a capillary force law within a debonding distance between particles and simulated by the discrete
element method. The solid binding matrix is treated by meansof the Lattice Element Method (LEM) based on a lattice-type
discretization of the particles and matrix. Our data indicate that the exponential fall-off of strong compressive forces is a
generic feature of both cohesive and noncohesive granular media both for liquid and solid bonding. The tensile forces exhibit
a similar decreasing exponential distribution, suggesting that this form basically reflects granular disorder. This is consistent
with the finding that not only the contact forces but also the stress components in the bulk of the particles and matrix, accessible
from LEM simulations in the case of solid bonding, show an exponential fall-off. We also find that the distribution of weak
compressive forces is sensitive to packing anisotropy, particle shape and particle size distribution. In the case of wet packings,
we analyze the self-equilibrated forces induced by liquid bonds and show that the positive and negative particle pressures
form a bi-percolating structure.

Keywords: granular media, force chain, granular disorder, cohesion,discrete element method, lattice element method, capillary bond,
binding matrix
PACS: 45.70.-n, 81.05.Rm, 61.43.Hv

INTRODUCTION

A considerable amount of experimental and numerical work has been devoted to force transmission in model granular
media such as glass bead packs [1, 2, 3, 4, 5, 6]. The force transmission in granular materials is essential for
microscopic modeling of constitutive behavior and for manyindustrial processes that involve a better understanding
of the static or dynamic forces experienced by the particles. The force distributions are found to be broad and highly
heterogeneous. This heterogeneity is often described in terms offorce chainsand linked with the concept ofjamming.

The issue that we would like to address in this paper, is to which extent the well-known features of force distri-
butions in noncohesive granular media apply to cohesive granular media. The latter covers a wide class of materials
encountered in nature and industry. Well-known examples are sedimentary rocks, wet soils, and fine and sintered pow-
ders. In contrast to noncohesive granular media, all these materials are endowed withcohesionresulting either from
direct surface forces between particles or from the presence of a binding phase filling fully or partially the interstitial
space. The effect of surface forces or a binder is to freeze orrestrict the relative degrees of freedom (separation, sliding,
rolling) between particles up to a threshold. Hence, depending on the boundary conditions, tensile forces can develop
in cohesive granular media and their distributions are dictated by the conditions of force balance and granular disorder
as in the case of compressive forces. Obviously, the distribution of tensile forces is of particular relevance to the stress
intensity factor which controls the initiation and propagation of cracks.

In this paper, we investigate force and stress distributions in granular media involving either liquid bridges or a solid
binding matrix between particles. The presence of liquid bridges will be treated by implementing a capillary force
law within a debonding distance between particles. The simulations are performed by means of the Discrete Element



Method (DEM) using Molecular Dynamics (MD) and Contact Dynamics approaches. For solid binding, we adopt a
broad framework allowing for the numerical treatment of a binding matrix with variable volume fraction. The effect
of small amounts of the matrix localized at the contact zonesbetween particles can be assimilated to that of a surface
force. The force transmission in this limit is correlated with the packing structure. The other limit of high matrix
volume fractions corresponds to acementedgranular material in which the particles are fully or partially embedded
in the binding matrix. The force transmission is thus mediated both by the particles and matrix and governed by
the details of the composition (phase volume fractions) andthe material properties of each phase (relative stiffness,
particle-matrix interface adherence).

The treatment of the matrix, as a continuous phase, requiresa numerical method capable of resolving the matrix.
We use the Lattice Element Method (LEM) which is found to be numerically efficient. It is based on a lattice-type
discretization of all phases including the particles, matrix and their interface [7, 8, 9]. The elastic deformations ofthe
particles are taken into account not only at their contacts with other particles or with the matrix, as in the DEM, but
also in their bulk. The matrix can be introduced with the desired volume at the contact zones between the particles and
in the pores with its elastic properties and adhesion with the particles. An advantage of the LEM is to give us access
to stresses in the bulk of the particles and binding matrix. Hence, the forces at the contact zones can be estimated by
coarse-graining from the stresses and compared to the DEM predictions for the same granular configuration.

In the following, we first focus on some important features offorce transmission in noncohesive granular media.
We consider both 2D and 3D granular samples and the effect of particle shape and size distribution. One section is
devoted to granular media with solid bridging. The LEM is briefly introduced together with numerical procedures for
sample preparation. Our main numerical results will be presented by considering the force distributions in 2D packings
simulated alternatively by LEM and DEM in the limit of low matrix volume fractions, the stresses in a 3D packing and
the effect of matrix volume fraction, particle stiffness and particle volume fraction on stress distributions. In another
section we consider liquid bridging. We first introduce the capillary force law implemented in MD simulations. Then,
we analyze the force distributions with and without a confining pressure. We also consider the tensile and compressive
stresses supported by the particles. We conclude the paper with a summary of the most salient features of force
transmission in cohesive granular media.

FORCE DISTRIBUTIONS IN NONCOHESIVE GRANULAR MEDIA

We study in this section the normal force distributions fromnumerical simulations by CD and MD methods in 2D and
3D. We consider the effect of packing anisotropy, particle shape and particle size distribution (PSD). Some of these
features will be revisited in the next sections in the presence of liquid or solid binding between particles.

