
HAL Id: hal-00690044
https://hal.science/hal-00690044

Submitted on 23 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Two simulations about DPLL(T)
Mahfuza Farooque, Stéphane Lengrand, Assia Mahboubi

To cite this version:
Mahfuza Farooque, Stéphane Lengrand, Assia Mahboubi. Two simulations about DPLL(T). 2012.
�hal-00690044�

https://hal.science/hal-00690044
https://hal.archives-ouvertes.fr

Two simulations about DPLL(T)

Mahfuza Farooque1, Stéphane Lengrand1,2 and Assia Mahboubi3

1 CNRS
2 Ecole Polytechnique

3 Microsoft Research - INRIA Joint Centre

Project PSI: “Proof Search control in Interaction with domain-specific methods”

ANR-09-JCJC-0006

23rd April 2012

Abstract

In this paper we relate different formulations of the DPLL(T) procedure.
The first formulation is that of [NOT06] based on a system of rewrite rules, which we

denote DPLL(T).
The second formulation is an inference system of [Tin02], which we denote LKDPLL(T).
The third formulation is the application of a standard proof-search mechanism in a sequent

calculus LK
p(T) introduced here.

We formalise an encoding from DPLL(T) to LKDPLL(T) that was, to our knowledge, never
explicitly given and, in the case where DPLL(T) is extended with backjumping and Lemma
learning, never even implicitly given.

We also formalise an encoding from LKDPLL(T) to LK
p(T), building on Ivan Gazeau’s

previous work: we extend his work in that we handle the “-modulo-Theory” aspect of SAT-
modulo-theory, by extending the sequent calculus to allow calls to a theory solver (seen as a
blackbox). We also extend his work in that we handle advanced features of DPLL such as
backjumping and Lemma learning, etc.

Finally, we refine the approach by starting to formalise quantitative aspects of the simula-
tions: the complexity is preserved (nunber of steps to build complete proofs). Other aspects
remain to be formalised (non-determinism of the search / width of search space).

Contents

1 Encoding DPLL(T) in LKDPLL(T) 2
1.1 Preliminaries: LKDPLL(T) and its properties . 2
1.2 DPLL(T) with backtracking . 5
1.3 DPLL(T) with backjumping and Lemma learning 8

2 Encoding LKDPLL(T) in LK
p(T) 11

2.1 Preliminaries: System LK
p(T) . 11

2.2 Simulation . 12

1

1 Encoding DPLL(T) in LKDPLL(T)

In this section we encode DPLL(T) in LKDPLL(T).
Note that there exist different variants of DPLL(T). We first consider the basic version

which is equipped with backtracking. This formalises ideas presented in [Tin02].
Then we enhance the encoding to the enhanced version of DPLL(T) with backjumping, a

generalised version of backtracking.
The main gap between DPLL(T) and an inference system such as LKDPLL(T) is the fact

that a (successful) DPLL(T) run is a rewrite sequence finishing with the state UNSAT, while
a (successful) proof-search run is (/ produces) a proof tree. Roughly speaking, the DPLL(T)
procedure implements the depth-first search of the corresponding tree.

1.1 Preliminaries: LKDPLL(T) and its properties

Definition 1 (The system LKDPLL(T)) Clauses are finite disjunctions of literals considered
up to commutativity and associativity. We will denote them C,C0, C1 etc; the empty clause
will be denoted by ⊥. The cardinality of a clause C is denoted |C|.

Finite sets of clauses, e.g. {C1, . . . , Cn}, will be denoted φ, φ0, etc. By |φ| we denote the
sum of the sizes of the clauses in φ. By lit(φ) we denote the set of literals that appear in φ or
whose negations appear in φ.

Given a theory T the system LKDPLL(T), given in Figure 1, is an inference system on
sequents of the form ∆;φ ⊢T , where ∆ is a set of literals (e.g. {l1, . . . , ln}).

∆, l⊥;φ ⊢T ∆, l;φ ⊢T

Split where l ∈ lit(φ), ∆, l⊥ 2T and ∆, l 2T

∆;φ ⊢T

Empty
∆;φ,⊥ ⊢T

∆, l;φ, l ⊢T

Assert where ∆, l⊥ 2T and ∆, l 2T

∆;φ, l ⊢T

∆;φ ⊢T

Subsume where ∆, l⊥ |=T

∆;φ, l ∨ C ⊢T

∆;φ,C ⊢T

Resolve where ∆, l |=T

∆;φ, l ∨C ⊢T

Figure 1: System LKDPLL(T)

The Assert rule models the fact that every literal occurring as a unit clause in the current
clause set must be satisfied for the whole clause set to be satisfied. The Split is mainly used
to branch the proof tree from the DPLL rewrite sequence system.This rule corresponds to the
decomposition in smaller subproblems of the DPLL method. This rule is the only don′t know

non− deterministic rule of the calculus. The Resolve rule removes from a clause all literals
whose complement has been asserted (which corresponds to generating the simplified clause
by unit resolution and the discarding the clause by backword subsumption). The Subsume

rule removes from the clauses that contain an asserted literal(because all of these clause will
be satisfied in any model in which the asserted literal is true). To close the branch of a proof
tree we use the empty rule is in the calculus just for convenience and could be removed with
no loss of completeness. It models the fact that a derivation can be terminated as soon as the
empty clause is derived. We do not consider that the model is consistent and satisfiable.

Definition 2 (Semantical entailment) ∆ |=T C is a semantical notion of entailment for
a particular theory T , i.e. every T -model of ∆ is a T -model of C. A theory lemma is a clause
C such that ∅ |=T C.

