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Force and fabric states in granular media

Farhang Radjai

LMGC, CNRS-Université Montpellier 2, 34095 Montpellier cedex 05, France

Abstract. The plastic flow of granular materials reflects to a large extent the constraints imposed by steric exclusions and
mechanical equilibrium at the particle scale. An accurate formulation of these local constraints is the key to a statistical
mechanical approach but requires a rich set of state parameters. We show that the constraints can be taken into account ina
simple way with a reduced set of anisotropy parameters akin to the lowest-order description of the contact and force networks.
We then introduce a model of kinematic jamming defined as a state of saturation in the evolution of the contact network. This
model correctly predicts the accessible geometrical states as well as the evolution of the system to a kinematically jammed
state. We also show that a harmonic decomposition of shear stress as a function of the anisotropy parameters and phase factors
representing the loading history leads to the “fragile” character of force networks.
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INTRODUCTION

The microstructure is at the focus of much of the current
research on granular media, and it has been investigated
during the last three decades both by experiments and by
discrete element simulations. Not only many scientific is-
sues raised by the granular microstructure are interesting
in their own right, but it is also obvious that a fundamen-
tal approach based on the microstructure is a necessary
step in searching for innovative solutions to industrial
challenges. Two parallel viewpoints coexist presently in
this field: 1) a materials approach regarding the broad in-
terest and scope of granular materials and 2) a physical
approach considering granular media as a metaphor of
driven dissipative systems. At the junction of these two
routes, we may consider a common denominator pertain-
ing to the granular microstructure, on the one hand, and
the variants depending on the particle interactions and
particle shape and size distribution, of vital importance
to applications, on the other hand.

In this paper, we apply such a methodology basically
in the case of plastic deformations of a granular mate-
rial at low strain rates. The plasticity theory provides a
unifying framework for a physical approach based on
the microstructure. Two constraints make the behavior
depend on nontrivial features of the microstructure: 1)
the steric hindrances among neighboring particles, which
constrain the accessible geometrical states, and 2) the
condition of mechanical equilibrium, which controls to
some extent the range of admissible particle configu-
rations [1]. A complete set of internal state parameters
allowing for these constraints to be expressed involves
multicontact probability density functions that are too
rich to be accessed experimentally or tackled theoreti-
cally. The issue therefore is to work with the lowest-order

description of the microstructure at the price of account-
ing in a less strict sense for the local constraints [2, 3].

Granular materials have inspired a number of insight-
ful concepts and analogies, that have extended the scope
of this field beyond its traditional frontiers. But, to bene-
fit from this expansion of the field, we often need to adapt
and define such general concepts on a quantitative basis.
A well-known concept isjammingdefined as the arrest
of dynamics in a metastable state [4, 5]. In this paper we
show that the concept of jamming can be more naturally
associated with the evolution of the contact network, a
fundamental aspect of plasticity.

In a similar vein, the concept of “fragile” behavior
was defined as the resistance of a material only to a
set of compatible stresses, basically those applied dur-
ing its past deformations [6]. However, such compati-
ble stresses have not been given a precise definition for
dense volume-free granular materials. We show that the
fragile property can be “demonstrated” within a plausi-
ble approximation of the shear stress in terms of fabric
and force anisotropies. This again provides a connection
with the plasticity theory as far as the yield surface is
concerned.

GRANULAR PLASTICITY

We consider slowly sheared granular materials in which
the impulsive forces (induced by collisions and unstable
particle rearrangements) can be neglected compared to
the static forces (induced by a confining pressure). For
a confining pressurep (counted positive for compressive
stresses) and particles of average diameterd, the contact
forces of static origin are of the order offs = pd2 in 3D
( fs = pd in 2D). At the same time, for a shear strain



rate ε̇q, the time scale of the flow is∆t = ε̇−1
q and thus

the order of magnitude of the impulsive forces is given
by the momentum per unit timefi = mdε̇q/∆t, where
m is the average particle mass. In the quasi-static limit,
the conditionfs ≫ fi implies I ≡ ε̇q

√

m/(pd)≪ 1 (I ≡
ε̇q
√

m/p in 2D). The inertial numberI controls in this
way the transition from plastic to visco-plastic flow [7].