Background

Granular disorder and steric exclusions lead to an unexpectedly inhomogeneous distribution of contact forces under
quasistatic loading [1, 10, 3, 11, 5, 12, 13, 14, 15, 6]. Theseforce inhomogeneities in granular assemblies were first
observed by means of photoelastic experiments [16, 17]. Thecarbon paper technique was used later to record the force
prints at the boundaries of a granular packing [3]. It was found that the forces have a nearly decreasing exponential
distribution. Numerical simulations by the contact dynamics (CD) method provided detailed evidence for force chains,
the organization of the force network into strong and weak networks, and the exponential distribution of strong forces
[18, 4]. Moreover, the force probability density functions(PDF’s) from simulations showed that the weak forces (below
the average force) in a sheared granular system have a nearlyuniform or decreasing power law shape in agreement
with refined carbon paper experiments [10, 5].

Further experiments and numerical simulations have shown that the exponential falloff of strong forces is a robust
feature of force distribution in granular media both in two and three dimensions. In contrast, the weak forces are
sensitive to the details of the preparation method or the internal state of the packing [19, 20, 15, 6]. A remarkable
aspect of weak forces is the fact that their number does not vanish as the force falls to zero [18, 21]. Several theoretical
models have been proposed allowing to relate the exponential distribution of forces to granular disorder combined
with the condition of force balance for each particle [1, 22]. Recently, the force PDF’s were derived for an isotropic
system of frictionless particles in two dimensions from a statistical approach assuming a first shell approximation (one
particle with its contact neighbors) [21].



(a) (b)

FIGURE 1. The force network in a 2D packing of disks (a) and in a thin layer cut inside a 3D packing of spherical particles (b).
The line thickness is proportional to the normal force. The gray level in the 3D system represents the field depth.

Figure 1 displays a 2D packing simulated by the CD method. Thenormal forces are encoded as the thickness of
branch vectors (joining particle centers). In the same figure, the force network in a thin layer for a 3D packing of
spherical particles subjected to axial compression is shown. Strong force chains are easily distinguished in both cases.
The strongest chains have a linear aspect and they are mostlyparallel to the axis of compression (vertical).

Discrete Element Method

The Discrete Element Method (DEM) has been extensively usedsince the pioneering work of Cundall for the
simulation of granular materials [23]. In this method, the equations of motion are integrated for all particles by taking
into account their contact interactions. In its original version, commonly used also today, the particles are treated as
rigid elements but the interactions are modeled by means of visco-elastic force laws expressed in terms of the relative
displacements between particles as in classical MolecularDynamics (MD) simulations. In these MD-type approaches,
the simulation of mutual exclusions between particles requires a stiff repulsive potential and thus high time resolution.
In the same way, the Coulomb law for dry friction needs to be regularized such that the friction force can be expressed
as a (mono-valued) function of relative tangential displacement.

The Contact Dynamics (CD) method, introduced later, provides an alternative approach based onnonsmooth
formulation of mutual exclusion and dry friction between particles [24, 25, 26]. In this method, the equations of
motion are expressed as differential inclusions and the accelerations are replaced by velocity jumps. At each time
step, all kinematic constraints implied by enduring contacts and possible rolling of particles over one another are
simultaneously taken into account in order to determine allvelocities and contact forces. In the generic CD algorithm,
an iterative process is used to solve this problem. It consists of solving a single contact problem with all other contact
forces kept constant, and iteratively updating the forces until a given convergence criterion is fulfilled. Due to the
implicit time integration scheme inherent in the CD method,the solution is unconditionally stable. The particle
positions are updated from the calculated particle velocities before a new detection of the contacts between particles
is performed.

Schematically, the MD method is based on a description of particle interactions in terms offorce laws, i.e. bijective
force-displacement relations, whereas the CD method is based on a formulation of kinematic constraints in terms of
contact laws. Independently of particle deformability, the impenetrability of the particles and the Coulomb friction at
the contact zones can be formulated in the form of contact laws expressing the contact actions as set-valued functions
of particle positions. The uniqueness of the solution is notguaranteed by CD approach for perfectly rigid particles in



absolute terms. However, by initializing each step of calculation with the forces calculated in the preceding step, the
set of admissible solutions shrinks to a small variability basically of the same order of magnitude as the numerical
resolution. In the MD method this ‘force history’ is by definition encoded in the particle positions.

Since the CD method handles the kinematic constraints without resorting to force laws, the particles are often
treated as perfectly rigid although finite stiffness can be introduced in the same framework. This is the case of the CD
simulations carried out for the analysis of force distributions in this paper. Hence, the only material parameter of the
simulated static packings by the CD method is the coefficientof friction µ between the particles. On the other hand,
the MD-generated packings are characterized by normal and tangential stiffnesseskn andkt as well as the coefficient
of friction µ . The mean deformation of the particles is given by the ratiop/kn of the average stressp to kn.

