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Force and fabric statesin granular media
Farhang Radjai

LMGC, CNRS-Université Montpellier 2, 34095 Montpellieder 05, France

Abstract. The plastic flow of granular materials reflects to a large rtxtiee constraints imposed by steric exclusions and
mechanical equilibrium at the particle scale. An accuratenfilation of these local constraints is the key to a statikt
mechanical approach but requires a rich set of state pagasndte show that the constraints can be taken into account in
simple way with a reduced set of anisotropy parameters akimetlowest-order description of the contact and force aeksy

We then introduce a model of kinematic jamming defined asta sfasaturation in the evolution of the contact network.sThi
model correctly predicts the accessible geometrical statewvell as the evolution of the system to a kinematicallynjeah
state. We also show that a harmonic decomposition of shesssts a function of the anisotropy parameters and phasesfac
representing the loading history leads to the “fragile”relster of force networks.

Keywords: granular materials, plastic behavior, steric exclusiémse network, state parameter, jamming, fragile behavior
PACS: 45.70.-n, 45.50.-j, 61.43.-j, 83.80.Fg

INTRODUCTION description of the microstructure at the price of account-
ing in a less strict sense for the local constraints [2, 3].
The microstructure is at the focus of much of the current  Granular materials have inspired a number of insight-
research on granular media, and it has been investigatddl concepts and analogies, that have extended the scope
during the last three decades both by experiments and byf this field beyond its traditional frontiers. But, to bene-
discrete element simulations. Not only many scientific is-fit from this expansion of the field, we often need to adapt
sues raised by the granular microstructure are interestingnd define such general concepts on a quantitative basis.
in their own right, but it is also obvious that a fundamen- A well-known concept igammingdefined as the arrest
tal approach based on the microstructure is a necessanf dynamics in a metastable state [4, 5]. In this paper we
step in searching for innovative solutions to industrial show that the concept of jamming can be more naturally
challenges. Two parallel viewpoints coexist presently inassociated with the evolution of the contact network, a
this field: 1) a materials approach regarding the broad infundamental aspect of plasticity.
terest and scope of granular materials and 2) a physical In a similar vein, the concept of “fragile” behavior
approach considering granular media as a metaphor ofias defined as the resistance of a material only to a
driven dissipative systems. At the junction of these twoset of compatible stresses, basically those applied dur-
routes, we may consider a common denominator pertaining its past deformations [6]. However, such compati-
ing to the granular microstructure, on the one hand, andble stresses have not been given a precise definition for
the variants depending on the particle interactions andliense volume-free granular materials. We show that the
particle shape and size distribution, of vital importancefragile property can be “demonstrated” within a plausi-
to applications, on the other hand. ble approximation of the shear stress in terms of fabric
In this paper, we apply such a methodology basicallyand force anisotropies. This again provides a connection
in the case of plastic deformations of a granular matewith the plasticity theory as far as the yield surface is
rial at low strain rates. The plasticity theory provides aconcerned.
unifying framework for a physical approach based on
the microstructure. Two constraints make the behavior
depend on nontrivial features of the microstructure: 1) GRANULAR PLASTICITY
the steric hindrances among neighboring particles, which
constrain the accessible geometrical states, and 2) thée consider slowly sheared granular materials in which
condition of mechanical equilibrium, which controls to the impulsive forces (induced by collisions and unstable
some extent the range of admissible particle configuparticle rearrangements) can be neglected compared to
rations [1]. A complete set of internal state parametershe static forces (induced by a confining pressure). For
allowing for these constraints to be expressed involves confining pressurp (counted positive for compressive
multicontact probability density functions that are too stresses) and particles of average diameténe contact
rich to be accessed experimentally or tackled theoretiforces of static origin are of the order &f = pd? in 3D
cally. The issue therefore is to work with the lowest-order(fs = pd in 2D). At the same time, for a shear strain



rate &, the time scale of the flow iAt = 'sq*1 and thus trary state in the evolution of the material since for their
the order of magnitude of the impulsive forces is givendefinition we did not refer to the state of the material.
by the momentum per unit timé§ = mdey/At, where  Therefore, the granular plasticity is characterized by the
m is the average particle mass. In the quasi-static limitstate-dependent angl¢sandy, and the plastic behavior

the conditionfs > fj implies| = &./m/(pd) < 1 (I =  cannot be fully described unless a setimtrnal state
&g4/M/p in 2D). The inertial numbet controls in this ~ parameterss introduced. _
way the transition from plastic to visco-plastic flow [7]. It is obvious that in a fundamental approach the in-