In the plastic regime, the behavior is rate-independent
and the physical timet can be replaced by a cumulative
shear strainεq or ε̇qt for a constant driving shear rateε̇q.
As a result, the plastic strain tensorεi j reflects simply
the relative particle displacements, all scaling withεq.
In particular, using the language of plasticity, the flow
rule should be specified by a ratioεp/εq whereεp ≡ tr(ε)
is the volumetric strain. This ratio is often characterized
by an angleψ , the dilatancy angle, which defines the
direction of the plastic strain rate.

Neglecting impulsive forces in the plastic regime im-
plies that the deformation is a continuous transition be-
tween mechanically equilibrated and stable states. The
Coulomb friction law and the assumption of perfectly
rigid particles, as a physically plausible approximation
when the particle stiffnessE is small compared top,
involve no characteristic force. Therefore, all contact
forces ~f and the stress tensorσi j must scale withp.
In particular, the plastic threshold is characterized by
a stress ratioq/p, whereq is the stress deviator. This
means that the admissible stresses are inside a cone in
the stress space. This cone is nothing but the Coulomb
cone described by theinternal angle of frictionϕ .

The stress and strain invariants(p,q) and(ε̇p, ε̇q), re-
spectively, are conjugate variables with respect to the
total powerẆ of the applied stresses. In 3D with ax-
ial symmetry and principal strain ratesε̇1 and ε̇2 = ε̇3,
we haveε̇q = ε̇1 − ε̇2 and ε̇p = ε̇1 + 2ε̇2. In the same
way, the principal stresses areσ1 andσ2 = σ3, and we
haveq = (σ1 −σ2)/3 andp = (σ1 +2σ2)/3. The total
power is given byẆ= σ1ε̇1+σ2ε̇2+σ3ε̇3 = pε̇p+2qε̇q.
With these notations, the internal angle of friction and
dilatancy angle are defined by sinϕ = 3q/(2p+ q) and
sinψ = 3ε̇p/(ε̇p − 2ε̇q), respectively. Notice thatψ is
positive for dilation (counted negative for granular ma-
terials). Since work is supplied to deform the system, we
haveẆ > 0, and this impliesϕ > ψ . Remark that “as-
sociated" plasticity would implyϕ = ψ , which is not in
agreement with observations. In 2D, we setε̇q = ε̇1− ε̇2,
ε̇p = ε̇1+ ε̇2, q= (σ1−σ2)/2 andp= (σ1+σ2)/2, and
the angles are given by sinϕ = q/p and sinψ =−ε̇p/ε̇q.

In the classical soil mechanics approach, the anglesϕ
andψ are associated with particular states of a granular
material subjected to shearing. Two states are of special
interest: 1) stress peak and 2) “critical state” that corre-
sponds to a steady flow with no volume change so that
ψ = 0. But the anglesϕ andψ can be defined atarbi-

trary state in the evolution of the material since for their
definition we did not refer to the state of the material.
Therefore, the granular plasticity is characterized by the
state-dependent anglesϕ andψ , and the plastic behavior
cannot be fully described unless a set ofinternal state
parametersis introduced.

It is obvious that in a fundamental approach the in-
ternal state parameters should describe the granular mi-
crostructure, and are thus of geometrical nature. We re-
fer to such descriptors of the microstructure asfabric
state parameters. The level of description depends on the
choice of these parameters, which should naturally com-
ply with both the accuracy and tractability of the formu-
lation and which can be scalar or tensorial parameters or
functions. LetF represent such a set of fabric parame-
ters. Then, a model of granular plasticity is fully defined
by specifying [8, 1]:

1. ϕ(F ): the internal angle of friction as a function of
the state parameters (yield function);

2. ψ(F ): the dilatancy angle as a function of the state
parameters (flow rule);

3. δF (δεq): the incremental evolution of state param-
eters with driving strainδεq (hardening rule).

In this model, the steady state is characterized by a fabric
F ∗ for which δF (δεq) = 0 andψ(F ∗) = 0. The angle
of friction ϕ∗ = ϕ(F ∗) is the steady-state (or critical-
state) angle of friction, a property of the material.

LOCAL CONSTRAINTS

The internal state variables must be rich enough to rep-
resent microscopic mechanisms that underlie plastic be-
havior. Two constraints are generic to all kind of granu-
lar material in a quasi-static state and may therefore be
regarded as the most basic requirements in a theoretical
approach: steric exclusions and mechanical equilibrium.
These constraints both have a local character and can be
formulated in terms of particle environments.
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FIGURE 1. (a) The contact geometry; (b) First-shell particle
environment with angular exclusions.