Lemma 1 (Weakening 1) The following rule is size-preserving admissible in LKDPLL(T)

∆;φ ⊢T

−−−−−−
∆;φ,C ⊢T

Proof: By induction on ∆;φ ⊢T . �

2

Definition 3 (Consequences) For every set ∆ of literals l, let Sat(∆) = {l|∆ |=T l} and
Satφ(∆) = Sat(∆) ∩ lit(φ).

Remark 2 If Sat(∆) = Sat(∆′) then ∆ |=T l iff ∆′ |=T l

Lemma 3 (Weakening 2) The following rule is size-preserving admissible in LKDPLL(T)

∆;φ ⊢T

−−−−− Satφ(∆) ⊆ Satφ(∆
′)

∆′;φ ⊢T

Proof: By induction on the derivation of ∆;φ ⊢T :

Resolve
∆;φ,C ⊢T

∆, l |=T

∆;φ, l ∨ C ⊢T

We assume Satφ,l∨C(∆) ⊆ Satφ,l∨C(∆
′)

from which we get Satφ,C(∆) ⊆ Satφ,C(∆
′), so we can apply the induction hypothesis

to construct
∆′;φ,C ⊢T

∆′, l |=T

∆′;φ, l ∨ C ⊢T

The side-condition is a consequence of the assumption Satφ,l∨C(∆) ⊆ Satφ,l∨C(∆
′).

Subsume
∆;φ ⊢T

∆, l⊥ |=T

∆;φ, l ∨ C ⊢T

We assume Satφ,l∨C(∆) ⊆ Satφ,l∨C(∆
′)

from which we get Satφ(∆) ⊆ Satφ(∆
′), so we can apply the induction hypothesis to

construct
∆′;φ ⊢T

∆′, l⊥ |=T

∆′;φ, l ∨ C ⊢T

The side-condition is a consequence of the assumption Satφ,l∨C(∆) ⊆ Satφ,l∨C(∆
′).

Assert
∆, l;φ, l ⊢T

∆, l⊥ 2T and ∆, l 2T

∆;φ, l ⊢T

We assume Satφ,l(∆) ⊆ Satφ,l(∆
′)

from which we get Satφ,l(∆, l) ⊆ Satφ,l(∆
′, l).

– If ∆′ |=T l, then Sat(∆′, l) = Sat(∆′), so we have Satφ,l(∆, l) ⊆ Satφ,l(∆
′). The

induction hypothesis then gives ∆′;φ, l ⊢T .

– If ∆′ |=T l⊥, then we construct

Empty
∆′;φ,⊥ ⊢T

Resolve
∆′;φ, l ⊢T

– If ∆′ 6|=T l and ∆′ 6|=T l⊥: we first apply the induction hypothesis to get ∆′, l;φ, l ⊢T

and we conclude by constructing

∆′
, l;φ, l ⊢T

∆′, l⊥ 2T and ∆′, l 2T

∆′;φ, l ⊢T

Split
∆, l

⊥;φ, l ∨ C ⊢T ∆, l;φ, l ∨ C ⊢T

∆, l⊥ 2T and ∆, l 2T

∆;φ, l ∨ C ⊢T

We assume Satφ,l∨C(∆) ⊆ Satφ,l∨C(∆
′) from which we get both

Satφ,l∨C(∆, l) ⊆ Satφ,l∨C(∆
′, l) and Satφ,l∨C(∆, l⊥) ⊆ Satφ,l∨C(∆

′, l⊥).

– If ∆′ |=T l, then Sat(∆′) = Sat(∆′, l), so we have Satφ,l∨C(∆, l) ⊆ Satφ,l∨C(∆
′).

The induction hypothesis then gives ∆′;φ, l ∨ C ⊢T .

– If ∆′ |=T l⊥, then Sat(∆′) = Sat(∆′, l⊥), so we have Satφ,l∨C(∆, l⊥) ⊆ Satφ,l∨C(∆
′).

The induction hypothesis then gives ∆′;φ, l ∨ C ⊢T .

3

– If ∆′ 6|=T l and ∆′ 6|=T l⊥: the induction hypothesis on both premises gives
∆′, l;φ, l ∨ C ⊢T and ∆′, l⊥;φ, l ∨ C ⊢T , and we can conclude

∆′
, l

⊥;φ, l ∨ C ⊢T ∆′
, l;φ, l ∨ C ⊢T

∆′ 6|=T l and ∆′ 6|=T l⊥

∆′;φ, l ∨ C ⊢T

Empty Straightforward.

�

Lemma 4 (Invertibility of Resolve) Resolve is size-preserving invertible in LKDPLL(T).

Proof: By induction on the derivation of ∆;φ,C ∨ l ⊢T we prove ∆;φ,C ⊢T (with the
assumption ∆, l |=T):

Resolve easily permutes with other instances of Resolve and with instances of Subsume.

Assert The side-condition of the rule guarantees that the literal added to the model, say l′, is
different from l:

∆, l
′;φ′

, l
′
, C ∨ l ⊢T

∆, l′
⊥
2T and ∆, l′ 2T

∆;φ′
, l

′
, C ∨ l ⊢T

We can construct
∆, l

′;φ′
, l

′
, C ⊢T

∆, l′
⊥
2T and ∆, l′ 2T

∆;φ′
, l

′
, C ⊢T

whose premiss is proved by the induction hypothesis.