In the plastic regime, the behavior is rate-independenternal state parameters should describe the granular mi-
and the physical time can be replaced by a cumulative crostructure, and are thus of geometrical nature. We re-
shear strairgg or &t for a constant driving shear ratg. ~ fer to such descriptors of the microstructurefabric
As a result, the plastic strain tensay reflects simply ~ state parameters. The level of description depends on the
the relative particle displacements, all scaling wath choice of these parameters, which should naturally com-
In particular, using the language of plasticity, the flow ply with both the accuracy and tractability of the formu-
rule should be specified by a ratig/eq whereg, =tr(¢)  lation and which can be scalar or tensorial parameters or
is the volumetric strain. This ratio is often characterizedfunctions. Let represent such a set of fabric parame-
by an angley, the dilatancy angle which defines the ters. Then, a model of granular plasticity is fully defined
direction of the plastic strain rate. by specifying [8, 1]:

Neglecting impulsive forces in the plastic regime im-
plies that the deformation is a continuous transition be-
tween mechanically equilibrated and stable states. The
Coulomb friction law and the assumption of perfectly
rigid particles, as a physically plausible approximation
when the particle stiffnesg is small compared t,
involve no characteristic force. Therefore, all contact

forces f and the stress tensanj must scale withp.  |n this model, the steady state is characterized by a fabric
In particular, the plastic threshold is characterized by * for which 3.7 (8eq) = 0 andy(.#*) = 0. The angle
a stress ratia@/p, whereq is the stress deviator. This of friction ¢* = ¢ (F*) is the steady-state (or critical-

means that the admissible stresses are inside a cone #fate) angle of friction, a property of the material.
the stress space. This cone is nothing but the Coulomb
cone described by thiaternal angle of frictiong.

The stress and strain invariartys q) and (&, &), re- LOCAL CONSTRAINTS
spectively, are conjugate variables with respect to the
total powerW of the applied stresses. In 3D with ax- The internal state variables must be rich enough to rep-
ial symmetry and principal strain rateg and&; = €3, resent microscopic mechanisms that underlie plastic be-
we havegg = & — & and &p = & + 2&. In the same  havior. Two constraints are generic to all kind of granu-
way, the principal stresses aog and oz = 03, and We  |ar material in a quasi-static state and may therefore be
haveq = (01— 02)/3 andp = (01 +202)/3. The total  regarded as the most basic requirements in a theoretical
power is given bW = 011 + 026> + 0363 = Pep+20€q.  approach: steric exclusions and mechanical equilibrium.
With these notations, the internal angle of friction andThese constraints both have a local character and can be
dilatancy angle are defined by ¢in=3q/(2p+q) and  formulated in terms of particle environments.
siny = 3ep/(&p — 2&4), respectively. Notice thaty is
positive for dilation (counted negative for granular ma-
terials). Since work is supplied to deform the system, we
haveW > 0, and this impliesp > . Remark that “as-
agreement with observations. In 2D, we &gt= &1 — &, @
Ep=E&1+&,q=(01—02)/2andp= (01+ 02)/2, and /a B
the angles are given by sin=q/p and siny = —&,/&q. re Vi

In the classical soil mechanics approach, the angles @ (b)
andy are associated with particular states of a granular
interest: 1) stress peak and 2) “critical state” that Corre_enwronment with angular exclusions.
sponds to a steady flow with no volume change so that In Fig. 1(a) a representation of the contact geometry
@ = 0. But the angle® and g can be defined airbi- between a particla and its contact neighbdris shown.
The relevant geometrical variables are toatact vector

