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Abstract.

We use numerical simulations to investigate force and stir@smsmission in cohesive granular media covering a wide
class of materials encountered in nature and industriggsging. The cohesion results either from capillary bsdggween
particles or from the presence of a solid binding matrixrfdlifully or partially the interstitial space. The liquid ing is
treated by implementing a capillary force law within a detliog distance between particles and simulated by the déscre
element method. The solid binding matrix is treated by mediise Lattice Element Method (LEM) based on a lattice-type
discretization of the particles and matrix. Our data indichat the exponential fall-off of strong compressive &xds a
generic feature of both cohesive and noncohesive granddianboth for liquid and solid bonding. The tensile forcekibit
a similar decreasing exponential distribution, suggesttirat this form basically reflects granular disorder. Thisansistent
with the finding that not only the contact forces but also thess components in the bulk of the particles and matrixessible
from LEM simulations in the case of solid bonding, show anasential fall-off. We also find that the distribution of weak
compressive forces is sensitive to packing anisotropyigiashape and particle size distribution. In the case dfpaekings,
we analyze the self-equilibrated forces induced by liqudds and show that the positive and negative particle pressu
form a bi-percolating structure.

Keywords: granular media, force chain, granular disorder, cohegiistrete element method, lattice element method, capitand,
binding matrix
PACS: 45.70.-n, 81.05.Rm, 61.43.Hv

INTRODUCTION

A considerable amount of experimental and numerical wosdtegen devoted to force transmission in model granular
media such as glass bead packs [1, 2, 3, 4, 5, 6]. The forcentiasion in granular materials is essential for
microscopic modeling of constitutive behavior and for mamustrial processes that involve a better understanding
of the static or dynamic forces experienced by the partidibe force distributions are found to be broad and highly
heterogeneous. This heterogeneity is often describedrirstefforce chainsand linked with the concept ghmming

The issue that we would like to address in this paper, is takviiktent the well-known features of force distri-
butions in noncohesive granular media apply to cohesiveulaa media. The latter covers a wide class of materials
encountered in nature and industry. Well-known examplesadimentary rocks, wet soils, and fine and sintered pow-
ders. In contrast to noncohesive granular media, all thestenmals are endowed wittohesiorresulting either from
direct surface forces between particles or from the preseha binding phase filling fully or partially the interséiti
space. The effect of surface forces or a binder is to freemestrict the relative degrees of freedom (separatioripgjid
rolling) between particles up to a threshold. Hence, dejmgnah the boundary conditions, tensile forces can develop
in cohesive granular media and their distributions areatkct by the conditions of force balance and granular disorde
as in the case of compressive forces. Obviously, the digtoib of tensile forces is of particular relevance to thesdr
intensity factor which controls the initiation and proptiga of cracks.

In this paper, we investigate force and stress distribstingranular media involving either liquid bridges or a doli
binding matrix between particles. The presence of liquiddes will be treated by implementing a capillary force
law within a debonding distance between particles. The lsitimns are performed by means of the Discrete Element



Method (DEM) using Molecular Dynamics (MD) and Contact Dygmies approaches. For solid binding, we adopt a
broad framework allowing for the numerical treatment of madiing matrix with variable volume fraction. The effect
of small amounts of the matrix localized at the contact zdredween particles can be assimilated to that of a surface
force. The force transmission in this limit is correlatedtwihe packing structure. The other limit of high matrix
volume fractions corresponds tacamentedjranular material in which the particles are fully or pdyi@mbedded

in the binding matrix. The force transmission is thus mestidboth by the particles and matrix and governed by
the details of the composition (phase volume fractions)taedmaterial properties of each phase (relative stiffness,
particle-matrix interface adherence).

The treatment of the matrix, as a continuous phase, reqairesnerical method capable of resolving the matrix.
We use the Lattice Element Method (LEM) which is found to benetically efficient. It is based on a lattice-type
discretization of all phases including the particles, imand their interface [7, 8, 9]. The elastic deformationstaf
particles are taken into account not only at their contadtis ether particles or with the matrix, as in the DEM, but
also in their bulk. The matrix can be introduced with the debivolume at the contact zones between the particles and
in the pores with its elastic properties and adhesion wighptarticles. An advantage of the LEM is to give us access
to stresses in the bulk of the particles and binding matrené¢¢, the forces at the contact zones can be estimated by
coarse-graining from the stresses and compared to the DEdqions for the same granular configuration.