Split
∆, l

′⊥;φ,C ∨ l ⊢T ∆, l
′;φ,C ∨ l ⊢T

l′ ∈ lit(φ,C ∨ l) and ∆, l′
⊥
2T and ∆, l′ 2T

∆;φ,C ∨ l ⊢T

We can construct

∆, l
′;φ,C ⊢T ∆, l

′⊥;φ,C ⊢T

l′ ∈ lit(φ,C) and ∆, l′
⊥
2T and ∆, l′ 2T

∆;φ,C ⊢T

whose branches are closed by using the induction hypothesis. The side-condition l′ ∈
lit(φ,C) is satisfied because l 6= l′.

Empty Straightforward.

�

We now introduce a new system LKDPLL+(T) which is an extended version of LKDPLL(T)
with Weakening1, Weakening2 and the Inverted Resolve. By the previous lemmas, a sequent
derivable in LKDPLL+(T) is derivable in LKDPLL(T).

∆;φ ⊢T

−−−− −
∆;φ,C ⊢T

∆;φ ⊢T

−−− − Satφ(∆) ⊆ Satφ(∆
′)

∆′;φ ⊢T

∆;φ, l ∨ C ⊢T

−−−−−− − ∆, l |=T

∆;φ,C ⊢T

Figure 2: System LKDPLL+(T)

Definition 4 (Size of proof-trees in LKDPLL+(T)) The size of proof-trees in LKDPLL+(T)
is defined as the size of trees in the usual sense, but not counting the occurences of Weakening1,
Weakening2 or the Inverted Resolve rules.1

Remark 5 The size-preserving admissibility results of those three rules in LKDPLL(T) entails
that a proof-tree in LKDPLL+(T) of size n, can be transformed into a proof-tree in LKDPLL(T)
of size at most n.

Lemma 6 If ∆ |=T ¬C then there is a proof-tree concluding ∆;C, φ ⊢T of size at most
|φ|+ 1.

1For that reason, dashed lines will be used for the occurences of those inference rules.

4

Proof: Here ∆ |=T ¬C means C = l1 ∨ . . .∨ ln and for all li, ∀li ∆ |=T l⊥i where i=1,. . . ,n.
We can therefore construct

Empty
∆;⊥, φ ⊢T

========= Resolve
∆;C, φ ⊢T

�

1.2 DPLL(T) with backtracking

In this section we describe the basic DPLL(T) procedure [NOT06], and its encoding into
LKDPLL(T).

Definition 5 (Basic DPLL(T)) Models are defined by the following grammar:

∆ ::= () | ∆, l
d | ∆, l

where l ranges over literals, and ld is an annotated literal called decision literal.
The basic DPLL(T) procedure rewrites states of the form ∆‖φ, with the following rewriting

rules:

• Fail:
∆‖φ,C ⇒ UNSAT, with |∆| |= ¬C and there is no decision literal in ∆.

• Decide:
∆‖φ ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l 6∈ φ or l⊥ 6∈ φ.

• Backtrack:
∆1, l

d,∆2‖φ,C ⇒ ∆1, l
⊥‖φ,C if |∆1, l,∆2| |= ¬C and no decision literal is in ∆2.

• Unit propagation:
∆‖φ,C ∨ l ⇒ ∆, l‖φ,C ∨ l where |∆| |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

• Theory Propagate:
∆‖φ ⇒ ∆, l‖φ where |∆| |=T l, l ∈ lit(φ) and l 6∈ ∆, l⊥ 6∈ ∆.

where |∆| denotes the result of erasing the annotations on decision literals, an operation
defined in Figure 3.

|()| := ()
|∆, l| := |∆|, l
|∆, ld| := |∆|, l

Figure 3: Erasing annotations

We now proceed with the encoding of the basic DPLL(T) procedure as the construction
of a derivation tree in System LKDPLL(T). The simulation could be be stated as follows:

If ∆‖φ ⇒∗
UNSAT then there is a LKDPLL(T) proof of |∆|;φ ⊢T (i.e. there is no T -model

of φ extending ∆).
This is true; however, there is more information in ∆‖φ ⇒∗

UNSAT than in |∆|;φ ⊢T ,
because the DPLL(T) sequence leading to UNSAT also backtracks on decision literals. This
means that not only there is no T - model of φ extending |∆|, but no matter how decision
literals of ∆ are changed, there is still no T - model of φ that can be constructed. This notion
is formalised by collecting the backtrack models as follows:

Definition 6 (Backtrack models) In Fig. 4 we define the interpretation of a model as a
collection (formally, a multiset) of sets of literals.

Remark 7 We have |∆| ∈ [∆] and J∆K ⊆ [∆].

We consider a notion of a partial proof-tree to step-by-step simulate DPLL(T) runs.

5

J()K := ∅
J∆, lK := J∆K
J∆, ldK := [∆, l⊥]

[∆] := J∆K ∪ {{|∆|}}

Figure 4: Collecting backtrack points

Definition 7 (Partial proof-tree) A partial proof-tree in LKDPLL+(T) is a tree labelled
with sequents, whose leaves are tagged as either open or closed, and such that every node
that is not an open leaf is an instance of the LKDPLL+(T) rules.2

A complete proof-tree is a partial proof-tree whose leaves are all closed.
A partial proof-tree π′ is an n-extension of π if π′ is π or if π′ is obtained from π by

replacing one of its open leaves by a partial proof-tree of size at most n and whose conclusion
has the same label as that leaf.