Normal force distributions

Different numerical packings were prepared by isotropic compaction and then deformed under either slow triaxial
loading in 3D or in simple shear in 2D. The particle inertia are negligibly small compared to the static confining
pressure so that the packings can be considered in aquasi-static state. As we shall see below, the general shape
of force distributions is robust with respect to the detailsof preparation or the microstructure. But the distribution
parameters do depend on the preparation. In all examples considered below the packings are sheared until a steady or
critical state, in the sense of soil mechanics, is reached. In this state, the shear deformation is isochoric on the average,
and the memory of the preparation process is erased as a result of shearing so that the microstructure is a function
only of the material parameters. The force distributions will be analyzed either in the initial isotropic state prepared by
isotropic compaction with zero coefficient of friction or inthe critical state.
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FIGURE 2. Probability density functions of normal forces in two isotropic samples of spherical particles simulated by MD and
CD methods.

Figure 2 shows the PDF’s of normal forces for two isotropic samples of spherical particles simulated by MD (8000
particles) and CD (20000 particles) methods. The PSD is not the same in the samples but they represent rather weakly
polydisperse distributions with a ratio of 2 between the largest and smallest particle diameters. The coefficient of
friction is µ = 0.4 between particles and 0 with the walls. The forces have beennormalized by the average force in
each sample. Although the two samples are not exactly identical, the two PDF’s have the same shape characterized by
an exponential falloff for large forces, a small peak for a force slightly below the average force and a finite value at
zero force. The position of the peak is not the same in the two distributions but the exponents of the exponential falloff
are the same within statistical precision of the data:

P( fn) ∝ e−β fn/〈 fn〉, (1)

with β ≃ 1.4. This similarity between the two distributions indicatesthat the statics of a granular system is statistically
robust with respect to the numerical approach and, in particular, the small elastic deformation at contact points in MD
simulations has negligible effect on the force inhomogeneity. In other words, the physics of a static granular packing
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FIGURE 3. Probability density functions of normal forces in a sample of spherical particles after isotropic compaction (isotropic
state) and following triaxial compression (anisotropic state).

can be approximated by considering undeformable particlesas in the CD method as far as the the ratiop/kn of the
confining pressurep to the normal stiffnesskn of the particles is small (here≃ 103).

The observed shape of force PDF’s is unique in two respects: (1) the exponential part reflects the presence of very
strong forces in the system often appearing in a correlated manner in the form of force chains; (2) the nonvanishing
class of weak forces, with a fraction of more than 60% of contact forces below the average force, means that the
stability of force chains is ensured by a large number of vanishingly small forces [4, 19]. This is a signature of the
arching effect. Hence, the average force is a physically poor representative of the broad spectrum of forces in a granular
system.

Figure 3 displays the normal force PDF’s in CD simulations for the same system of spherical particles both at the
isotropic state and at the critical state where the fabric and force chains are anisotropic. The effect of anisotropy is
to reinforce the force inhomogeneity by increasing the relative density of weak forces [20, 27, 28]. The exponent
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FIGURE 4. Probability density function of normal forces in an isotropic sample of irregular polyhedral particles on log-linear
and log-log scales.



β remains nearly unchanged whereas the small peak near the average force disappears and the distribution of weak
forces tends to become nearly uniform.

Effect of particle shape

The force distributions are sensitive to particle shapes. Fig. 4 shows the distribution of normal forces in an isotropic
3D sample of 20000 irregular polyhedral particles withµ = 0.5 simulated by the CD method. We again observe the
exponential tail of strong forces together with a decreasing power law distribution for weak forces.

The angular particle shape increases considerably the number of very weak forces by enhancing the arching effect.
The latter is also reflected in the value of the exponentβ reduced to 0.97 compared to 1.4 for spherical particles. In
other words, the force chains are stronger but less in number. A detailed analysis of force and fabric anisotropies in
this packing reveals the special role of face-to-face contacts in enhancing force anisotropy and thus the overall shear
strength as compared to packings of spherical particles [29]. Similar trends are observed in packings of polygonal
particles (in 2D simulations) [30].

Effect of particle size distribution

Figure 5 shows the normal force PDF’s for increasingly broader particle size spans in a 2D sheared packing of
10000 circular particles simulated by the CD method [31]. The size span is defined bys= (dmax−dmin)/(dmax+dmin)
wheredmin anddmax are the smallest and largest diameters, respectively. A monodisperse distribution corresponds to
s= 0 and the limits≃ 1 corresponds to an infinitely polydisperse system [32]. ThePSD is uniform by particle volume
fractions.

The PDF becomes broader with increasings. The weak forces have a clear power law behavior with increasing
exponentα whereas the strong forces fall off exponentially with a decreasing exponentβ . The power-law behavior
of strong forces can be attributed to a “cascade" mechanism from the largest particles “capturing" strongest force
chains down to smaller forces carried by smaller particles [31]. A map of normal forces in a highly polydisperse
packing (s= 0.96) is shown in Fig. 6. A large number of rattlers, i.e. particles not engaged in the force network,
can be observed. Although these particles represent a smallvolume fraction of the sample, their absence from the
force-bearing network contributes to force inhomogeneity.
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FIGURE 6. A map of normal forces in a highly polydisperse system with a uniform size distribution by particle volume fractions.
The black particles are “rattlers" excluded from the force-bearing network.