In the following, we first focus on some important featuredaste transmission in noncohesive granular media.
We consider both 2D and 3D granular samples and the effecartitfe shape and size distribution. One section is
devoted to granular media with solid bridging. The LEM iseffl§i introduced together with numerical procedures for
sample preparation. Our main numerical results will begumé=d by considering the force distributions in 2D packings
simulated alternatively by LEM and DEM in the limit of low mia¢ volume fractions, the stresses in a 3D packing and
the effect of matrix volume fraction, particle stiffnessdgparticle volume fraction on stress distributions. In &eot
section we consider liquid bridging. We first introduce tlapidary force law implemented in MD simulations. Then,
we analyze the force distributions with and without a comfijpressure. We also consider the tensile and compressive
stresses supported by the particles. We conclude the patifemvsummary of the most salient features of force
transmission in cohesive granular media.

FORCE DISTRIBUTIONSIN NONCOHESIVE GRANULAR MEDIA

We study in this section the normal force distributions froamerical simulations by CD and MD methods in 2D and
3D. We consider the effect of packing anisotropy, partitiepe and particle size distribution (PSD). Some of these
features will be revisited in the next sections in the preseasf liquid or solid binding between particles.

Background

Granular disorder and steric exclusions lead to an unegghanhomogeneous distribution of contact forces under
quasistatic loading [1, 10, 3, 11, 5, 12, 13, 14, 15, 6]. THesee inhomogeneities in granular assemblies were first
observed by means of photoelastic experiments [16, 17]ca@H®on paper technique was used later to record the force
prints at the boundaries of a granular packing [3]. It washfbthat the forces have a nearly decreasing exponential
distribution. Numerical simulations by the contact dynes{iCD) method provided detailed evidence for force chains,
the organization of the force network into strong and wealvaeks, and the exponential distribution of strong forces
[18, 4]. Moreover, the force probability density functidi®DF’s) from simulations showed that the weak forces (below
the average force) in a sheared granular system have a neéfidym or decreasing power law shape in agreement
with refined carbon paper experiments [10, 5].

Further experiments and numerical simulations have shbatitihe exponential falloff of strong forces is a robust
feature of force distribution in granular media both in twedahree dimensions. In contrast, the weak forces are
sensitive to the details of the preparation method or thermal state of the packing [19, 20, 15, 6]. A remarkable
aspect of weak forces is the fact that their number does miglvas the force falls to zero [18, 21]. Several theoretical
models have been proposed allowing to relate the expomeiigiaibution of forces to granular disorder combined
with the condition of force balance for each particle [1,.2Rgcently, the force PDF's were derived for an isotropic
system of frictionless particles in two dimensions fromaistical approach assuming a first shell approximatioe (on
particle with its contact neighbors) [21].
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FIGURE 1. The force network in a 2D packing of disks (a) and in a thin faye inside a 3D packing of spherical particles (b).
The line thickness is proportional to the normal force. Traydevel in the 3D system represents the field depth.

Figure 1 displays a 2D packing simulated by the CD method.ridrenal forces are encoded as the thickness of
branch vectors (joining particle centers). In the same égthre force network in a thin layer for a 3D packing of
spherical particles subjected to axial compression is sh&tvong force chains are easily distinguished in bothcase
The strongest chains have a linear aspect and they are rpastiifel to the axis of compression (vertical).

Discrete Element M ethod

The Discrete Element Method (DEM) has been extensively ssack the pioneering work of Cundall for the
simulation of granular materials [23]. In this method, tig@&tions of motion are integrated for all particles by takin
into account their contact interactions. In its originatsien, commonly used also today, the particles are treated a
rigid elements but the interactions are modeled by meansobelastic force laws expressed in terms of the relative
displacements between patrticles as in classical Mole&ylaamics (MD) simulations. In these MD-type approaches,
the simulation of mutual exclusions between particlesiregta stiff repulsive potential and thus high time resoluti
In the same way, the Coulomb law for dry friction needs to lyril&rized such that the friction force can be expressed
as a (mono-valued) function of relative tangential dispfaent.

The Contact Dynamics (CD) method, introduced later, presidn alternative approach based ramsmooth
formulation of mutual exclusion and dry friction betweerrtfides [24, 25, 26]. In this method, the equations of
motion are expressed as differential inclusions and thelations are replaced by velocity jumps. At each time
step, all kinematic constraints implied by enduring cotstand possible rolling of particles over one another are
simultaneously taken into account in order to determineedticities and contact forces. In the generic CD algorithm,
an iterative process is used to solve this problem. It ctssissolving a single contact problem with all other contact
forces kept constant, and iteratively updating the fora®d a given convergence criterion is fulfilled. Due to the
implicit time integration scheme inherent in the CD methtte solution is unconditionally stable. The particle
positions are updated from the calculated particle vakxtbefore a new detection of the contacts between particles
is performed.

Schematically, the MD method is based on a description dfgb@interactions in terms dbrce laws i.e. bijective
force-displacement relations, whereas the CD method isthas a formulation of kinematic constraints in terms of
contact lawsIndependently of particle deformability, the impenetiigbof the particles and the Coulomb friction at
the contact zones can be formulated in the form of contact Eypressing the contact actions as set-valued functions
of particle positions. The uniqueness of the solution isguatranteed by CD approach for perfectly rigid particles in



absolute terms. However, by initializing each step of daliion with the forces calculated in the preceding step, the
set of admissible solutions shrinks to a small variabiligsically of the same order of magnitude as the numerical
resolution. In the MD method this ‘force history’ is by defioh encoded in the particle positions.