1. ¢(#): the internal angle of friction as a function of
the state parameters (yield function);

2. Y(&): the dilatancy angle as a function of the state
parameters (flow rule);

3. 8.7 (0gq): the incremental evolution of state param-
eters with driving straid &y (hardening rule).

sociated" plasticity would imply = ¢, which is not in
material subjected to shearing. Two states are of specizflI GURE 1. (@) The contact geometry; (b) First-shell particle



T =rijoining the particle center to the contact point, the  The functionsP; and B¢ contain a rich amount of
branch vecto¥ joining the centers of two contacting par- information about the the state of a granular system in
ticles and the contact orientation vector (contact normalferms of the fabrlp and force distributions condensed
i defined as the unit vector normal to the particle bound4n the particle environments, and they evolve with the
ary at the contact zone. The reaction force€ and—f  driving strain while keeping to satisfy the constraints. It
acting on the two particles at their contact zone have ghould, however, be remarked that part of this informa-
unique application point that may be considered as theition is highly redundant. In particular, the functiofg,
contact point. We define a local frame composed of theand Pk are strongly correlated since for a mean stress
“radial” unit vectorfi and one orthogonal unit vectbn state o the contact forces can be partially determined
an orthoradial plane (orthogonal to the contact vector)for the specified contact network by means of the force
In 2D, the local frame is uniquely defined by a single @hd moment balance conditions up to some degree of
tangent unit vecta. indeterminacy resulting from the assumption of perfect
We need a statistical description due to granular disParticle rigidity and Coulomb friction law. However, the
order, with the basic feature that the local vectors varycontact forces reflect subtle features of the granular mi-
discontinuously from one contact to another. The localcrostructure that are more evident to observe through the
environments fluctuate in space both in the numbef  force network. The surprising inhomogeneity of the force
the contacts of each particle (topological disorder) andehains could hardly be guessed just from the appearance
in their angular positiong? (metric disorder). For the of the contact network. The inclusion of the forces in
formulation of the local constraints only the first contact the state is therefore a genuine choice in view of tak-
neighbors of a particle are sufficient. Two functions areing advantage of the well-known properties of the force

required to describe thfirst shellenvironment [1, 3]: network. Owing to their connection with the microstruc-
ture, the forces represent the state of the microstructure

1. Pe(k): Connectivity functiordefined as the propor-  4nq in the last analysis, they can be considered as fabric
tion of particles with exactlk contacts (first shells  narameters.

with k members).
2. Py (FL,..., 7% f1, ... fX): Multicontact probabil-
ity density functiorof k contact force® andk an- STATE PARAMETERS
gular positionsg™ for a shell ofk particles.
The information contained in the local distributioRs

The average connectivity Oj, the contact netwprk IS theand Pwrt can be reduced in three steps. In the first step,
coordination numberz = 3.’ ; kR(k). Integration of

Z| . X we extract the 1-contact distributions for the shellkof
P«r over all angular positions yields the multicontact . . .
, = ) a contacts by integration over all contacts except one:
force pdf's Pys(f-,..., %) = _fg{kr Puwre d{r?}, where

i is the accessible domain of angular positions. In the Pt (F ]?) _ / = f(r»l ! ]?k)
same way, the multicontact pdf of angular positions is < o ety N TR
Racr(FL,. . 7) = [ Paert d{ T}, wheres is the in- 5 - & —rHd{r}d{f")  (3)

tegration domain.

In the particle shells, the steric constrains manifesiThis function is the pdf of a contact at angular position
themselves aangular exclusionsTwo particles belong- belonging to a shell of contacts and carrying a forde
ing to a shell cannot approach one another below a minThe pdf’s of contact positions and forces are given by
imum angular intervald6min; see Fig. 1(b). In other

words, the multicontact pd®y, vanishes if the angular R (f) = Per df 4)

exclusions are violated: Gt

Puc(FL,....7¥) =0 if A% > cod6mn) Va # B Ae(f) = | Rardr (5)
1) . . .