In Fig. 1(a) a representation of the contact geometry
between a particlea and its contact neighborb is shown.
The relevant geometrical variables are thecontact vector



~r = r~n joining the particle center to the contact point, the
branch vector~ℓ joining the centers of two contacting par-
ticles and the contact orientation vector (contact normal)
~n′ defined as the unit vector normal to the particle bound-
ary at the contact zoneα. The reaction forces~f and−~f
acting on the two particles at their contact zone have a
unique application point that may be considered as their
contact point. We define a local frame composed of the
“radial” unit vector~n and one orthogonal unit vector~t in
an orthoradial plane (orthogonal to the contact vector).
In 2D, the local frame is uniquely defined by a single
tangent unit vector~t.

We need a statistical description due to granular dis-
order, with the basic feature that the local vectors vary
discontinuously from one contact to another. The local
environments fluctuate in space both in the numberk of
the contacts of each particle (topological disorder) and
in their angular positions~rα (metric disorder). For the
formulation of the local constraints only the first contact
neighbors of a particle are sufficient. Two functions are
required to describe thisfirst shellenvironment [1, 3]:

1. Pc(k): Connectivity functiondefined as the propor-
tion of particles with exactlyk contacts (first shells
with k members).

2. Pkkr f (~r1, . . . ,~rk, ~f 1, . . . , ~f k): Multicontact probabil-
ity density functionof k contact forces~f α andk an-
gular positions~rα for a shell ofk particles.

The average connectivity of the contact network is the
coordination numberz = ∑∞

k=1kPc(k). Integration of
Pkkr f over all angular positions yields the multicontact
force pdf’s Pkk f(~f 1, . . . , ~f k) =

∫

Akr
Pkkr f d{~rα}, where

Akr is the accessible domain of angular positions. In the
same way, the multicontact pdf of angular positions is
Pkkr(~r1, . . . ,~rk) =

∫

Ak f
Pkkr f d{~f α}, whereAk f is the in-

tegration domain.
In the particle shells, the steric constrains manifest

themselves asangular exclusions. Two particles belong-
ing to a shell cannot approach one another below a min-
imum angular intervalδθmin; see Fig. 1(b). In other
words, the multicontact pdfPkkr vanishes if the angular
exclusions are violated:

Pkkr(~r
1, . . . ,~rk) = 0 if ~nα ·~nβ > cos(δθmin) ∀α 6= β

(1)
The exclusion angleδθmin is π/3 in a monodisperse
packing of spheres or disks.

The mechanical equilibrium condition can be ex-
pressed as complementarity relations in terms of the mul-
ticontact force pdf’s:
(

k

∑
α=1

~f α

)

Pkk f = 0 and

(

k

∑
α=1

~rα × ~f α

)

Pkk f = 0 (2)

The functionsPc andPkkr f contain a rich amount of
information about the the state of a granular system in
terms of the fabric and force distributions condensed
in the particle environments, and they evolve with the
driving strain while keeping to satisfy the constraints. It
should, however, be remarked that part of this informa-
tion is highly redundant. In particular, the functionsPkkr
andPkk f are strongly correlated since for a mean stress
stateσ the contact forces can be partially determined
for the specified contact network by means of the force
and moment balance conditions up to some degree of
indeterminacy resulting from the assumption of perfect
particle rigidity and Coulomb friction law. However, the
contact forces reflect subtle features of the granular mi-
crostructure that are more evident to observe through the
force network. The surprising inhomogeneity of the force
chains could hardly be guessed just from the appearance
of the contact network. The inclusion of the forces in
the state is therefore a genuine choice in view of tak-
ing advantage of the well-known properties of the force
network. Owing to their connection with the microstruc-
ture, the forces represent the state of the microstructure
and, in the last analysis, they can be considered as fabric
parameters.