Since the CD method handles the kinematic constraints withesorting to force laws, the particles are often
treated as perfectly rigid although finite stiffness canrtteoduced in the same framework. This is the case of the CD
simulations carried out for the analysis of force distribns in this paper. Hence, the only material parameter of the
simulated static packings by the CD method is the coeffi@éfriction u between the particles. On the other hand,
the MD-generated packings are characterized by normalaargential stiffnessds, andk; as well as the coefficient
of friction u. The mean deformation of the particles is given by the rpfiq, of the average stregsto k.

Normal forcedistributions

Different numerical packings were prepared by isotropimpaction and then deformed under either slow triaxial
loading in 3D or in simple shear in 2D. The particle inertia aegligibly small compared to the static confining
pressure so that the packings can be consideredgunaai-static stateAs we shall see below, the general shape
of force distributions is robust with respect to the detaiflgpreparation or the microstructure. But the distribution
parameters do depend on the preparation. In all examplesdayed below the packings are sheared until a steady or
critical state, in the sense of soil mechanics, is reached. In thés i@ shear deformation is isochoric on the average,
and the memory of the preparation process is erased as & oéstkaring so that the microstructure is a function
only of the material parameters. The force distributionslya analyzed either in the initial isotropic state preptog
isotropic compaction with zero coefficient of friction ortime critical state.

10* T T T

FIGURE 2. Probability density functions of normal forces in two isigiic samples of spherical particles simulated by MD and
CD methods.

Figure 2 shows the PDF’s of normal forces for two isotropimpkes of spherical particles simulated by MD (8000
particles) and CD (20000 particles) methods. The PSD isheoséame in the samples but they represent rather weakly
polydisperse distributions with a ratio of 2 between th@édst and smallest particle diameters. The coefficient of
friction is 4 = 0.4 between particles and 0 with the walls. The forces have heemalized by the average force in
each sample. Although the two samples are not exactly iclnthe two PDF’s have the same shape characterized by
an exponential falloff for large forces, a small peak for ecéoslightly below the average force and a finite value at
zero force. The position of the peak is not the same in the tstaloutions but the exponents of the exponential falloff
are the same within statistical precision of the data:

P(fn) O P/, €Y

with 8 ~ 1.4. This similarity between the two distributions indicatieat the statics of a granular system is statistically
robust with respect to the numerical approach and, in paaticthe small elastic deformation at contact points in MD
simulations has negligible effect on the force inhomoggnki other words, the physics of a static granular packing



0.08 : :

s ISotropic
0.06— —o Anisotropic
S 0.04-
0.02-
O0 1 2 3 4 5

f /0 O

FIGURE 3. Probability density functions of normal forces in a samglepherical particles after isotropic compaction (isotcop
state) and following triaxial compression (anisotropitsy.

can be approximated by considering undeformable partades the CD method as far as the the raijd, of the
confining pressurg to the normal stiffnesk, of the particles is small (here 10°).

The observed shape of force PDF’s is unique in two respebtshé exponential part reflects the presence of very
strong forces in the system often appearing in a correlatthier in the form of force chains; (2) the nonvanishing
class of weak forces, with a fraction of more than 60% of contarces below the average force, means that the
stability of force chains is ensured by a large number ofskingly small forces [4, 19]. This is a signature of the
arching effectHence, the average force is a physically poor represeatatihe broad spectrum of forces in a granular
system.

Figure 3 displays the normal force PDF’s in CD simulationstfe same system of spherical particles both at the
isotropic state and at the critical state where the fabritfance chains are anisotropic. The effect of anisotropy is
to reinforce the force inhomogeneity by increasing thetiedadensity of weak forces [20, 27, 28]. The exponent
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FIGURE 4. Probability density function of normal forces in an isotimpample of irregular polyhedral particles on log-linear
and log-log scales.



B remains nearly unchanged whereas the small peak near tregavierce disappears and the distribution of weak
forces tends to become nearly uniform.

Effect of particle shape

The force distributions are sensitive to particle shapigs.4shows the distribution of normal forces in an isotropic
3D sample of 20000 irregular polyhedral particles with= 0.5 simulated by the CD method. We again observe the
exponential tail of strong forces together with a decreppiower law distribution for weak forces.

The angular particle shape increases considerably the ewushbery weak forces by enhancing the arching effect.
The latter is also reflected in the value of the exporfEntduced to ®7 compared to .4 for spherical particles. In
other words, the force chains are stronger but less in nurAbaetailed analysis of force and fabric anisotropies in
this packing reveals the special role of face-to-face adgtimn enhancing force anisotropy and thus the overall shear
strength as compared to packings of spherical particlels &filar trends are observed in packings of polygonal
particles (in 2D simulations) [30].