A generic functional form

The above examples point to a generic PDF of normal forces in agranular packing that can be approximated by the
following form [19]:

P( fn) =

{

A
(

fn
〈 fn〉

)−α
fn/〈 fn〉< 1

A eβ (1− fn/〈 fn〉) fn/〈 fn〉> 1
(2)

whereA is the normalization factor given by
1
A
=

1
1−α

+
1
β

(3)

Considering the mean force〈 fn〉 as the point of cross-over between the two parts of the distribution, we get the
following relation between the exponents:

β 2 = (1−α)(2−α) (4)

Note that the nearly uniform distribution of static forces in the case of sheared circular particles is recovered by setting
α = 0 in equation (2). Then, from equation [4] we getβ =

√
2 ≃ 1.4 which is the value found for the distribution

of forces in sheared packings of weakly polydisperse spheres. For this system, the following fitting form was also
proposed by Mueth et al. [5]:

P( f ) = a (1−be− f 2
)e−β f (5)

wheref = fn/〈 fn〉. As argued by Mueth et al., the above function for the range ofweak forces provides a fit essentially
indistinguishable from a power lawf−α

n as long asα is positive and close to zero [5].

SOLID BONDING

In this section, we consider cemented granular media in which the local cohesion is a consequence of the presence of
a binding phase between the particles.



Numerical method and sample preparation

The LEM is based on a discretization of the phases on a regularor irregular lattice. Hence, the space is represented
by a grid of points (nodes) interconnected by one-dimensional elements (bonds). Each bond can transfer normal force,
shear force and bending moment up to a threshold in force or energy, representing the cohesion of the phase or its
interface with another phase. Each phase (particle, matrix) and its boundaries are materialized by the bonds sharing
the same properties. The samples are deformed by imposing displacements or forces to the nodes belonging to the
contour. The total elastic energy of the system is a convex function of node displacements and thus finding the unique
equilibrium configuration of the nodes amounts to a minimization problem. Performing this minimization for stepwise
loading corresponds to subjecting the system to a quasistatic deformation process. The details of this method can be
found in Ref. [8].

The samples are constructed either by geometric methods or by isotropic compaction of disk-like particles by DEM
simulations by setting the friction coefficient between theparticles to zero in order to get a dense packing. The samples
are then discretized on a lattice. The matrix is introduced in the form of bridges of variable thickness, depending on
the overall matrix volume fraction and the particle sizes, between neighboring particles throughout the system; see
Fig. 7. As the matrix volume fraction is increased, the thickness of the bridges increases and eventually they merge to
fill the interstitial space.

FIGURE 7. Numerical model of cementing bridge between particles. Thewidth is increased for all pairs in a sample until the
required matrix volume fraction is reached.

The elastic properties of each phase are controlled by the linear elastic properties of the bonds. The main elastic
parameters that will be considered here are the Hooke constants kp andkm of the bonds belonging to the particles
and matrix, respectively. The initial state is the reference (unstressed) configuration. When the sample is loaded,
bond forces develop inside the sample. A stress tensorσa can be attributed to each nodea of the lattice network:
σa

i j =
1

Va ∑b rab
i f ab

j where the summation runs over all neighboring nodesj, rab
i is the i component of the vector

joining the nodea to the midpoint of the bondaband f ab
j is the j component of the bond force [33, 8].

The resolution of the stresses depends on the particle size compared to the lattice element lengths. The discretization
should be sufficiently fine for the particle contours to be correctly represented. The macroscopic elastic moduli might
crucially depend on the discretization as more generally inporous materials. In practice, however, the resolution is set
as a result of compromise between the necessary number of particles for statistical representativity and total number of
nodes accessible to computer simulation. In the simulations reported in this paper, we generally favored high resolution
both in 2D and 3D simulations such that the results for stresstransmission reliably reflect the configuration of the
particle phase.

In the following, we mainly consider node stresses in rectangular and cubic samples subjected to vertical loading
with free lateral boundaries. At low matrix volume fractions, for comparison with DEM we will also evaluate the
contact forces between particles from bond forces. During loading, the bond forces increase with the applied vertical
stress at the boundary. Hence, the mean bond force increaseslinearly with the external load whereas the bond force
PDF’s and stresses do not evolve as long as no bond breaks. We focus here only on force distributions in the undamaged
samples, i.e. in the purely elastic domain. The damage and fracture properties have been extensively studied elsewhere
[8].

Sub-particle stresses and contact forces

In order to obtain fine statistics of node stresses and contact forces between particles, we simulated a large sample
of about 5000 particles with a particle volume fraction ofρ p ≃ 0.8. This corresponds to a packing with a dense contact
network of coordination numberz= 4. The particle diameterd varies betweendmin anddmax= 3dmin with a uniform



FIGURE 8. Vertical stress fieldσyy represented in color level in a cemented packing. The solid bridges and voids are in white
and gray, respectively.

distribution by volume fractions (P(d) ∝ d−2). We would like to compare the contact forces in this system,simulated
by the LEM, with those in a similar system simulated by the DEM. This can be done only in the limit of a small matrix
volume fraction where the matrix is found in the form of smallsolid bridges between the particles such that its effect
can be represented by a cohesion law. We used a matrix volume fraction ofρm≃ 0.01. The DEM code is based on the
standard molecular dynamics method with cohesive bonding between the particles. The sample is subjected to vertical
compression.