STATE PARAMETERS

The information contained in the local distributionsPc
andPkkr f can be reduced in three steps. In the first step,
we extract the 1-contact distributions for the shells ofk
contacts by integration over all contacts except one:

Pkr f (~r , ~f ) =

∫

Akr

∫

Ak f

Pkkr f (~r
1, . . . ,~rk, ~f 1, . . . , ~f k)

δ (~r −~r1)δ (~r −~r1)d{~rα}d{~f α} (3)

This function is the pdf of a contact at angular position~r
belonging to a shell ofk contacts and carrying a force~f .
The pdf’s of contact positions and forces are given by

Pkr(~r) =

∫

Ak f

Pkr f d~f (4)

Pk f (~f ) =

∫

Akr

Pkr f d~r (5)

where Akr and Ak f are single-contact integration do-
mains of positions and forces, respectively.

In the second step, we average over the shells by
weighting the above 1-contact distributions byPc:

Pr f (~r, ~f ) =
∞

∑
k=1

Pc(k)Pkr f (~r, ~f ) (6)

Pr(~r) =
∞

∑
k=1

Pc(k)Pkr(~r) (7)



Pf (~r) =
∞

∑
k=1

Pc(k)Pk f (~f ) (8)

These pdf’s contain no information about the shells and
topological disorder of the contact network and, in con-
trast toPkkr f andPkr f , areπ-periodic. We also note that
owing to angular exclusions (1) the multicontact pdfPkkr
of the angular positions cannot be reduced to a product
of the 1-contact pdf’sPkr(~r):

Pkkr(~r
1, . . . ,~rk) 6= Pr(~r

1) · · ·Pr(~r
k) (9)

Several macroscopic observables are the first moments
of the force and fabric distributions. In particular, the
averageinternal moment tensor Mis given by [9, 10]

M = 〈−~r ⊗ ~f 〉=
∫

Ar

∫

A f

−~r ⊗ ~f Pr f (~r , ~f ) d~rd~f (10)

where⊗ denotes a dyadic product, i.e.(~r ⊗~f )i j = r i f j . It
can be shown that the average stress tensorσ is simply

σ = np M (11)

where np is the particle number density. The average
pressure is given byp= tr(σ)/D =−np〈~r · ~f 〉/D.

In discrete writing of (10), each contactα occurs two
times in the summation for the two contacting particles
a andb with the contributionrαa

i f ba
j + rαb

i f ab
j where~f ba

is the force exerted at the contact pointα on particleb
by particlea and, conversely,~f ab is the force exerted
at the same contact on particlea by particleb. Since
~f ab≡ ~f α =−~f ba, the contribution of the contactα to the
sum is given byf α

i ℓα
j where~ℓα =~rαb−~rαa is the branch

vector. In this way, the stress tensor can be expressed as
[11, 12, 13]

σ = nc 〈~ℓ⊗ ~f 〉 (12)

and in its integral form the pdfPℓ f (~ℓ, ~f ) replaces
Pr f (~r, ~f ). We can also define fabric tensors of increasing
order from the distribution of contact vectors.

The third step in reducing the information contained in
local distributions consists in extracting the angular be-
havior fromPkr f (~r , ~f ). As we shall see below, this angu-
lar information determines the deviatoric content of the
stress tensor. We consider the force components in the lo-
cal frame:~f = fn~n+ ft~t and define the functionsPk(~n),
〈 fn〉k(~n), 〈 ft〉k(~n) and〈r〉k(~n) that express explicitly the
contact direction dependence of the vectors~r and~f :

Pk(~n) =
∞
∫

r=0

∫

A f
Pkr f (~r, ~f )dr d~f

〈r〉k(~n)Pk(~n) =
∫

A f
rPkr f (~r , ~f ) d~f

〈 fn〉k(~n)Pk(~n) =
∞
∫

r=0

∫

A f
fnPkr f (~r , ~f )dr d~f

〈 ft 〉k(~n)Pk(~n) =
∞
∫

r=0

∫

A f
ftPkr f (~r , ~f )dr d~f

(13)

where 〈. . .〉k denotes averaging at constant val-
ues of k and ~n. These functions can be aver-
aged over the shells: P(~n) = ∑∞

k=1Pk(~n)Pc(k),
〈r〉(~n) =∑∞

k=1〈r〉k(~n)Pc(k), 〈 fn〉(~n) =∑∞
k=1〈 fn〉k(~n)Pc(k)

and〈 ft〉(~n) = ∑∞
k=1〈 ft 〉k(~n)Pc(k).