Effect of particle sizedistribution

Figure 5 shows the normal force PDF’s for increasingly bevazhrticle size spasin a 2D sheared packing of
10000 circular particles simulated by the CD method [31f $ize span is defined Isy= (dmax— dmin)/ (max+ Amin)
wheredmin anddmax are the smallest and largest diameters, respectively. Aodisperse distribution corresponds to
s=0 and the limits~ 1 corresponds to an infinitely polydisperse system [32]. 8B is uniform by particle volume
fractions.

The PDF becomes broader with increaseadhe weak forces have a clear power law behavior with ingngas
exponenio whereas the strong forces fall off exponentially with a @asing exponer. The power-law behavior
of strong forces can be attributed to a “cascade" mecharnism the largest particles “capturing” strongest force
chains down to smaller forces carried by smaller particB4d.[A map of normal forces in a highly polydisperse
packing 6 = 0.96) is shown in Fig. 6. A large number of rattlers, i.e. pdescnot engaged in the force network,
can be observed. Although these particles represent a solathe fraction of the sample, their absence from the
force-bearing network contributes to force inhomogeneity
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FIGURE 5. Probability density functions of normal forces for incriegsspans of particle diameters.




FIGURE 6. A map of normal forces in a highly polydisperse system witimiéarm size distribution by particle volume fractions.
The black particles are “rattlers" excluded from the fobezring network.

A generic functional form

The above examples point to a generic PDF of normal forcegimamular packing that can be approximated by the
following form [19]:

) ¢
ot = | A (1) fn/(fn) <1 @)
A B1=Tn/(fn)) fn/(fa) > 1
whereA is the normalization factor given by
11,1 @)
A l1-a B
Considering the mean forad,) as the point of cross-over between the two parts of the bigtan, we get the
following relation between the exponents:
BZ=(1-a)2-a) 4)

Note that the nearly uniform distribution of static forceshe case of sheared circular particles is recovered bpgett
a = 0 in equation (2). Then, from equation [4] we g&t= /2 ~ 1.4 which is the value found for the distribution
of forces in sheared packings of weakly polydisperse sphéier this system, the following fitting form was also
proposed by Mueth et al. [5]:

P(f) =a (1—be )ePf (5)

wheref = f,/(fn). As argued by Mueth et al., the above function for the rangeazk forces provides a fit essentially
indistinguishable from a power lafj @ as long asx is positive and close to zero [5].

SOLID BONDING

In this section, we consider cemented granular media intwthie local cohesion is a consequence of the presence of
a binding phase between the patrticles.



Numerical method and sample preparation

The LEM is based on a discretization of the phases on a reguleregular lattice. Hence, the space is represented
by a grid of points (nodes) interconnected by one-dimeradielements (bonds). Each bond can transfer normal force,
shear force and bending moment up to a threshold in force enggnrepresenting the cohesion of the phase or its
interface with another phase. Each phase (particle, matria its boundaries are materialized by the bonds sharing
the same properties. The samples are deformed by impossptadements or forces to the nodes belonging to the
contour. The total elastic energy of the system is a convestion of node displacements and thus finding the unique
equilibrium configuration of the nodes amounts to a minitiaraproblem. Performing this minimization for stepwise
loading corresponds to subjecting the system to a qudsidgigfiormation process. The details of this method can be
found in Ref. [8].

The samples are constructed either by geometric methodsisotoopic compaction of disk-like particles by DEM
simulations by setting the friction coefficient betweenplagticles to zero in order to get a dense packing. The samples
are then discretized on a lattice. The matrix is introducetthé form of bridges of variable thickness, depending on
the overall matrix volume fraction and the particle sizestween neighboring particles throughout the system; see
Fig. 7. As the matrix volume fraction is increased, the thiess of the bridges increases and eventually they merge to
fill the interstitial space.

N

FIGURE 7. Numerical model of cementing bridge between particles. With is increased for all pairs in a sample until the
required matrix volume fraction is reached.

The elastic properties of each phase are controlled by tleatdielastic properties of the bonds. The main elastic
parameters that will be considered here are the Hooke ausstaandk™ of the bonds belonging to the particles
and matrix, respectively. The initial state is the referefnstressed) configuration. When the sample is loaded,
bond f(l)rces develop inside the sample. A stress tead8aan be attributed to each nodeof the lattice network:

0% = s zbr?bff‘b where the summation runs over all neighboring nogles® is thei component of the vector

joining the nodea to the midpoint of the bondb and f2° is the j component of the bond force [33, 8].