Figure 8 shows the vertical stress fieldσyy. The node stresses are represented by proportional color levels over
the elementary hexagonal cells centered on each node. We observe chains of highly stressed particles and higher
concentration at the contact zones between the particles. In order to compare the LEM simulated packing with DEM
simulations of the same packing, for which only contact forces are accessible, we compute the contact forces~f by
summing up the bond forces~f ab for all bondsabcrossing the contact planeS: ~f = ∑ab∈S

~f ab.
Figure 9 shows the map of normal forces between particles forthe LEM and DEM packings. We observe very

similar force chains despite the fact that radically different methods were used to simulate them. The Pearson product-
moment correlation coefficient between the two force networks isr = 0.92, which indicates high similarity. The PDF’s
of normal and tangential forces from LEM and DEM simulationsare shown in Fig. 10. We observe that the two PDF’s
coincide over nearly the whole range of forces. The distribution of normal forces involves an exponential fall-off in the
ranges of strong compressive and for the whole range of tensile forces. The exponent in the range of tensile forces is
larger than that for the compressive forces. Remark that thelargest tensile forces are far below the breaking threshold.
The distribution is uniform in the range of weak compressiveand forces as also observed in most simulations of
sheared packings composed of circular weakly polydisperseparticles (see section ). This excellent agreement between
the force PDF’s withβ ≃ 1.35 may be considered as a validation of DEM results for the force networks in the sense
that the contact forces in LEM simulations are calculated from a finer scale [2, 5, 6].

Having access to the node stresses, it is interesting to evaluate their PDF’s in order to see whether they carry
a signature of the composition. One example of the PDF of vertical stressesσyy is displayed in Fig. 11(a) for a
packing under vertical compression. Since the sample is under axial compression, only 4% of vertical stresses are
tensile and are thus not shown in Fig. 11(a). Interestingly,the strong stresses fall off exponentially as contact forces
(see Fig. 10),Pσ (σyy) ∝ e−β σyy/〈σyy〉 with β ≃ 0.95, and they mostly concentrate at the contact zones. The weak
stresses have a nonzero PDF, much the same as weak contact forces, reflecting the arching effect. Since the contact
force distributions reflect the granular disorder, i.e. thestructure of the network of contiguous particles, the observed
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FIGURE 9. A map of normal forces in a portion of a sample under vertical compression simulated by DEM (a) and LEM (b).
Line thickness is proportional to the normal force. Very weak and tangential forces are not shown.

-2 0 2 4 6
f
n

10
-3

10
-2

10
-1

10
0

pd
f

LEM
DEM

(a)
0 2 4 6 8

f
t

10
-3

10
-2

10
-1

10
0

pd
f

LEM
DEM

(b)

FIGURE 10. Probability density function of normal forces (a) and tangential forces (b) in a sample axially compressed by LEM
and DEM simulations. The forces are normalized by the mean normal force.
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FIGURE 11. Probability density function of vertical stresses normalized by the average stress in compression.
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FIGURE 12. Probability density functions of normalized vertical stresses for three values of the matrix volume fraction (a) in
tension and (b) in compression.
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FIGURE 13. Probability density functions of normalized vertical stresses for three values of the relative stiffnesskp/km (a) in
tension and (b) in compression.

similarity between the distributions of stresses and forces means that the sub-particle stresses are strongly affected by
the granular disorder.

Effect of matrix volume fraction

It is expected that at higher matrix contents the stress is more homogeneously redistributed inside the packing due to
load transfer between the particles and the matrix. Fig. 12 showsPσ for three values ofρm in tension and compression
for kp = 100km. Interestingly, the exponential tail persists both in tension and in compression, but for equal matrix
volume fractions, the PDF of strong stresses is broader in compression than in tension. In other words, the stress
redistribution is more homogeneous in tension than in compression.

It is also interesting to observe that the stress PDF is not affected by the matrix volume fraction in compression but
it is increasingly broader in tension for decreasing matrixcontent so that the stresses are more and more concentrated
in the bridges between the particles. In tension, the exponent β varies from 1.10 to 2.55 asρm varies from 0.08 to
0.12 whereas in compression we haveβ ≃ 0.95 for all ρm. As ρm increases, the gaussian peaked on the mean stress,
corresponding mainly to the stresses in the bulk of the particles, becomes more and more pronounced.

Particle/matrix stiffness ratio

We now consider the influence of the particle/matrix stiffness ratiokp/km on stress distribution. Fig. 13 displays
the vertical stress PDF’s for three values ofkp/km in tension and compression forρm = 0.10. It is remarkable that



FIGURE 14. (Color online) Representation of a cemented granular sample composed of particles (in red), interfaces (in green)
and matrix (in blue) discretized on a 3D irregular lattice.