Definition 8 (Correspondence between DPLL(T) states and partial proof-trees) A
partial proof-tree π corresponds to a DPLL(T) state ∆‖φ if the sequents labelling its open
leaves form a sub-set of {∆′;φ ⊢T | ∆′ ∈ [∆]}.

A partial proof-tree π corresponds to UNSAT if it has no open leaf.

The DPLL(T) procedure starts from an initial state i.e. ∅‖φ, to which corresponds the
partial proof-tree consisting of one node (both a root and a leaf) labelled with the sequent
;φ ⊢T .

Note that, different partial proof-trees might correspond to the same DPLL(T) state,
as different DPLL(T) runs can lead to that state from various initial DPLL(T) states. The
simulation theorem below expresses the fact that, when DPLL(T) rewrites one state to another
state, any partial proof-tree corresponding to the formal state can be extended into a partial
proof-tree corresponding to the latter state.

Theorem 8 If ∆‖φ ⇒ S2 is a rewrite step of DPLL(T) and if π1 corresponds to ∆‖φ then
there is, in LKDPLL+(T), a |φ|+ 1-extension π2 of π1 corresponding to S2.

Proof: By case analysis:

• Fail: ∆‖φ, C ⇒∗
UNSAT with |∆| |= ¬C and there is no decision literal in ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ,C. Since there are no decision
literals in ∆, π1 can have at most one open leaf, labelled by |∆|;φ,C ⊢T .

We |φ,C|+1-extend π1 into π2 by replacing that leaf by a complete tree deriving |∆|;φ,C ⊢T .
We obtain that tree by applying Lemma 6 on the hypothesis |∆| |= ¬C. The new tree
π2 is complete and therefore corresponds to the UNSAT state of the DPLL(T) run.

• Decide: ∆‖φ ⇒ ∆, ld‖φ where l 6∈ ∆, l⊥ 6∈ ∆, l ∈ φ or l⊥ ∈ φ.

Let π1 be a partial proof-tree corresponding to ∆‖φ. We 1-extend it into π2 by replacing
the open leaf labelled with |∆|;φ ⊢T (if there is such a leaf) by one of three proof-trees:

– If |∆|, l |=T , we have Sat(|∆|) = Sat(|∆|, l⊥) and we take:

|∆|, l⊥;φ ⊢T

−−−−− − Weakening2
|∆|;φ ⊢T

The new open leaves form a sub-set of {|∆|, l⊥;φ ⊢T } ∪ {∆′;φ ⊢T | ∆′ ∈ J∆K} ⊆
{∆′;φ ⊢T | ∆′ ∈ [∆, ld]} (since |∆|, l⊥ = |∆, l⊥| ∈ [∆, l⊥] = J∆, ldK ⊆ [∆, ld]) and
therefore π2 corresponds to ∆, ld‖φ.

– If |∆|, l⊥ |=T , we have Sat(|∆|) = Sat(|∆|, l) and we take

|∆|, l;φ ⊢T

−−−−−− Weakening2
|∆|;φ ⊢T

2A partial proof-tree that has no open leaf is isomorphic to a derivation in LK
DPLL+ (T).

6

The new open leaves form a sub-iset of {|∆|, l;φ ⊢T } ∪ {∆′;φ ⊢T | ∆′ ∈ J∆K} ⊆
{∆′;φ ⊢T | ∆′ ∈ [∆, ld]} (since |∆|, l = |∆, l| ∈ [∆, ld]) and therefore π2 corres-
ponds to ∆, ld‖φ.

– If |∆|, l 6|=T and |∆|, l⊥ 6|=T , we take

|∆|, l;φ ⊢T |∆|, l⊥;φ ⊢T

Split
|∆|;φ ⊢T

The new open leaves form a sub-set of {|∆|, l;φ ⊢T }∪{|∆|, l⊥;φ ⊢T }∪{∆′;φ ⊢T |
∆′ ∈ J∆K} ⊆ {∆′;φ ⊢T | ∆′ ∈ [∆, ld]} and therefore π2 corresponds to ∆, ld‖φ.
(since |∆|, l⊥ = |∆, l⊥| ∈ [∆, l⊥] = J∆, ldK ⊆ [∆, ld])

• Backtrack: ∆1, l
d,∆2‖φ, C ⇒ ∆1, l

⊥‖φ, C
if |∆1, l,∆2| |= ¬C and no decision literal is in ∆2.

Let π1 be a partial proof-tree corresponding to ∆1, l
d,∆2‖φ,C. Since there are no de-

cision literal in ∆2, π1 can have at most one open leaf, labelled with |∆1, l
d,∆2|;φ,C ⊢T .

We |φ,C|+1-extend π1 into π2 by replacing that leaf by a complete tree deriving |∆1, l
d,∆2|;φ,C ⊢T .

We obtain that partial proof-tree by applying lemma 6 on the assumption |∆1, l
d,∆2| |=

¬C.

The new open leaves form a sub-set of {|∆|1, l
⊥;φ,C ⊢T }∪{∆′;φ ⊢T | ∆′ ∈ J∆1, l

d,∆2K} =
{∆′;φ ⊢T | ∆′ ∈ J∆1, l

dK} ⊆ {∆′;φ ⊢T | ∆′ ∈ [∆1, l
⊥]} (since |∆1|, l

⊥ = |∆1, l
⊥| ∈

[∆1, l
⊥]) and therefore π2 corresponds to ∆1, l

⊥‖φ, C state of the DPLL(T) run.