The resolution of the stresses depends on the particle@mpared to the lattice element lengths. The discretization
should be sufficiently fine for the particle contours to berectly represented. The macroscopic elastic moduli might
crucially depend on the discretization as more generalbpitous materials. In practice, however, the resolutioets s
as a result of compromise between the necessary numbettictg@afor statistical representativity and total numbfer o
nodes accessible to computer simulation. In the simulatieported in this paper, we generally favored high resauti
both in 2D and 3D simulations such that the results for sto@ssmission reliably reflect the configuration of the
particle phase.

In the following, we mainly consider node stresses in regtidar and cubic samples subjected to vertical loading
with free lateral boundaries. At low matrix volume fractirior comparison with DEM we will also evaluate the
contact forces between particles from bond forces. Duidagling, the bond forces increase with the applied vertical
stress at the boundary. Hence, the mean bond force incrig@sady with the external load whereas the bond force
PDF’s and stresses do not evolve as long as no bond breakecWtfere only on force distributions in the undamaged
samples, i.e. in the purely elastic domain. The damage awtlite properties have been extensively studied elsewhere

[8].
Sub-particle stresses and contact forces
In order to obtain fine statistics of node stresses and coftiaes between particles, we simulated a large sample

of about 5000 particles with a particle volume fractiorpdf~ 0.8. This corresponds to a packing with a dense contact
network of coordination number= 4. The particle diametet varies betweedyi, anddmax= 3dmin With a uniform



FIGURE 8. Vertical stress fieldyy represented in color level in a cemented packing. The soiitybs and voids are in white
and gray, respectively.

distribution by volume fractionsR(d) [ d—2). We would like to compare the contact forces in this syst@mulated
by the LEM, with those in a similar system simulated by the DHMis can be done only in the limit of a small matrix
volume fraction where the matrix is found in the form of snsallid bridges between the particles such that its effect
can be represented by a cohesion law. We used a matrix vohaictéoh of p™ ~ 0.01. The DEM code is based on the
standard molecular dynamics method with cohesive bondéhgden the particles. The sample is subjected to vertical
compression.

Figure 8 shows the vertical stress figiy,. The node stresses are represented by proportional cetels lever
the elementary hexagonal cells centered on each node. Wevebshains of highly stressed particles and higher
concentration at the contact zones between the particlesder to compare the LEM simulated packing with DEM
simulations of the same packing, for which only contact ésrare accessible, we compute the contact fofdeg

summing up the bond forcd$® for all bondsab crossing the contact plarge f = S abes f20.

Figure 9 shows the map of normal forces between particleshioelL.EM and DEM packings. We observe very
similar force chains despite the fact that radically défgrmethods were used to simulate them. The Pearson product-
moment correlation coefficient between the two force nelesvisr = 0.92, which indicates high similarity. The PDF's
of normal and tangential forces from LEM and DEM simulatians shown in Fig. 10. We observe that the two PDF's
coincide over nearly the whole range of forces. The distidioLof normal forces involves an exponential fall-off ireth
ranges of strong compressive and for the whole range ofli¢ciosces. The exponent in the range of tensile forces is
larger than that for the compressive forces. Remark thdatigest tensile forces are far below the breaking threshold
The distribution is uniform in the range of weak compressivel forces as also observed in most simulations of
sheared packings composed of circular weakly polydispsagecles (see section ). This excellent agreement between
the force PDF's with3 ~ 1.35 may be considered as a validation of DEM results for theeforetworks in the sense
that the contact forces in LEM simulations are calculatedtfe finer scale [2, 5, 6].

Having access to the node stresses, it is interesting taaeatheir PDF’s in order to see whether they carry
a signature of the composition. One example of the PDF oficatrstressessyy is displayed in Fig. 11(a) for a
packing under vertical compression. Since the sample igaxial compression, only 4% of vertical stresses are
tensile and are thus not shown in Fig. 11(a). Interestirthly,strong stresses fall off exponentially as contact ®rce
(see Fig. 10)Ps(0yy) 0 e B9/ (%) with B ~ 0.95, and they mostly concentrate at the contact zones. Thi wea
stresses have a nonzero PDF, much the same as weak contast feflecting the arching effect. Since the contact
force distributions reflect the granular disorder, i.e.gtracture of the network of contiguous particles, the obesgr
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FIGURE 10. Probability density function of normal forces (a) and tamtgg forces (b) in a sample axially compressed by LEM

and DEM simulations. The forces are normalized by the meamaidforce.
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FIGURE 9. A map of normal forces in a portion of a sample under verticahpression simulated by DEM (a) and LEM (b).

Line thickness is proportional to the normal force. Very wead tangential forces are not shown.

FIGURE 11. Probability density function of vertical stresses normedi by the average stress in compression.
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FIGURE 12. Probability density functions of normalized vertical stes for three values of the matrix volume fraction (a) in
tension and (b) in compression.
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FIGURE 13. Probability density functions of normalized vertical sses for three values of the relative stiffn&Bgk™ (a) in
tension and (b) in compression.

similarity between the distributions of stresses and foroeans that the sub-particle stresses are strongly affegte
the granular disorder.