Figure 2 shows a polar representation of thek-
averaged functions for two samples of polyhedra and
spheres sheared by triaxial compression by means of
contact dynamics simulations. The angular average of
branch-vector lengths〈ℓ〉(~n) has been shown instead of
〈r〉(~n), but the behaviors are similar. The general state of
a packing depends on its past history, but shearing has
the effect of structuring the packing in a well-defined
state, the critical state, where the distributions are uni-
modal. Such distributions may thus be approximated by
low-order terms of spherical harmonics in 3D or Fourier
series in 2D.

To avoid unnecessary complication, let us consider
axial symmetry about the axis of compression. Then, the
function P(~n), where~n ≡ (θ ,φ), is independent of the
azimuthal angleφ . There are nine second-order basis
functionsYl

m(θ ,φ). But only the functions compatible
with axial symmetry, namely independent with respect to
φ andπ-periodic as a function of the zenith angleθ , are
admissible. The only admissible functions are therefore
Y0

0 = 1 andY0
2 = 3cos2 θ − 1, and at leading order we

have

Pk(θ ) ≃ 1
4π {1+akc[3cos2(θ −θkc)−1]}

〈r〉k(θ ) ≃ rkm{1+akr[3cos2(θ −θkc)−1]}
〈 fn〉k(θ ) ≃ fkm{1+akn[3cos2(θ −θk f)−1]}
〈 ft〉k(θ ) ≃ fkm akt sin2(θ −θk f)

(14)
whereakc, akr, akn andakt are the anisotropy parameters
of the k-shells,rkm is their mean contact vector length,
and fkm the mean force. The privileged directions of the
contact vectors and forces areθkc andθk f , respectively.
Pk is normalized to 1 (

∫

Pk(θ )sinθdθdφ = 1).
The sine function for the expansion of the ortho-

radial component〈 ft〉k(θ ) is imposed by the require-
ment that the mean orthoradial force is zero, satis-
fying the balance of force moments on the particles
(
∫

Pk(θ )〈 ft 〉k(θ )sinθdθdφ = 0). Numerical simulations
indicate thatθkc andθk f are generally independent ofk.
Moreover,ak f is nearly independent ofk whereasakc
is crucially dependent onk, as we shall see below. The
anisotropiesakr are negligibly small for spherical parti-
cles, but have small values otherwise as observed in Fig.
2 [14]. Similar expansions are obtained in 2D by replac-
ing the function 3cos2 θ − 1 by cos2θ and 1/(4π) by
1/(2π). We will refer to the above expansions as ahar-
monic approximationof the granular state in thek-shells.

A similar approximation can be made for the shell-
averaged functions [11, 12, 15, 13]. At this level of
shell-averaged information, the internal state parameters
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FIGURE 2. Four functions representing the fabric and force
states for two packings of spheres and polyhedra triaxially-
compressed along thez-axis by means of contact dynamics
simulations. The polar angle is the zenith angle in spherical
coordinates. The symbols are the simulation data whereas the
solid lines are fits by the lowest-order spherical harmonics.

are z = ∑k kPc(k), ac = ∑k Pc(k)akc, ar = ∑k Pc(k)akr,
an =∑k Pc(k)akn andat =∑k Pc(k)akt, as well as the cor-
responding phasesθc ≃ θkc andθ f ≃ θk f where it is as-
sumed thatθkc andθk f are independent ofk. Therefore,
within this global harmonic approximation of the granu-
lar state, the plastic behavior is characterized by

1. The evolution of the set of state parametersF =
{z,ac,ar ,an,at ,θc,θ f } with the driving strainεq

2. The functional dependence ofϕ andψ with respect
to this set

Some aspects of this problem will be discussed in the
following for the simple case of a monodisperse packing
of disks.

KINEMATIC JAMMING

As a result of local constraints, the state parameters
cannot take arbitrary values. The accessible range of
state parameters contains part of the underlying con-
straints and its knowledge may thus partially replace
the higher-order information. For illustration, let us con-
sider the harmonic representation (14) of 1-contact func-
tions. The angular exclusions (1) imply that in ak-shell
there can be at most one particle in an angular interval

[−δmin/2,δmin/2] [3]:

∫

δmin
2

−
δmin

2

kPk(θ )dθ ≤ 1 (15)

Substituting the harmonic expansion ofPk(θ ) from Eq.
(14) in (15) and integrating with respect toθ , we get

akc ≤ amax
kc =

2π
sin(δθmin)

{

1
k
−

1
zmax

}

(16)

where zmax = 2π/δθmin. There is therefore an upper
bound amax

kc depending onk for the shell anisotropies
due to steric exclusions. This leads to an upper bound
amax

c = ∑k Pc(k)amax
kc on the global anisotropy with the

approximation thatθkc is independent ofk. This example
demonstrates clearly the effect of steric exclusions and
its scale-up to the macroscopic scale.