• Unit propagation : ∆‖φ, C ∨ l ⇒ ∆, l‖φ,C ∨ l where |∆| |= ¬C, l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ, C ∨ l. We |φ,C ∨ l|+1-extend it
into π2 by replacing the open leaf labelled with |∆|;φ,C ∨ l ⊢T (if there is such a leaf)
by one of three proof-trees:

– If |∆|, l⊥ |=T , we have Sat(|∆|) = Sat(|∆|, l) and we take:

|∆|, l;φ ⊢T

−−−−−− Weakening2
|∆|;φ ⊢T

The new open leaves form a sub-set of {|∆|, l;φ,C ∨ l ⊢T }∪{∆′ ;φ,C ∨ l ⊢T | ∆′ ∈
J∆K} ⊆ {∆′;φ,C ∨ l ⊢T | ∆′ ∈ [∆, l]} (since |∆|, l = |∆, l| ∈ [∆, l]) and therefore
π2 corresponds to ∆, l‖φ,C ∨ l.

– If |∆|, l |=T then lemma 6 directly provides a partial proof-tree of |∆|;φ,C ∨ l ⊢T .

– If |∆|, l 6|=T and |∆|, l⊥ 6|=T , we can construct the following tree:

|∆|, l;φ,C ∨ l ⊢T

======= = Inverted Resolve
|∆|, l;φ, l ⊢T

Assert
|∆|;φ, l ⊢T

============ Resolve
|∆|;φ,C ∨ l ⊢T

where the side-conditions of Resolve are provided by the hypothesis ∆′′ |= ¬C.
The new open leaves form a sub-set of {|∆|, l;φ,C ∨ l ⊢T } ∪ {∆′;φ ⊢T | ∆′ ∈
J∆K} ⊆ {∆′;φ ⊢T | ∆′ ∈ [∆, l]} and therefore π2 corresponds to ∆, l‖φ,C ∨ l.
(since |∆|, l = |∆, l| ∈ [∆, l])

• Theory Propagate: ∆‖φ ⇒ ∆, l‖φ where |∆| |=T l, l ∈ lit(φ) and l 6∈ ∆, l⊥ 6∈ ∆.

Let π1 be a partial proof-tree corresponding to ∆‖φ. We 1-extend it into π2 by replacing
the open leaf labelled with |∆|;φ ⊢T by the following proof-tree :

|∆|, l;φ ⊢T

−−−−−− Weakening2
|∆|;φ ⊢T

The new open leaves form a sub-set of {|∆|, l;φ ⊢T } ∪ {∆′;φ ⊢T | ∆′ ∈ J∆K} ⊆
{∆′;φ ⊢T | ∆′ ∈ [∆, l]} (since |∆|, l = |∆, l| ⊆ [∆, l]) and therefore π2 corresponds to
∆, l‖φ.

�

7

Corollary 9 LKDPLL(T) is complete, i.e. if φ |=T then ;φ ⊢T .

Proof: By completeness of basic DPLL(T) and Theorem 8. �

1.3 DPLL(T) with backjumping and Lemma learning

We now consider a more advanced version of DPLL(T), which involves backjumping and
lemma learning features, and which we denote DPLLbj(T). DPLLbj(T) extends basic DPLL(T)
with the rules known as T -Backjump, T -Learn, T -Forget, and Restart [NOT06]. Those rules
drastically increase the efficiency of SMT-solvers.

T -Backjump: ∆1, l
d,∆2‖φ,C ⇒ ∆1, lbj‖φ,C with

1. |∆1, l
d,∆2| |= ¬C.

2. |∆1| |= ¬C′

3. φ,C |=T C′ ∨ lbj

4. lbj 6∈ ∆1, l
⊥
bj 6∈ ∆1 and lbj ∈ lit(φ,∆1, l

d,∆2).

for some clause C′ such that lit(C′) ⊂ lit(φ,C).

T -Learn: ∆‖φ ⇒ ∆‖φ,C if lit(C) ⊆ lit(φ,∆) and φ |=T C.

T -Forget: ∆‖φ,C ⇒ ∆‖φ if φ |=T C.

Restart: ∆‖φ ⇒ ∅‖φ.

In order to simulate those extra rules in LKDPLL(T), we need to extend LKDPLL(T) with a
cut rule as follows:

Definition 9 (LKDPLL(T) with cut) System LK
c
DPLL(T) is obtained by extending system

LKDPLL+(T) with the following cut-rule:

∆;φ, l1, . . . , ln ⊢T ∆;φ,C ⊢T

Cut where C = l⊥1 , . . . , l⊥n
∆;φ ⊢T

We define the size of proof-trees in LK
c
DPLL(T) as we did for LKDPLL+(T) (ignoring Weaken-

ing1, Weakening2 or the Inverted Resolve), but also ignoring the left-branch of the cut-rules.3

Definition 10 (n, φ,S-sync action) πφ is a n, φ,S-sync action if it is a function that maps
every model ∆ ∈ S to a partial proof-tree of size at most n and concluding ∆;φ ⊢T .

Definition 11 (Parallel n-extension of partial proof-trees) π2 is a parallel n-extension
of π1 according to πφ if πφ is a n, φ,S-sync action and if π2 is obtained from π1 by replacing
all the open leaves of π1 labelled by sequents of the form ∆;φ ⊢T (where ∆ ∈ S) by πφ(∆).

Theorem 10 If ∆‖φ ⇒
DPLLbj(T) S2 and π1 corresponds to ∆‖φ, there is parallel |φ|+ 3-

extension π2 of π1 (according to some πφ) such that π2 corresponds to S2.