Effect of matrix volume fraction

Itis expected that at higher matrix contents the stress re imomogeneously redistributed inside the packing due to
load transfer between the particles and the matrix. Fighb®sP, for three values 0p™ in tension and compression
for kP = 100k™. Interestingly, the exponential tail persists both in tensand in compression, but for equal matrix
volume fractions, the PDF of strong stresses is broader inpcession than in tension. In other words, the stress
redistribution is more homogeneous in tension than in cesgion.

It is also interesting to observe that the stress PDF is fett&d by the matrix volume fraction in compression but
it is increasingly broader in tension for decreasing matdrtent so that the stresses are more and more concentrated
in the bridges between the particles. In tension, the expigBieraries from 110 to 255 asp™ varies from 008 to
0.12 whereas in compression we hg¥e- 0.95 for all p™. As p™ increases, the gaussian peaked on the mean stress,
corresponding mainly to the stresses in the bulk of the glagi becomes more and more pronounced.

Particle/matrix stiffnessratio

We now consider the influence of the particle/matrix stiffaeatiokP /k™ on stress distribution. Fig. 13 displays
the vertical stress PDF's for three valuesk8fk™ in tension and compression fpf™ = 0.10. It is remarkable that



FIGURE 14. (Color online) Representation of a cemented granular sacghposed of particles (in red), interfaces (in green)
and matrix (in blue) discretized on a 3D irregular lattice.

FIGURE 15. (Color on line) Vertical stresses fietsy in the 3D packing on a cut plane in color level for @} = 0.37, (b)
p™=0.23, (c)p™ = 0.10.

in tension the patrticle stiffness has little influence onpldéwhereas in compression the pdf becomes increasingly
broader for an increasing particle stiffness. The respeeifects of particle stiffness and matrix volume fractoam
be understood by remarking that, due to the presence of algramackbone, the stress chains are essentially guided
by the cementing matrix in tension and by the particle phas®mpression. Therefore, the stress transmission is not
affected by the matrix volume fraction in compression anlg shightly influenced by particle stiffness in tension.

Effect of composition in 3D

We briefly extend here our studies to 3D cemented granulatsse generated a dense packing of 300 particles
discretized over an irregular 3D lattice containing abdlft B00 elements. The particle diametérsary betweermin
anddmax = 2dmin With a uniform distribution by volume fractions.The palticzolume fraction isoP ~ 0.63. As in
our 2D LEM simulations, the matrix is distributed unifornmitythe form of bridges of varying thickness and section
between neighboring particles. The filling fraction depend the cross section of the bridges. This protocol allows
us to vary the matrix volume fraction continuously from 0 t870 The sample is displayed in Fig. 14.
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FIGURE 16. Probability density functions of normalized vertical sses for different values of stiffness rakityk™ and values
of the matrix volume fractiop™ in compression.
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FIGURE 17. Probability density functions of normalized vertical sses fop™ = 0.1 andkP /k™ = 50 in the particle and matrix
phases in comparison with that in the whole sample.

Fig. 15 displays a map of vertical stresses on a cut planérfeetvalues op™. We observe that the stresses are
more and more localized in the matrix bridges as the matriirae fraction is reduced. Figure 16 shows the vertical
stress pdf’s for three values kP /k™ and three values @™ under vertical compression with free lateral boundaries.
Two limits can be distinguished: (1) TH®mogeneous limitharacterized bp™ = 0.37 andkP = k™, corresponding
to a homogeneous material with no void and no particle (atesefi elastic contrast between particles and matrix);
(2) Thegranular limit characterized by large® and weak amount of matrix (hepge" = 0.1) basically distributed in
the form of small solid bonds between particles. The lattgresponds to a granular material with stiff particles as
generally assumed in DEM simulations. We see that, as exggettte stress distribution in the homogeneous limit is
the less broad one with a nearly gaussian shape. The stréasiy in this system reflects the metric disorder of the
underlying lattice. The distribution fg@™ = 0.1 andkP /k™ = 100 corresponds to the granular limit.

The strong stresses have a decreasing exponential digiribas in 2D packings in the granular limit with as
exponent increasing with matrix volume fraction. A secaydaeak is observed in the range of very weak stresses
in all cases where the particles are stiffer than the maliis peak reflects the weak stresses inside the matrix
bridges, as suggested by Fig. 17 where the distributionseprarately plotted for the stresses in the matrix and inside
the particles in the cagg™ = 0.1 andkP/k™ = 100. We see that the particles involve no stress peak. Thissge thus
a consequence of the low stiffness of the binding phase.