The presence of steric exclusions does not prevent
granular motion unlike jamming transition where a full
arrest of dynamics occurs. But the particle movements
are greatly affected when a state of saturation such as
a maximum of anisotropy is reached in the course of
deformation. We will refer to such states of saturation
as kinematically jammed states. Below, we propose a
simple model that allows us to illustrate this concept and
evaluate explicitly the effect of local constraints.

Let us consider a monodisperse packing of disks. We
havear = 0, and the fabric parameters in harmonic ap-
proximation are{z,ac,θc}. The fabric state can be repre-
sented by a single function defined by [1]

E(εq,θ ) =
z(εq)

2π
{1+ac(εq)cos2[θ −θc(εq)]} (17)

Note that〈E〉θ = z and 〈Ecos2θ 〉θ = ac, where〈· · ·〉θ
denotes angular averaging.

0 2π

θ

E

E
min

E
max

FIGURE 3. Limit statesEmin(θ ) andEmax(θ ), and the gen-
eral fabric stateE(θ ) in the harmonic approximation.

In a co-rotating reference frame with axes oriented
along θc(εq) and θc(εq) + π/2, the fabric state is de-
fined by its position in the space of coordinatesz and
ac. The coordination numberz is bounded between two
limits zmin andzmax. The upper boundzmax is dictated by
steric exclusions as discussed before. The lower bound
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FIGURE 4. Evolution of the fabric state(z,ac) for a packing
of disks biaxially sheared by contact dynamics simulations.
The limit states predicted by a model of kinematic jamming
(Eq. 18) are shown as well.

zmin is related to the condition of mechanical equilib-
rium. For example, stable particles often involve more
than three contacts in 2D and more than four contacts
in 3D. To be more precise about these limit mechanical
states, we must also specify the value ofac. We thus de-
fine two limit states: 1) theloosest isotropic state, char-
acterized byEmin(θ ) = zmin/(2π), and 2) thedensest
isotropic state, characterized byEmax(θ ) = zmax/(2π).
These states can be reached only by complex loading.
For example, it is generally difficult to bring a granu-
lar system towards a dense isotropic state via isotropic
compaction. The reason is that the rearrangements occur
mainly in the presence of shearing, which leads to fabric
anisotropy.

We assume that all accessible fabric statesE(θ )
are enclosed between the two isotropic limit states:
Emin(θ )≤ E(θ )≤ Emax(θ ); see Fig. 3. This assumption
simply means that the same boundszmin andzmax govern
the limiting number of contacts at each space direction.
It is easy to show that this assumption leads to an upper
bound on the anisotropy:

amax
c (z) = 2min

{

1−
zmin

z
,
zmax

z
−1

}

(18)

By construction, amax
c (zmin) = amax

c (zmax) = 0. The
largest anisotropy is

a⋆c = amax
c (z⋆) = 2

amax
c −amin

c

amax
c +amin

c
(19)

with z⋆ = (zmin+ zmax)/2. According to Eq. (19),amax
c

increases withz for z < z⋆, and it declines withz for
z< z⋆. In this model, only the states belowamax

c (z) are
accessible. The points on the frontier ofamax

c (z) represent
the states with either a saturation of contact gain (to the

G L

J

FIGURE 5. The three events of gain (rateG), advection
(currentJ) and loss (rateL) of contacts, governing the evolution
of the contact network (fabric state).

right of z⋆) due to angular exclusions or with a saturation
of contact loss (to the left ofz⋆) due to the condition of
mechanical equilibrium. The intersection point(z⋆,a⋆c)
represents the critical state where both contact loss and
contact gain are saturated.