The exclusion angl&6nyin is 1/3 in a monodisperse Wh_ere e ar)ql i are smgle-contact_ integration do-

packing of spheres or disks. mains of positions and forces, respectively.

The mechanical equilibrium condition can be ex- [N the second step, we average over the shells by
pressed as complementarity relations in terms of the mulweighting the above 1-contact distributionsRy

ticontact force pdf’s: B ® B
k k Pi(r.f) = 3 PR (r.F) (6)
< Z Fa) P« =0 and ( Z 7 x ]?a> Pwi=0 (2) k;l
d=1 d=1 R = Z Pe(K) R (7) @)

k=1
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P (F) — P.(k 7 where (...)x denotes averaging at constant val-
t(F) (k) Fer (1) ® ues of k and fA. These functions can be aver-

. , , aged over the shells:P(f) = Y R(A)P:(k),
These pdf’s contain no information about the shells an (A) = T2 (Dk(M)Pe(K), (F)([) = S2 (fo)i () Pe(K)

topological disorder of the contact network and, in CON-and(fi) (M) = 351 ( () Pe(K).
trast toRw ¢ andP ¢, arem-periodic. We also note that Figure 2 shows a polar representation of tke
owing to angular exclusions (1) the multicontact Bl averaged functions for two samples of polyhedra and
of the angular positions cannot be reduced to a prodquhereS sheared by triaxial compression by means of
of the 1-contact pdf'#k(F): contact dynamics simulations. The angular average of
1 1y branch-vector lengthg) (i) has been shown instead of
Fa(T....7) # B (T) - R (™) © (r)(f), but the behaviffgs( are similar. The general state of

Several macroscopic observables are the first moments packing depends on its past history, but shearing has
of the force and fabric distributions. In particular, the the effect of structuring the packing in a well-defined
averagenternal moment tensor N& given by [9, 10] state, the critical state, where the distributions are uni-

B . B . modal. Such distributions may thus be approximated by

M= (-T®f) :/ / T fR¢(r,f)drdf (10) low-order terms of spherical harmonics in 3D or Fourier

S series in 2D.

To avoid unnecessary complication, let us consider
axial symmetry about the axis of compression. Then, the
function P(ri), wherefi = (6, ¢), is independent of the
g=npM (11) azimuthal anglep. There are nine second-order basis
. . , functionsY;.(8, ). But only the functions compatible
whereny is the particle number density. The average,,ih axial symmetry, namely independent with respect to
pressure is given bp = tr(o) /D = —np(7- f)/D. @ and e-periodic as a function of the zenith angleare

_ In discrete writing of (10), each contagtoccurs two  admissible. The only admissible functions are therefore
times in the summation for the two contacting partlcle5y§ =1 andY? = 3co€6 — 1, and at leading order we

aandb with the contributiorr @@ P34 a3 wheref*®  haye
is the force exerted at the contact poénton particleb

k=1

where® denotes a dyadic product, i &2 F)ij =rifj. It
can be shown that the average stress teasersimply

by particlea and, converselyf2° is the force exerted P(8) ~ :{1+ac3cod(8—6bc)—1]}

at the same contact on partickeby particleb. Since (Nk(8) =~ rim{1+ak[3c0%(6 — bic) — 1]}

fab—= fa — _fba the contribution of the contaatto the (f)k(8) =~ fum{1+a&n[3co$(8— 6kr) — 1]}

sum is given byf9 ¢ where/® = —9ais the branch (fok(0) = fkm & SIN2A6 — )

vector. In this way, the stress tensor can be expressed ash , (14)