The distribution in the granular limit is practically thedadest one, and hence all distributions for all parameters
lie between those for the granular and homogeneous limitsp® = 0.23 andkP/k™ = 1 we have a porous material
with no mechanical contrast between the matrix and pasti¢terp™ = 0.37 andkP/k™ = 50 we have a granular
phase embedded in a matrix with no voids. In both these céisestress distribution is broader than that in the
homogeneous limit although the physical origins of thisanted inhomogeneity are different. We remark that,
for p™ = 0.1, increasing” /k™ from 50 to 100 has little influence on the stress distributionthe same way, for
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FIGURE 18. Scaled plot of the capillary force as a function of the gapvieen two particles for different values of the local
liquid volume\y, and size ratio according to the model proposed in this paper. Inset: Gagroét capillary bridge.

kP/k™M =50, increasing™ from 0.1 to 0.23 has practically no impact on the distribatio

LIQUID BONDING

In this section, we investigate force transmission in wangiar media composed of rigid particles interconnected by
capillary bridges. The action of the capillary bridges isdaled by a capillary force law and implemented in a 3D MD
code.

Numerical method

For the simulations of wet granular materials, we used the fhod with spherical particles and a capillary
force law. The total normal forc§, at each contact is the sum of a repulsive fofE@nd an attractive capillary force
fS. The latter is a function of the liquid bond parameters, ngrtiee gapd,, the liquid bond voluméy, the liquid
surface tensiogs, and the particle-liquid-gas contact an@lesee inset in Fig. 18. The capillary force can be calculated
by integrating the Laplace-Young equation [34, 35, 36]. ldeer, for efficient MD simulations, we need an explicit
expression of $ as a function of the liquid bond parameters.

We used an analytical form for the capillary force which idiviited by the data from direct integration of the
Laplace-Young equation both for polydisperse particl&3.[Bt leading order, the capillary forcly at contact, i.e. for
nh<0,is

fo=—kR (6)

whereR s a length depending on the particle refdiiandR; andk is given by [38, 39, 40]
K = 21mysc0s0. (7

A negative value oBy, corresponds to an overlap between the particles. The assumip that the overlap is small
compared to the particle diameters. The data obtained fimgatdntegration of the Laplace-Young equation show that
the geometric meaR = ,/RR; is more suited than the harmonic mea&RR; /(R + R;) proposed by Derjaguin for
polydisperse particles in the limit of small gaps (see bl@d]. We also note thaty in Eq. (6) is independent of the
bond liquid volumeév,,.

The adhesion forc at contact is the highest level of the capillary force. Thieladeclines as the gap increases.
The capillary bridge is stable as long&s< 7"® whered"®*is the debonding distance given by [42]

0\,,1/3
Fmax _ <1+ E) Vs 8)



Between these two limits, the capillary force falls off erpatially with &,:
f = foe ™, (9)

whereA is a length scale which should be a function\gfand the particle radii. The asymmetry due to unequal
particle sizes is taken into account through a function efrttio between particle radii. We set

r=maxR/Rj;R;/R). (10)

Dimensionally, a plausible expression/ofs

A =ch(r) (%) 1/2, (11)

wherecis a constant anddis a function only of . When introduced in Equations (11) and (9), this form yielasce fit
for the capillary force obtained from direct integratiortioé Laplace-Young equation by settiRg= 2R R; /(R +R;),
h(r) =r—1/2 andc ~ 0.9.

Figure 18 shows the plots of Eq. 9 for three different valdgh®liquid volumeév, and size ratio together with the
corresponding data from direct integration. The forcesnarenalized byk R and the lengths by. The data collapse
on the same cruve, indicating again that the fat&eand the expression df in Eq. (11) characterize correctly the
behavior of the capillary bridge.

Finally, the capillary force can be expressed in the folloyiorm:

—KR for <O
ff=< —kRe®*  for 0< <M | (12)
0 for oy > o

with

c{ 1R +1/R; )Vb}%- 13

v2 | maxR/Rj;Rj /R

In the simulations, the total liquid volume is distributedang all eligible particle pairs (the pairs with a gap below

the debonding distance, including the contact points) wpprtion to the reduced diameter of each pair. We also

assume that the particles are perfectly wettable fi.e.0. The choice of the liquid volume has no influence on the

value of the largest capillary force in the pendular staB}.[Bor our simulations, we chose a gravimetric water canten
of 0.007 so that the material is in the pendular state. The coafiicif friction isp = 0.4 for all simulations.

Distributions of bond forces

We consider force PDF'’s in a wet packing of 8000 spheres sitadlby the MD method fop,, = 0 Pa and
pm = 100 Pa. The confined sample was obtained by isotropic coinpaat a wet packing initially prepared with
pm = 0. The packing was then allowed to relax to equilibrium urtieraction of the applied pressure. This level of
confinement is high compared to the reference pregsutefy/(d) (pm/po = 0.5), yet not too high to mask fully the
manifestations of capillary cohesion.