Figure 4 shows the evolution ofac with z in simulated
biaxial compression of two initially isotropic samples
with coordination numbersz0 = 3.1 and z0 = 3.7. In
both simulations,z tends to the same critical-state value
z⋆ ≃ 3.35 witha⋆c ≃ 0.24. Remarkably, the anisotropy of
the dense packing reaches and then follows closely the
limit states. Eq. (18) provides here an excellent fit to the
data with only one fitting parameterzmax. In the case of
the loose sample, the trajectory remains entirely inside
the accessible domain and the boundary is reached only
at the critical state. The simulations suggest that the loss
saturation limit is difficult to achieve by shearing since
in the contact loss regime the anisotropy increases often
by contact gain.

Equation (19) predicts that the critical state anisotropy
a⋆c increases withzmax− zmin. The shape, size and fric-
tional characteristics of the particles may therefore influ-
encea⋆c via zmin and zmax. For example, increasing the
sliding friction coefficient between the particles allows
for lower values ofzmin (stable configurations with less
contacts) without changingzmax (which depends only on
steric exclusions) and leads to larger values ofa⋆c.

In exception to the two isotropic limit states, all states
of saturation are anisotropic. Hence, the loss and gain
saturation occur in particular directions. For this reason
the loss and gain of contacts should be considered as a
function of space directionθ . Moreover, a number of
contacts are advected in the angular space[0,2π ] in the
sense that the contact normal of an enduring contact ro-
tates. This advection of contacts results in a continuous
change of the fabric stateE(εq,θ ) whereas the contact
loss and gain are discontinuous events. The three elemen-
tary “events” of gain, loss and advection of the contacts
occur at different rates depending of the space direction:
a gain rateG(εq,θ ), a loss rateL(εq,θ ) and a current
J(εq,θ ) of advected contacts, respectively. The evolution



of E is governed by a detailed balance equation [8]:

∂E
∂εq

+
∂J
∂θ

= G−L (20)

We expect thatG has its largest value along the direc-
tion of contraction whereasL is maximal along the di-
rection of extension. The currentJ is basically given by
the number density of contacts times the shear strain in
each direction. Hence, the three functions depend actu-
ally on the velocity field. In the steady state, we have
∂J/∂θ = G− L, which means that on average the con-
tacts are gained in the direction of contraction and ad-
vected towards the direction of extension where they are
lost; see Fig. 5.

Remark that in the absence ofJ, the relative number
E of contacts in each direction would be a simple time
accumulation of the contacts induced by loss and gain.
During a quasi-static deformation the gain and loss rate
functions do not vanish. As long as the system is far
from the limit states we may rely on the homogeneous
strain field. But the gain and loss rates are modified in
the vicinity of the saturation states. In particular, they
vanish alongθc andθc+π/2, respectively. This feature
justifies the description of the states of gain saturation as
jammed states whereas the states of loss saturation may
be described as “anti-jammed” states! In this respect, the
critical state corresponds to a fully jammed state in the
statistical sense where both contact gain and loss are
saturated although the deformation continues to induce
gain and loss of contacts in different directions.

FRAGILE BEHAVIOR

As discussed before, the yield function in a particle-scale
approach corresponds to the internal angle of friction
ϕ or the normalized stress deviatorq/p as a function
of the internal state parameters. This can be achieved
with harmonic approximation and the expression (12)
of the stress tensor. Indeed, the shell-averaged Fourier
expansions of the fabric are

P(θ ) ≃ 1
2π {1+accos2(θ −θc)}

〈ℓ〉(θ ) ≃ ℓm{1+aℓcos2(θ −θc)}
〈 fn〉(θ ) ≃ fm{1+ancos2(θ −θ f )}
〈 ft〉(θ ) ≃ fm at sin2(θ −θ f )

(21)

These functions are involved in the expression of the
stress tensor, which in its integral form is given by

σi j = nc

∫

Aℓ

∫

A f

ℓi f j Pℓ f (~ℓ,~f ) d~ℓ d~f (22)

Integrating with respect to the forces and considering the
definitions (13), averaged over thek-shells, we get [11]

σi j = nc

∫ 2π

0
〈ℓ〉(θ )P(θ ){〈 fn〉(θ ) ni(θ )

+〈 ft〉(θ ) t j(θ )}dθ (23)

Inserting the Fourier expansions (21) in Eq. (23), and
integrating with respect toθ , yields the two following
interesting relations:

p ≃
1
2

ncℓm fm (24)

q
p

≃
1
2
{(ac+aℓ)cos2(θσ −θc)

+(an+at)cos2(θσ −θ f )} (25)

whereθσ is the major principal stress direction and the
cross products among the anisotropies are neglected. The
same relations hold also in 3D under axial symmetry
with the factor 1/2 replaced by 1/3 in equation (24)
and by 2/5 in equation (25). The two relations (24) and
(25) arestate functionsof a granular assembly in the
framework of harmonic approximation.