[11, 12, 13] whereayc, axr, 8kn a_ndakt_are the anisotropy parameters
o =ne <l7® ]?> (12) of the k-shells,ry, is their mean contact vector length,

oL and fy, the mean force. The privileged directions of the

and in its integral form the pdiP (4, f) replaces contact vectors and forces afig. and 6, respectively.
Pt (F, F). We can also define fabric tensors of increasingPk is normalized to 1 ( P«(8)sin8d8dg = 1).
order from the distribution of contact vectors. The sine function for the expansion of the ortho-

The third step in reducing the information contained inradial component fi)x(0) is imposed by the require-
local distributions consists in extracting the angular be-ment that the mean orthoradial force is zero, satis-
havior fromR+ (F, f). As we shall see below, this angu- fying the balance of force moments on the particles
lar information determines the deviatoric content of the(/ Pk(8){ft)k(8)sin6d@dg = 0). Numerical simulations
stress tensor. We consider the force components in the ldndicate that. and 6+ are generally independent kif
cal frame:f = f, fi+ f, f and define the functiorg(fi), =~ Moreover,as is nearly independent df whereasay.
(fa)i (), (f) () and (r) () that express explicitly the IS crucially dependent ok, as we shall see below. The

contact direction dependence of the vectoesd f: anisotropiesy, are negligibly small for spherical parti-
cles, but have small values otherwise as observed in Fig.

_ 7 7 F 2 [14]. Similar expansions are obtained in 2D by replac-
A = r':[o Jot Rt (7, 1) dr dif ing the function 3cd%9 — 1 by cos® and ¥/(4m) by
(MR = [ Pt (7, ) df 1/(2m). We will refer to the above expansions abax-
® . - (13)  monic approximatiowf the granular state in tHeshells.

(fa)k(AP(F) = rfo Jor TaPert (7, F)dr df A similar approximation can be made for the shell-

C . . averaged functions [11, 12, 15, 13]. At this level of
(fok(MR(A) = Joim fBet (7, f)dr df shell-averaged information, the internal state pararaeter
r=|



[—Omin/2, Omin/2] [3]:

/6, KR.(6)d6 < 1 (15)

N

=]
=

N‘

Substituting the harmonic expansion®{6) from Eq.
(14) in (15) and integrating with respectfio we get

2 1 1
Sin(36min) {E a zm—ax} (16)

where Z"® = 211/66min. There is therefore an upper
bound agi® depending ork for the shell anisotropies
due to steric exclusions. This leads to an upper bound
ag'® = 3 P(k)a™ on the global anisotropy with the
approximation thaf. is independent df. This example
demonstrates clearly the effect of steric exclusions and
its scale-up to the macroscopic scale.

The presence of steric exclusions does not prevent
granular motion unlike jamming transition where a full
arrest of dynamics occurs. But the particle movements
FIGURE 2. Four functions representing the fabric and force 8r€ greatly affected when a state of saturation such as
states for two packings of spheres and polyhedra triaxially @ maximum of anisotropy is reached in the course of
compressed along theaxis by means of contact dynamics deformation. We will refer to such states of saturation
simulations. The polar angle is the zenith angle in sphericags kinematically jammed state®elow, we propose a
coordinates. The symbols are the simulation data whereas thsjmple model that allows us to illustrate this concept and
solid lines are fits by the lowest-order spherical harmonics evaluate explicitly the effect of local constraints.

Let us consider a monodisperse packing of disks. We
havea, = 0, and the fabric parameters in harmonic ap-
proximation arg{z, ac, 6: }. The fabric state can be repre-
sented by a single function defined by [1]

e < A=

Polyhedra
Spheres

arez= Yy kR (K), ac = SxPe(K) axe, ar = Y Pe(K) ar,
an = S Pe(K) an anday = 5 Pe(K) awt, as well as the cor-
responding phase® ~ 6. and0; ~ 6 where it is as-
sumed thaB. and 6+ are independent d&f. Therefore, 7(&q)

within this global harmonic approximation of the granu- ~ E(&,8) = —_~{1+ac(éq) 0526 — bc(&q)]}  (17)

lar state, the plastic behavior is characterized by
. Note that(E)g = zand (Ecos D)y = a., where(:--)g
1. The evolution of the set of state parametéfs= 4o otes angular averaging.