Proof: Since LKDPLL(T) is a sub-system of LK
c
DPLL(T), we only need to simulate (in

LK
c
DPLL(T)) the new rules.

T -Backjump: ∆1, l
d,∆2‖φ,C ⇒ ∆1, lbj‖φ,C with

1. |∆1, l
d,∆2| |= ¬C.

2. |∆1| |= ¬C′

3. φ,C |=T C′ ∨ lbj

4. lbj 6∈ ∆1, l
⊥
bj 6∈ ∆1 and lbj ∈ lit(φ,∆1, l

d,∆2).

3As we shall see in the simulation theorem, this definition mimicks the fact that the length of DPLL(T) sequences
is a complexity measure that ignores the cost of checking the side-conditions.

8

Let π1 be a partial proof-tree corresponding to ∆1, l
d,∆2‖φ,C. We have to build a π2

that corresponds to ∆1, lbj‖φ,C in the DPLLbj(T) run. This means that the open leaves
of π2 should be labelled with sequents of the form ∆′;φ,C ⊢T where ∆′ ∈ [∆1, lbj] .

Let S = [∆1, l
d,∆2]\J∆1K and πφ be the |φ,C|+3, φ,C,S-sync action that maps every

∆ ∈ S to

;φ,C,¬C′
, l

⊥

bj ⊢T

−−−−−−−−− − Weakening2
|∆1|;φ,C,¬C

′
, l

⊥

bj ⊢T

|∆1|, lbj ;φ,C ⊢T

Subsume
|∆1|, lbj ;φ,C, lbj ⊢T

Assert
|∆1|;φ,C, lbj ⊢T

================= Resolve
|∆1|;φ,C,C

′ ∨ lbj ⊢T

cut
|∆1|;φ,C ⊢T

Weakening2
∆;φ,C ⊢T

It is a valid partial proof-tree because ∆ ∈ S entails |∆1| ⊆ ∆ and therefore Satφ(|∆1|) ⊆
Satφ(∆). The left branch is closed by assumption (3) and the completeness of LKDPLL(T)
on φ,C,¬C′, l⊥bj |=T (Corollary 9). We cannot anticipate the size of the proof-tree clos-
ing that branch, and we therefore ignore that proof-tree to compute the size of the whole
tree, just as the length of the DPLL(T) run ignores the cost of checking φ,C |=T C′∨ lbj .

Let π2 be the parallel |φ,C|+3-extension of π1 according to πφ. The new open leaves form
a sub-set of {|∆1|, lbj ;φ,C ⊢T } ∪ {∆′;φ ⊢T | ∆′ ∈ J∆1K} ⊆ {∆′;φ ⊢T | ∆′ ∈ [∆1, lbj]}
(since |∆1|, lbj = |∆1, lbj | ∈ [∆1, lbj] and J∆1, lbjK = J∆1K) and therefore π2 corresponds
to ∆1, lbj‖φ, C.

T -Learn: ∆‖φ ⇒ ∆‖φ,C if each atom of C occurs in φ or in ∆ and φ |=T C.

Let π1 be a partial proof-tree corresponding to ∆‖φ. We have to build a π2 that
corresponds to ∆‖φ,C in the DPLLbj(T) run. This means that the open leaves of π2

should be labelled with sequents of the form ∆′;φ,C ⊢T where ∆′ ∈ [∆] .

Let S = [∆] and πφ be the |φ|,φ,S-sync actionthat maps every ∆ ∈ S to:

;φ,¬C ⊢T

−−−−− − Weakening2
∆;φ,¬C ⊢T |∆|;φ,C ⊢T

cut
∆;φ ⊢T

The left branch of the cut is closed by assumption and completeness of LKDPLL(T) on
φ,¬C |=T (Corollary 9). We cannot anticipate the size of the proof-tree closing that
branch, and we therefore ignore that proof-tree to compute the size of the whole tree,
just as the length of the DPLL(T) run ignores the cost of checking φ |=T C.

Let π2 be the parallel |φ|-extension of π1 according to πφ. The new open leaves form a
sub-set of {∆′;φ,C ⊢T | ∆′ ∈ [∆]} and therefore π2 corresponds to ∆‖φ,C. .

T -Forget: ∆‖φ,C ⇒ ∆‖φ if φ |=T C.

Let π1 be a partial proof-tree corresponding to ∆‖φ,C. We have to build a π2 that
corresponds to ∆‖φ in the DPLLbj(T) run. This means that the open leaves of π2

should be labelled with sequents of the form ∆′;φ ⊢T where ∆′ ∈ [∆] .

Let S = [∆] and πφ be the 1, φ, C,S-sync action that maps every ∆′ ∈ S to

∆′;φ ⊢T

−−−−−− Weakening1
∆′;φ,C ⊢T

Let π2 be the parallel 1-extension of π1 according to πφ. The new open leaves form a
sub-set of {∆′;φ ⊢T | ∆′ ∈ [∆]} and therefore π2 corresponds to ∆‖φ.

Restart: ∆‖φ ⇒ ∅‖φ.

Let π1 be a partial proof-tree corresponding to ∆‖φ. We have to build a π2 that
corresponds to ∅‖φ in the DPLLbj(T) run. This means that the open leaves of π2 should
be labelled with sequents of the form ;φ ⊢T

9

Let S = [∆] and πφ be the 1, φ,S-sync action that maps every ∆′ ∈ S to:

;φ ⊢T

−−− − Weakening2
∆′;φ ⊢T

Let π2 be the parallel 1-extension of π1 according to πφ. The new open leaves form a
sub-set of {;φ ⊢T } and therefore π2 corresponds to ∅‖φ.