Equation (25) provides a nice fit to the simulation
data both in 2D and 3D. It reveals an important prop-
erty of granular plasticity: The shear strength reflects the
ability of a granular system to develop force and fabric
anisotropies. This aspect was first demonstrated many
years ago by Rothenburg and Bathurst [11]. Except in
transients, the fabric and force states are co-axial with
the stress state so thatθc = θ f = θσ . As a result, we have
q/p≃ 0.5(ac+aℓ+an+at) during a monotonic defor-
mation. The anisotropyaℓ of the branch vector lengths
can be small but takes non-negligible values for polydis-
perse systems and non-spherical particles [14, 16]. The
relative values of the other anisotropies depend on the
composition (shape and particle sizes). It is also impor-
tant to remark thatq/p does not directly depend onz.

Here, we would like to underline another important
property of the yield function resulting from the phase
differencesθσ − θc andθσ − θ f in Eq. (25). Owing to
the phase factors, the shear strengthq/p depends on the
loading direction. For example, when the loading direc-
tion θσ is reversed (i.e. for a rotation ofπ/2 of the ap-
plied stress directions), the phase factor cos2(θσ − θc)
changes sign sinceθc (the fabric) doe not react instantly.
Therefore, a discontinuous loss of strength occurs dur-
ing such transients. This property is akin to thefrag-
ile behavior, which can be formulated by stating that
the largest shear strength of a granular material oc-
curs along the loading path that conducted the sys-
tem to its present state. In particular, the shear stress
is q1/p ≃ 0.5(ac + aℓ + an + at) for θσ = θ f = θc in
the critical state andq2/p≃ 0.5(−ac−aℓ+an+at) for
θσ = θ f = θc+π/2. This loss of strength of the order of
ac+aℓ can be observed in Fig. 6 when the shear strain is
reversed.

There is an asymmetry between the response times of
contact loss, which is governed by the elastic deforma-
tion of the particles, and contact gain, which depends on
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FIGURE 6. Evolution of the shear stressq/p as a function
of cumulative shear strain for an initially dense sample, and
following shear strain reversal.

the packing geometry (distribution of gaps between the
particles). Contact loss is faster than contact gain in a
dense packing whereas contact gain prevails in a loose
packing. Only in the critical state the loss and gain rates
are equal as long as a monotonic shear strain is applied.
The response time of contact forces is controlled by par-
ticle elasticity and is thus of the same order of magni-
tude as for contact loss. As a result, upon strain reversal,
a fast decrease of shear stress mainly due to the phase
differenceθσ −θc is followed by a long transient where
the fabric evolves until the critical state is reached in the
new loading direction.

CONCLUSION

In this paper, a particle-scale formulation of granular
plasticity was proposed. Two local constraints are essen-
tial in this approach: 1) the angular exclusions and 2) the
mechanical equilibrium. Multicontact probability den-
sity functions are necessary for a full expression of these
constraints. But it is possible to work with a lower-order
description of the microstructure at the price of account-
ing in a less strict way for the local constraints. This was
shown by a simple model of accessible fabric states in
terms of the coordination number and fabric anisotropy
by assuming aharmonic representationof the force and
fabric states. The states of saturation in contact gain and
loss were described askinematic jammingand a general
formulation of the evolution of the contact network was
presented. The shear strength was expressed as a state
function involving the fabric and force anisotropies and
the stress-fabric and stress-force phase differences. The
fragile behaviorwas interpreted as a consequence of the
dependence of shear strength on the loading direction.

The specific behavior of each granular material fits
to the generic picture presented in this paper. For ex-

ample, the relative importance of the force and fabric
anisotropies depend on the material. The same analysis
can also be applied to cohesive granular media where
tensile contacts come into play. This framework has also
the advantage of bringing together familiar concepts of
plasticity, some of the tools and concepts developed in
mechanics of granular materials and some recent con-
cepts and ideas put forward in rheology of colloids.
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