{z,ac,ar,an, &, 6, B¢ } with the driving straireg
2. The functional dependence@fandy with respect +E
to this set Emer

Some aspects of this problem will be discussed in the
following for the simple case of a monodisperse packing
of disks.

:

Emin
KINEMATIC JAMMING 0 2m

g

As a result of local constraints, the state parameters§IGURE 3. Limit statesE™"(6) andE™@(9), and the gen-
cannot take arbitrary values. The accessible range ofral fabric stat&(8) in the harmonic approximation.
state parameters contains part of the underlying con-

traint d its K led th tial | In a co-rotating reference frame with axes oriented
strants and 11s knowledge may thus partially rep acealong B:(&q) and 6:(&q) + 1/2, the fabric state is de-

thg h?hherr]-order |_nformat|on:[Fth '”Lﬁtratf'(in’ Iettuste;on fined by its position in the space of coordinateand
sider the harmonic representation (14) of 1-contac unc:,ic_ The coordination numberis bounded between two

tions. The angular exclusions (1) imply that irkahell limits Z"" andz" The upper bound™*is dictated by
there can be at most one particle in an angular interv teric exclusions as discussed before. The lower bound



FIGURE 4. Evolution of the fabric statéz, ac) for a packing

FIGURE 5. The three events of gain (rat8), advection
(currentd) and loss (rat&) of contacts, governing the evolution
of the contact network (fabric state).

right of z*) due to angular exclusions or with a saturation
of contact loss (to the left af) due to the condition of

of disks biaxially sheared by contact dynamics simulations mechanical equilibrium. The intersection poiit, af)
The limit states predicted by a model of kinematic jamming represents the critical state where both contact loss and

(Eq. 18) are shown as well.

contact gain are saturated.
Figure 4 shows the evolution af with zin simulated
biaxial compression of two initially isotropic samples

Z"" is related to the condition of mechanical equilib- with coordination numberg, = 3.1 andz = 3.7. In
rium. For example, stable particles often involve morepoth simulationsz tends to the same critical-state value
than three contacts in 2D and more than four contacts* ~ 3.35 with a ~ 0.24. Remarkably, the anisotropy of

in 3D. To be more precise about these limit mechanicathe dense packing reaches and then follows closely the

states, we must also specify the valueagfWe thus de-
fine two limit states: 1) théoosest isotropic statechar-
acterized byE™"(0) = zZ""/(2m), and 2) thedensest
isotropic state characterized b§™2X(6) = Z"¥/(2m).

limit states. Eq. (18) provides here an excellent fit to the

data with only one fitting paramet&P® In the case of

the loose sample, the trajectory remains entirely inside
the accessible domain and the boundary is reached only

These states can be reached only by complex loadingt the critical state. The simulations suggest that the loss
For example, it is generally difficult to bring a granu- saturation limit is difficult to achieve by shearing since
lar system towards a dense isotropic state via isotropi¢n the contact loss regime the anisotropy increases often
compaction. The reason is that the rearrangements occhl contact gain.

mainly in the presence of shearing, which leads to fabric - Equation (19) predicts that the critical state anisotropy

anisotropy.
We assume that all accessible fabric staE®)

a; increases witle"> — zZ"", The shape, size and fric-
tional characteristics of the particles may therefore influ

are enclosed between the two isotropic limit statesenceay via 2" andZ"®% For example, increasing the
E™N(0) < E(8) < E™{(0); see Fig. 3. This assumption sliding friction coefficient between the particles allows

simply means that the same bouf!¥ andz"® govern

for lower values ofZ™" (stable configurations with less

the limiting number of contacts at each space directioncontacts) without changirgf'® (which depends only on
Itis easy to show that this assumption leads to an uppesteric exclusions) and leads to larger valuesof

bound on the anisotropy:

in ax
a2z = 2min{1— zmT, zn;

- 1} (18)