�

10

2 Encoding LKDPLL(T) in LK
p(T)

2.1 Preliminaries: System LK
p(T)

In this section we introduce (the propositional fragment of) system LK
p(T).

Definition 12 (Formulae, negation) The formulae of LK
p(T) are given by the following

grammar:

Formulae A,B, . . . ::= l | A∧+B | A∨+B | A∧−B | A∨−B

where l ranges over literals.
Let P be a set of literals declared to be positive, while their negations, required to not

be in P , are declared to be negative. Given such a set P , we define positive formulae and
negative formulae as the formulae generated by the following grammars:

positive formulae P, . . . ::= p | A∧+B | A∨+B

negative formulae N, . . . ::= p⊥ | A∧−B | A∨−B

where p ranges over P .
Negation is recursively extended into a involutive map from formulae to formulae as follows:

(A∧+B)
⊥

:= A⊥∨−B⊥ (A∧−B)
⊥

:= A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)
⊥

:= A⊥∧+B⊥

Definition 13 (System LK
p(T)) The sequent calculus LK

p(T) has two kinds of sequents:

Γ ⊢T [P] where P is in the focus of the sequent
Γ ⊢T Γ′

Its rules are given in Figure 5.
T (∆) is the call to the decision procedure on the conjunction of all atomic formulae within

∆. It holds if the procedure returns UNSAT.

Γ ⊢P

T [A] Γ ⊢P

T [B]

Γ ⊢P

T [A∧+B]

Γ ⊢P

T [Ai]

Γ ⊢P

T [A1∨
+A2]

Γ, p ⊢P,p
T

[p]

T (Γ, p⊥)

Γ ⊢P,p
T

[p]

Γ ⊢P

T N
N negative

Γ ⊢P

T [N]

Γ ⊢P

T A,∆ Γ ⊢P

T B,∆

Γ ⊢P

T A∧−B,∆

Γ ⊢P

T A1, A2,∆

Γ ⊢P

T A1∨
−A2,∆

Γ, A⊥ ⊢P

T ∆
A positive or atom

Γ ⊢P

T A,∆

Γ ⊢P,l
T

Γ ⊢P
T

Γ, P⊥ ⊢P

T [P]
P positive

Γ, P⊥ ⊢P

T

T (Γ)

Γ ⊢P
T

Figure 5: System LK
p(T)

We also consider two cut-rules. The analytic cut:

Γ, l ⊢P
T Γ, l⊥ ⊢P

T

Γ ⊢P
T

with the condition that l appears in Γ.
The general cut:

11

Γ, l1, . . . , ln ⊢P
T Γ, (l1

⊥∨−
. . .∨−

ln
⊥) ⊢P

T

Γ ⊢P
T

2.2 Simulation

We now encode LKDPLL(T) in LK
p(T).

The main gap between LKDPLL(T) (or even DPLL(T)) and a sequent calculus such as
LK

p(T) is the fact that the structures handled by the former are very flexible (e.g. clauses are
multisets of literals), while sequent calculus implements a root-first decomposition of formulae
trees.

Clauses in DPLL(T) (and in LKDPLL(T)) are disjunctions considered modulo associativity
and commutativity. The way we encode them as formulae of sequent calculus is as follows: a
clause C will be represented by a formula C′ which is a disjunctive tree whose leaves contain
at least all the literals of C but also other literals that we can consider as garbage.

Of course, one could fear that the presence of garbage parts within C′ degrades the ef-
ficiency of proof-search when simulating DPLL(T). This garbage comes from the original
clauses at the start of the DPLL(T) rewriting sequence, which might have been simplified
in later steps of DPLL(T) but which remain unchanged in sequent calculus. The size of the
garbage is therefore smaller than the size of the original problem. We ensure that the inspec-
tion, by the proof-search process, of the garbage in C′⊥, takes no more inference steps than
the size of the garbage itself (the waste of time is linear in the size of the garbage). In order
to ensure this, we use polarities and the focusing properties of LK

p(T): the garbage literals
in C′ must be negative atoms that are negated in the model/context.

Definition 14 (P-correspondence) Let P be a multiset of literals.

• A formula C′ P-corresponds to a clause C (in system LKDPLL(T)), where C = l1∨. . .∨lp,
if C′ = l′1∨

− . . .∨−l′p′ with {lj}j=1...p ⊆ {l′j}j=1...p′ and for any l ∈ {l′j}j=1...p′\{lj}j=1...p,

l⊥ ∈ P .

• A LK
p(T) sequent ∆, C′

1, . . . , C
′
m ⊢P

T corresponds to a LKDPLL(T) sequent ∆;C1, . . . , Cm ⊢T ,
if C′

i P-corresponds to Ci and for all l ∈ P , ∆ |=T l.

Lemma 11 If C′ P-corresponds to C, then C′ also (P , l)-corresponds to C.

Proof: Straightforward. �

Theorem 12 Assume
Si

S
is a rule of LKDPLL(T). For every LK

p(T) sequent S ′ that corres-

ponds to S, there exist a partial proof-tree in LK
p(T)

• whose open leaves (S ′
i) are such that ∀i, S ′

i corresponds to Si and

• whose size is smaller than size (S ′) + 4.