(a) (b) (c)

FIGURE 15. (Color on line) Vertical stresses fieldσyy in the 3D packing on a cut plane in color level for (a)ρm = 0.37, (b)
ρm = 0.23, (c)ρm = 0.10.

in tension the particle stiffness has little influence on thepdf whereas in compression the pdf becomes increasingly
broader for an increasing particle stiffness. The respective effects of particle stiffness and matrix volume fractioncan
be understood by remarking that, due to the presence of a granular backbone, the stress chains are essentially guided
by the cementing matrix in tension and by the particle phase in compression. Therefore, the stress transmission is not
affected by the matrix volume fraction in compression and only slightly influenced by particle stiffness in tension.

Effect of composition in 3D

We briefly extend here our studies to 3D cemented granular solids. We generated a dense packing of 300 particles
discretized over an irregular 3D lattice containing about 500 000 elements. The particle diametersd vary betweendmin
anddmax= 2dmin with a uniform distribution by volume fractions.The particle volume fraction isρ p ≃ 0.63. As in
our 2D LEM simulations, the matrix is distributed uniformlyin the form of bridges of varying thickness and section
between neighboring particles. The filling fraction depends on the cross section of the bridges. This protocol allows
us to vary the matrix volume fraction continuously from 0 to 0.37. The sample is displayed in Fig. 14.
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FIGURE 16. Probability density functions of normalized vertical stresses for different values of stiffness ratiokp/km and values
of the matrix volume fractionρm in compression.
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FIGURE 17. Probability density functions of normalized vertical stresses forρm= 0.1 andkp/km = 50 in the particle and matrix
phases in comparison with that in the whole sample.

Fig. 15 displays a map of vertical stresses on a cut plane for three values ofρm. We observe that the stresses are
more and more localized in the matrix bridges as the matrix volume fraction is reduced. Figure 16 shows the vertical
stress pdf’s for three values ofkp/km and three values ofρm under vertical compression with free lateral boundaries.
Two limits can be distinguished: (1) Thehomogeneous limitcharacterized byρm = 0.37 andkp = km, corresponding
to a homogeneous material with no void and no particle (absence of elastic contrast between particles and matrix);
(2) Thegranular limit characterized by largekp and weak amount of matrix (hereρm = 0.1) basically distributed in
the form of small solid bonds between particles. The latter corresponds to a granular material with stiff particles as
generally assumed in DEM simulations. We see that, as expected, the stress distribution in the homogeneous limit is
the less broad one with a nearly gaussian shape. The stress variability in this system reflects the metric disorder of the
underlying lattice. The distribution forρm = 0.1 andkp/km = 100 corresponds to the granular limit.

The strong stresses have a decreasing exponential distribution as in 2D packings in the granular limit with as
exponent increasing with matrix volume fraction. A secondary peak is observed in the range of very weak stresses
in all cases where the particles are stiffer than the matrix.This peak reflects the weak stresses inside the matrix
bridges, as suggested by Fig. 17 where the distributions areseparately plotted for the stresses in the matrix and inside
the particles in the caseρm= 0.1 andkp/km= 100. We see that the particles involve no stress peak. This peaks is thus
a consequence of the low stiffness of the binding phase.

The distribution in the granular limit is practically the broadest one, and hence all distributions for all parameters
lie between those for the granular and homogeneous limits. For ρm = 0.23 andkp/km = 1 we have a porous material
with no mechanical contrast between the matrix and particles. Forρm = 0.37 andkp/km = 50 we have a granular
phase embedded in a matrix with no voids. In both these cases,the stress distribution is broader than that in the
homogeneous limit although the physical origins of this enhanced inhomogeneity are different. We remark that,
for ρm = 0.1, increasingkp/km from 50 to 100 has little influence on the stress distribution. In the same way, for
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FIGURE 18. Scaled plot of the capillary force as a function of the gap between two particles for different values of the local
liquid volumeVb and size ratior according to the model proposed in this paper. Inset: Geometry of a capillary bridge.

kp/km = 50, increasingρm from 0.1 to 0.23 has practically no impact on the distribution.

LIQUID BONDING

In this section, we investigate force transmission in wet granular media composed of rigid particles interconnected by
capillary bridges. The action of the capillary bridges is modeled by a capillary force law and implemented in a 3D MD
code.

Numerical method

For the simulations of wet granular materials, we used the MDmethod with spherical particles and a capillary
force law. The total normal forcefn at each contact is the sum of a repulsive forcef r

n and an attractive capillary force
f c
n . The latter is a function of the liquid bond parameters, namely the gapδn, the liquid bond volumeVb, the liquid

surface tensionγs, and the particle-liquid-gas contact angleθ ; see inset in Fig. 18. The capillary force can be calculated
by integrating the Laplace-Young equation [34, 35, 36]. However, for efficient MD simulations, we need an explicit
expression off c

n as a function of the liquid bond parameters.
We used an analytical form for the capillary force which is well fitted by the data from direct integration of the

Laplace-Young equation both for polydisperse particles [37]. At leading order, the capillary forcef0 at contact, i.e. for
δn ≤ 0, is

f0 =−κ R, (6)

whereR is a length depending on the particle radiiRi andRj andκ is given by [38, 39, 40]

κ = 2πγscosθ . (7)

A negative value ofδn corresponds to an overlap between the particles. The assumption is that the overlap is small
compared to the particle diameters. The data obtained from direct integration of the Laplace-Young equation show that
the geometric meanR=

√

RiRj is more suited than the harmonic mean 2RiRj/(Ri +Rj) proposed by Derjaguin for
polydisperse particles in the limit of small gaps (see below) [41]. We also note thatf0 in Eq. (6) is independent of the
bond liquid volumeVb.