By construction, al'®{(z™")
largest anisotropy is

— alZ") = 0. The

a?axi ag"nin
a?ax+ a(r:nin
with z- = (2" + Z"®) /2. According to Eq. (19)al'®*
increases witle for z < 7z, and it declines witte for

z< Z°. In this model, only the states bel®{l'®(z) are
accessible. The points on the frontieed®{z) represent

a = al(7) =2 (19)

In exception to the two isotropic limit states, all states
of saturation are anisotropic. Hence, the loss and gain
saturation occur in particular directions. For this reason
the loss and gain of contacts should be considered as a
function of space directiod. Moreover, a number of
contacts are advected in the angular sgac2m] in the
sense that the contact normal of an enduring contact ro-
tates. This advection of contacts results in a continuous
change of the fabric staté(sq, 8) whereas the contact
loss and gain are discontinuous events. The three elemen-
tary “events” of gain, loss and advection of the contacts
occur at different rates depending of the space direction:
a gain rateG(&q, 0), a loss ratel (g, 8) and a current
J(&q, 0) of advected contacts, respectively. The evolution

the states with either a saturation of contact gain (to the



of E is governed by a detailed balance equation [8]: +(ft)(0) t;(6)}d6 (23)

d_E i Q —G_L (20) Inserting the Fourier expansions (21) in Eqg. (23), and
dgg 00 integrating with respect t@, yields the two following

We expect thaG has its largest value along the direc- INteresting refations:

tion of contraction whereak is maximal along the di-
rection of extension. The curredtis basically given by
the number density of contacts times the shear strain in 1
each direction. Hence, the three functions depend actu- 5{(ac+a€)005190’ —6)
ally on the velocity field. In the steady state, we have
0J/06 = G — L, which means that on average the con- *+(@n+a)cosqo— )} (25)
tacts are gained in the direction of contraction and adwhere 6, is the major principal stress direction and the
vected towards the direction of extension where they areross products among the anisotropies are neglected. The
lost; see Fig. 5. same relations hold also in 3D under axial symmetry
Remark that in the absence &fthe relative number with the factor 22 replaced by 13 in equation (24)
E of contacts in each direction would be a simple timeand by 25 in equation (25). The two relations (24) and
accumulation of the contacts induced by loss and gain(25) arestate functionf a granular assembly in the
During a quasi-static deformation the gain and loss ratdramework of harmonic approximation.
functions do not vanish. As long as the system is far Equation (25) provides a nice fit to the simulation
from the limit states we may rely on the homogeneousiata both in 2D and 3D. It reveals an important prop-
strain field. But the gain and loss rates are modified inerty of granular plasticity: The shear strength reflects the
the vicinity of the saturation states. In particular, they ability of a granular system to develop force and fabric
vanish alongf. and6; + 11/2, respectively. This feature anisotropies. This aspect was first demonstrated many
justifies the description of the states of gain saturation agears ago by Rothenburg and Bathurst [11]. Except in
jammed states whereas the states of loss saturation manansients, the fabric and force states are co-axial with
be described as “anti-jammed” states! In this respect, théne stress state so th@t= 6 = 6,. As a result, we have
critical state corresponds to a fully jammed state in theg/p ~ 0.5(ac + a, + an + &) during a monotonic defor-
statistical sense where both contact gain and loss ammation. The anisotropg, of the branch vector lengths
saturated although the deformation continues to inducean be small but takes non-negligible values for polydis-
gain and loss of contacts in different directions. perse systems and non-spherical particles [14, 16]. The
relative values of the other anisotropies depend on the
composition (shape and particle sizes). It is also impor-
FRAGILE BEHAVIOR tant to remark thag/ p does not directly depend an
Here, we would like to underline another important
As discussed before, the yield function in a particle-scaleproperty of the yield function resulting from the phase
approach corresponds to the internal angle of frictiondifferencesf; — 6. and 85 — 65 in Eq. (25). Owing to
¢ or the normalized stress deviatqfp as a function the phase factors, the shear strergtp depends on the
of the internal state parameters. This can be achievetbading direction. For example, when the loading direc-
with harmonic approximation and the expression (12)tion 6, is reversed (i.e. for a rotation af/2 of the ap-
of the stress tensor. Indeed, the shell-averaged Fourigilied stress directions), the phase factor d@2- 6;)