Proof: By case analysis:

• Split:

∆, l
⊥;φ ⊢T ∆, l;φ ⊢T

where l ∈ lit(φ),∆, l⊥ 2T and ∆, l 2T

∆;φ ⊢T

Assume that ∆, φ′ ⊢P
T corresponds to ∆;φ ⊢T (i.e. φ′ = C′

1, . . . , C
′
n and φ = C1, . . . , Cn

with C′
i P-corresponding to Ci for i = 1 . . . n).

We build in LK
p(T) the following derivation that uses an analytic cut:

∆, l
⊥
, φ

′ ⊢∆0

T
∆, l, φ

′ ⊢∆0

T

∆, φ
′ ⊢∆0

T

and ∆, l⊥, φ′ ⊢∆0

T
P-corresponds to ∆, l⊥;φ ⊢T and ∆, l, φ′ ⊢∆,0

T
P-corresponds to

∆, l;φ ⊢T .

12

• Assert:

∆, l;φ, l ⊢T

∆, l⊥ 2T and ∆, l 2T

∆;φ, l ⊢T

Assume that ∆, φ′, C′ ⊢P corresponds to ∆;φ, l ⊢T . (i.e. φ′ = C′
1, . . . , C

′
n and φ =

C1, . . . , Cn with C′
i P-corresponding to Ci for i = 1 . . . n, and C′ P-corresponds to l,

that is to say C′ = ∨p
i=1li where l = li0 for some i0 ∈ 1 . . . n)

We build in LK
p the following derivation:

T (∆, φ
′
, C

′
, li)

i 6= i0
∆, φ

′
, C

′ ⊢
P,li0
T

[l⊥i]

li0 ,∆, φ
′
, C

′ ⊢
P,li0
T

∆, φ
′
, C

′ ⊢
P,li0
T

li0
⊥

∆, φ
′
, C

′ ⊢
P,li0
T

[li0
⊥]

·
·
··
∧+.

∆, φ
′
, C

′ ⊢
P,li0
T

[C′⊥]

∆, φ
′
, C

′ ⊢
P,li0
T

∆, φ
′
, C

′ ⊢P
T

For i 6= i0, l
⊥
i ∈ ∆0, so it is positive and we can use an axiom (remember that ∆ |= l⊥i).

• EmptyT :

∆;φ,⊥ ⊢T

Assume that ∆, φ′, C′ ⊢P corresponds to ∆;φ,⊥ ⊢T (i.e. C′ P-corresponds to ⊥, φ′ =
C′

1, . . . , C
′
n and φ = C1, . . . , Cn with C′

i, P-corresponding to Ci for i = 1 . . . n).

We build in LK
p the following derivation:

T (∆, φ
′
, C

′
, li)

∆, φ
′
, C

′ ⊢∆0

T
[l⊥i]

··
··
∧+.

∆, φ
′
, C

′ ⊢
P,li0
T

[C′⊥]

∆, φ
′
, C

′ ⊢P
T

Again, l⊥i ∈ ∆0, so it is positive and we can use an axiom (remember that ∆ |= l⊥i).

• Resolve:
∆;φ,C ⊢T

∆, l |=T

∆;φ, l ∨ C ⊢T

Assume that ∆, φ′, C′ ⊢P corresponds to ∆;φ, l ∨ C ⊢T (i.e. C′ P-corresponds to l∨C,
φ′ = C′

1, . . . , C
′
n and φ = C1, . . . , Cn with C′

i P-corresponding to Ci for i = 1 . . . n). We
build in LK

p(T) the following derivation

∆, φ
′
, C

′ ⊢P,l⊥

T

pol
∆, φ

′
, C

′ ⊢P
T

It suffices to notice that ∆, φ′, C′ ⊢P,l⊥ corresponds to ∆;φ,C ⊢T .

• Subsume:
∆;φ ⊢T

∆, l⊥ |=T

∆;φ, l ∨ C ⊢T

Assume that ∆, φ′, C′ ⊢P corresponds to ∆;φ, l ∨ C ⊢T (i.e. C′ P-corresponds to l∨C,
φ′ = C′

1, . . . , C
′
n and φ = C1, . . . , Cn with C′

i P-corresponding to Ci for i = 1 . . . n).

• Cut: If we want to simulate DPLL(T) with backjump, we need to encode the cut rule
of LK

c
DPLL .

13

∆;φ, l1, . . . , ln ⊢T ∆;φ,C ⊢T

C = l⊥1 ∨ . . . ∨ l⊥n
∆;φ ⊢

Assume that ∆, φ′ ⊢P
T corresponds to ∆;φ ⊢T (i.e. φ′ = C′

1, . . . , C
′
n and φ = C1, . . . , Cn

with C′
i P-corresponding to Ci for i = 1 . . . n).

We build in LK
p(T) the following derivation that uses a general cut:

∆, φ
′
, l1, . . . , ln ⊢P ∆, φ

′
, (l1

⊥∨−
. . .∨−

ln
⊥) ⊢P

cut
∆, φ

′ ⊢P

Clearly, ∆, φ′, l1, . . . , ln ⊢P
T corresponds to ∆;φ, l1, . . . , ln ⊢T and ∆, φ′, (l1

⊥∨− . . .∨−ln
⊥) ⊢P

T

corresponds to ∆;φ,C ⊢T .

�

References

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
of the ACM Press, 53(6):937–977, 2006.

[Tin02] C. Tinelli. A DPLL-based calculus for ground satisfiability modulo theories. In
G. Ianni and S. Flesca, editors, Proc. of the 8th European Conf. on Logics in Arti-
ficial Intelligence, volume 2424 of LNAI, pages 308–319. Springer-Verlag, 2002.

14