The adhesion forcef0 at contact is the highest level of the capillary force. The latter declines as the gapδn increases.
The capillary bridge is stable as long asδn < δ max

n , whereδ max
n is the debonding distance given by [42]

δ max
n =

(

1+
θ
2

)

V1/3
b . (8)



Between these two limits, the capillary force falls off exponentially withδn:

f c
n = f0e−δn/λ , (9)

whereλ is a length scale which should be a function ofVb and the particle radii. The asymmetry due to unequal
particle sizes is taken into account through a function of the ratio between particle radii. We set

r = max(Ri/Rj ;Rj/Ri). (10)

Dimensionally, a plausible expression ofλ is

λ = c h(r)

(

Vb

R′

)1/2

, (11)

wherec is a constant andh is a function only ofr. When introduced in Equations (11) and (9), this form yieldsa nice fit
for the capillary force obtained from direct integration ofthe Laplace-Young equation by settingR′ = 2RiRj/(Ri +Rj),
h(r) = r−1/2 andc≃ 0.9.

Figure 18 shows the plots of Eq. 9 for three different values of the liquid volumeVb and size ratior together with the
corresponding data from direct integration. The forces arenormalized byκR and the lengths byλ . The data collapse
on the same cruve, indicating again that the forceκR and the expression ofλ in Eq. (11) characterize correctly the
behavior of the capillary bridge.

Finally, the capillary force can be expressed in the following form:

f c
n =







−κ R for δn < 0
−κ R e−δn/λ for 0≤ δn ≤ δ max

n
0 for δn > δ max

n

, (12)

with

λ =
c√
2

{

1/Ri +1/Rj

max(Ri/Rj ;Rj/Ri)
Vb

}
1
2

. (13)

In the simulations, the total liquid volume is distributed among all eligible particle pairs (the pairs with a gap below
the debonding distance, including the contact points) in proportion to the reduced diameter of each pair. We also
assume that the particles are perfectly wettable, i.e.θ = 0. The choice of the liquid volume has no influence on the
value of the largest capillary force in the pendular state [43]. For our simulations, we chose a gravimetric water content
of 0.007 so that the material is in the pendular state. The coefficient of friction isµ = 0.4 for all simulations.

Distributions of bond forces

We consider force PDF’s in a wet packing of 8000 spheres simulated by the MD method forpm = 0 Pa and
pm = 100 Pa. The confined sample was obtained by isotropic compaction of a wet packing initially prepared with
pm = 0. The packing was then allowed to relax to equilibrium underthe action of the applied pressure. This level of
confinement is high compared to the reference pressurep0 = f0/〈d〉 (pm/p0 ≃ 0.5), yet not too high to mask fully the
manifestations of capillary cohesion.

Figure 19 shows the force networks in a narrow slice nearly three particle diameters thick in both samples. The
tensile and compressive forces are represented by segmentsof different colors joining particle centers. As in dry
granular media, we observe a highly inhomogeneous distribution both for tensile and compressive forces. The effect
of external compressive pressure is to reduce the fraction of tensile bonds. In the unconfined packing, the bond
coordination numberz (average number of liquid bonds per particle) is≃ 6.1 including nearly 2.97 compressive
bonds and 3.13 tensile bonds. As we shall see below, these wet samples involve also a large number of weak forces
( fn ≃ 0) corresponding to the contacts where capillary attraction is balanced by elastic repulsion, i.e.knδn+ f0 ≃ 0.

Figure 20 displays the PDF of normal forces in tensile (negative) and compressive (positive) ranges in the unconfined
packing (pm = 0 Pa). We observe two nearly symmetrical parts decaying exponentially from the center:

P( fn) ∝ e−αw| fn|/ f0, (14)



(a)

(b)

FIGURE 19. Maps of tensile (green) and compressive (red) forces in a thin layer in samplesS6 (pm= 0 Pa) (a) andS7 (pm= 100
Pa) (b). Line thickness is proportional to the magnitude of the force.

with αw ≃ 4 for both negative and positive forces, andf0 = κRmax, whereRmax is the largest particle radius. In contrast
to dry granular media, where the distribution deviates froma purely exponential behavior for weak forces (section
), here the exponential behavior extends to the center of thedistribution. The tensile range is cut off atfn = − f0
corresponding to the largest capillary force. Although theconfining stress is zero, positive forces as large as 2f0 can
be found in the system. We also observe in Fig. 20 a distinct peak centered onfn = 0 which is the average force for
zero confining pressure. The presence of this peak, resulting from the balance between capillary attraction and elastic
repulsion, suggests that a large number of weak forces play aspecial role with respect to the statics and stability of
wet granular materials.