1
=~ SMelmfm (24)
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expansions of the fabric are changes sign sina@ (the fabric) doe not react instantly.
Therefore, a discontinuous loss of strength occurs dur-
P(6) +{1+accos26—6)} . @ , > >
(0)(8) Im{1+a,c0s20— 6c)} ing such transients. This property is akin to thag

(22) ile behavior which can be formulated by stating that
iiniggg ;m{lgr?g(cgi%e) 01)} the largest shear strength of a granular material oc-
! m & f curs along the loading path that conducted the sys-
These functions are involved in the expression of thetem to its present staten particular, the shear stress
stress tensor, which in its integral form is given by is qi/p~05(a:+a+an+a) for 6, = 6 = B in
I the critical state andy/p ~ 0.5(—a; — ay + an + &) for
gij = ”C/gy /W Gifj P (¢, F) dedf (22) 6, = 6; = 6.+ m/2. This loss of strength of the order of
e ac+a, can be observed in Fig. 6 when the shear strain is
Integrating with respect to the forces and considering thgeyersed.
definitions (13), averaged over tkeshells, we get [11] There is an asymmetry between the response times of
2n contact loss, which is governed by the elastic deforma-
Gj = nc/o (0)(8)P(8){(fn)(6) ni(6) tion of the particles, and contact gain, which depends on

1 1R IR



0.6 T T i i T

—— loading
04

0.2r

ample, the relative importance of the force and fabric
anisotropies depend on the material. The same analysis
can also be applied to cohesive granular media where
tensile contacts come into play. This framework has also

L Q.0pem b —
=
02

[ o who s ; 4
—04F wIAN, WA el Mo st MY e

T
R
|

< ;

06— ——
04 02 00 02
€

04

the advantage of bringing together familiar concepts of
plasticity, some of the tools and concepts developed in
mechanics of granular materials and some recent con-
cepts and ideas put forward in rheology of colloids.
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FIGURE 6. Evolution of the shear stresg p as a function

nated the idea of granular plasticity with geometrical in-

of cumulative shear strain for an initially dense samplal an ternal variables.

following shear strain reversal.

the packing geometry (distribution of gaps between the
particles). Contact loss is faster than contact gain in a.
dense packing whereas contact gain prevails in a loose
packing. Only in the critical state the loss and gain rates
are equal as long as a monotonic shear strain is applied.
The response time of contact forces is controlled by parg'
ticle elasticity and is thus of the same order of magni-
tude as for contact loss. As a result, upon strain reversal,
a fast decrease of shear stress mainly due to the phage
differencef; — 6 is followed by a long transient where
the fabric evolves until the critical state is reached in the?-

new loading direction. 5

6.

CONCLUSION 7.
8.
In this paper, a particle-scale formulation of granular
plasticity was proposed. Two local constraints are essen-
tial in this approach: 1) the angular exclusions and 2) th
mechanical equilibrium. Multicontact probability den-
sity functions are necessary for a full expression of these
constraints. But it is possible to work with a lower-order
description of the microstructure at the price of account-10-
ing in a less strict way for the local constraints. This was
shown by a simple model of accessible fabric states in
terms of the coordination number and fabric anisotropy;».
by assuming &armonic representatioof the force and
fabric states. The states of saturation in contact gain and
loss were described &inematic jammin@nd a general
formulation of the evolution of the contact network was 13-
presented. The shear strength was expressed as a sta
function involving the fabric and force anisotropies and™
the stress-fabric and stress-force phase differences. The,
fragile behaviomwas interpreted as a consequence of the
dependence of shear strength on the loading direction. 16.
The specific behavior of each granular material fits
to the generic picture presented in this paper. For ex-
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