Figure 21 shows the PDF of normal forces in the confined packing. The symmetry of the distribution aroundfn = 0
is now broken compared to the unconfined case in Fig. 20. The distribution is roughly exponential for both tensile
and compressive forces but the exponents are different as inthe case of solid cohesion at low matrix volume fraction
(section ). In the same figure, the PDF of normal forces in a sample without capillary cohesion is shown. We see that
the exponent for compressive forces is nearly the same as in the dry packing. Another feature of force distribution
observed in Fig. 21 is the presence of a distinct peak centered on zero force which was observed also for the case of
unconfined packing in Fig. 20. Hence, this peak reflects a feature of force transmission in wet granular materials that
will be analyzed below.
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FIGURE 20. Probability density function of normal forces normalized by the largest capillary forcef0 at zero confining pressure.
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FIGURE 21. Probability density functions of normal forces normalizedby the largest capillary forcef0 in the wet and dry
confined packings.

Particle pressures

In an unconfined assembly of dry rigid particles, no self-stresses occur and the forces vanish at all contacts. However,
the presence of liquid bonds in a wet granular material induces tensile and compressive forces whilst the average force
is zero. In other words, the grains keep together to form a self-sustained structure in the absence of confining stresses.
In general, various loading histories such as consolidation or differential particle swelling can induce self-stresses in
a cohesive packing [44]. In our system, the self-stresses appear during relaxation. This is obviously a consequence of
the tensile action of capillary bonds bridging the gaps between neighboring particles within the debonding distance.

For a local description of self-stresses we need to characterize the stress transmission at the particle scale as the
smallest scale at which the force balance condition is defined for rigid particles. Although the stress tensor is by
definition a macroscopic quantity, it can be shown that an equivalent particle stressσi can be defined for each particle
i of a granular packing in static equilibrium [33, 45, 46]:

(σi)ab =
1
Vi

∑
j 6=i

f i j
a r i j

b , (15)

wherer i j is the position of the contact-point of the forcefi j of particle j on particlei, anda andb design the Cartesian
components.Vi is the free volume of particlei, the sum of the particle volume and a fraction of the pore space:

Vi =
πd3

i

6ν
, (16)
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FIGURE 22. Probability density function of particle pressures normalized by reference pressurep0 (see text) in the unconfined
wet packing.

FIGURE 23. The unconfined wet packing with negative (white) and positive (black) particle pressures.

wheredi is the particle diameter, andν is the solid fraction of the packing. The sum of particle stressesσi weighted by
the corresponding relative free volumesVi/V tends to the Cauchy stress tensor as the number of particles in a control
volumeV increases.

From particle stresses we get particle pressures:

pi =
1
3

3

∑
α=1

(σi)αα . (17)

Each particle can take on positive or negative pressures according to the forces exerted by neighboring particles. The
PDF of particle pressures is displayed in Fig. 22 for the unconfined sample. The pressures have been normalized by a
reference pressurep0 = f0/〈d〉2. The distribution is symmetric around and peaked on zero pressure, and each part is
well fit by an exponential form. This symmetry in the structure of self-stresses must be contrasted with the asymmetric
distribution of forces (Fig. 20) due to the cutoff on tensileforces. Obviously, the exponential shape of particle pressure
distributions reflects statistically that of bond forces. This distribution extends to the centerpi = 0.

Zero particle pressure corresponds to a state where a particle is balanced under the combined action of tensile and
compressive forces. Such particle states are not marginal here and they reflect a particular stress transmission in a wet
packing. The positive and negative particle pressures formseparate phases as observed in Fig. 23 where positive and



negative pressures are represented in black and white, respectively. Each phase percolates throughout the system. The
morphology of each phase is approximately filamentary with variable thickness and a large interface between them. A
detailed analysis of this structure shows that the particles at the interface between the two phases have a weak pressure
and the largest negative or positive pressures are located at the heart of each phase [46].

CONCLUSION

In this paper, the distributions of contact forces and stresses were investigated in cohesive and noncohesive granular
media by means of different numerical methods. The exponential fall-off of the number of strong forces and stresses is
a robust feature of the distributions in packings of different particle shapes and size distributions with both liquid and
solid bonding. In contrast, the force probability density in the range of weak forces and stresses was found to depend
on system parameters, taking different shapes from a peakeddistribution to a decreasing power law distribution. For
wet granular media with a homogeneous distribution of liquid bonds, we showed the nontrivial organization of particle
pressures in two separate percolating phases of tensile andcompressive particle pressures with an interphase at zero
pressure.

For the simulation of solid bonding, we used the lattice element method which provides a suitable framework
for the investigation of stress fields in complex granular solids involving a solid matrix sticking to the particles. By
coarse-graining the sub-particle stresses, we arrived at the same contact force distributions as in DEM simulations
and experiments. Our data are consistent with the fact that the decreasing exponential distribution of strong forces is
a signature ofgranular disorder, i.e. the disorder induced by a contiguous network of stiff particles. This signature
disappears in the homogeneous limit where there is no stiffness contrast between the particle and matrix phases and
the porosity vanishes or when the particles are interposed everywhere by the binding matrix. Our 3D simulations
evidence the two limits of homogeneous and granular distributions. For different values of the matrix volume fraction
and particle/matrix stiffness ratio, the distributions vary between these two limits.
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