Figure 19 shows the force networks in a narrow slice nearlgetiparticle diameters thick in both samples. The
tensile and compressive forces are represented by segofedifferent colors joining particle centers. As in dry
granular media, we observe a highly inhomogeneous disimibboth for tensile and compressive forces. The effect
of external compressive pressure is to reduce the fractidersile bonds. In the unconfined packing, the bond
coordination number (average number of liquid bonds per particle)~is6.1 including nearly 27 compressive
bonds and 33 tensile bonds. As we shall see below, these wet samplelvénalso a large number of weak forces
(fn ~ 0) corresponding to the contacts where capillary attragidalanced by elastic repulsion, ilkgdn + fo ~ 0.

Figure 20 displays the PDF of normal forces in tensile (neggand compressive (positive) ranges in the unconfined
packing pm = 0 Pa). We observe two nearly symmetrical parts decayingrexmitally from the center:

P(f,) O g 9wlfl/To, (14)
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FIGURE 19. Maps of tensile (green) and compressive (red) forces imdalyer in sampleSg (pm = 0 Pa) (a) and; (pm = 100
Pa) (b). Line thickness is proportional to the magnitudehefforce.

with oy, ~ 4 for both negative and positive forces, aiad= K Rnax WhereRmaxis the largest particle radius. In contrast
to dry granular media, where the distribution deviates fipurely exponential behavior for weak forces (section
), here the exponential behavior extends to the center ofliftebution. The tensile range is cut off § = —fp
corresponding to the largest capillary force. Althoughabafining stress is zero, positive forces as large fagcan
be found in the system. We also observe in Fig. 20 a distinek pentered ori, = 0 which is the average force for
zero confining pressure. The presence of this peak, regtdiftm the balance between capillary attraction and elastic
repulsion, suggests that a large number of weak forces ptpeeial role with respect to the statics and stability of
wet granular materials.

Figure 21 shows the PDF of normal forces in the confined pacRihe symmetry of the distribution arourfig= 0
is now broken compared to the unconfined case in Fig. 20. T$teliition is roughly exponential for both tensile
and compressive forces but the exponents are differentthg icase of solid cohesion at low matrix volume fraction
(section). In the same figure, the PDF of normal forces in gpdamithout capillary cohesion is shown. We see that
the exponent for compressive forces is nearly the same deeidry packing. Another feature of force distribution
observed in Fig. 21 is the presence of a distinct peak cahtareero force which was observed also for the case of
unconfined packing in Fig. 20. Hence, this peak reflects aifeatf force transmission in wet granular materials that

will be analyzed below.



FIGURE 20. Probability density function of normal forces normalizedtbe largest capillary forc§ at zero confining pressure.
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FIGURE 21. Probability density functions of normal forces normalizey the largest capillary forcdgy in the wet and dry
confined packings.

Particle pressures

In an unconfined assembly of dry rigid particles, no selésdes occur and the forces vanish at all contacts. However,
the presence of liquid bonds in a wet granular material iediensile and compressive forces whilst the average force
is zero. In other words, the grains keep together to formfassistained structure in the absence of confining stresses.
In general, various loading histories such as consolidadiadifferential particle swelling can induce self-stiesin
a cohesive packing [44]. In our system, the self-stresspsauring relaxation. This is obviously a consequence of
the tensile action of capillary bonds bridging the gaps lkeetwneighboring particles within the debonding distance.

For a local description of self-stresses we need to chaiaetthe stress transmission at the particle scale as the
smallest scale at which the force balance condition is deffoe rigid particles. Although the stress tensor is by
definition a macroscopic quantity, it can be shown that arvetgnt particle stress; can be defined for each particle
i of a granular packing in static equilibrium [33, 45, 46]:

1
(O-i)ab = \7| f{iij rg ) (15)
J

whererj; is the position of the contact-point of the for§g of particle j on particlei, anda andb design the Cartesian
componentsy; is the free volume of particlie the sum of the particle volume and a fraction of the poreaspac

_

\476—\/7

(16)
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FIGURE 22. Probability density function of particle pressures nolizead by reference pressupg (see text) in the unconfined
wet packing.

FIGURE 23. The unconfined wet packing with negative (white) and paosi{iMack) particle pressures.

whered; is the particle diameter, andis the solid fraction of the packing. The sum of particle ste=o; weighted by
the corresponding relative free volumégV tends to the Cauchy stress tensor as the number of particéesantrol
volumeV increases.

From particle stresses we get particle pressures:

1 3
pi = :—,)azl(ai)aa- (17)

Each particle can take on positive or negative pressures@iog to the forces exerted by neighboring particles. The
PDF of particle pressures is displayed in Fig. 22 for the aficed sample. The pressures have been normalized by a
reference pressum = fo/(d)2. The distribution is symmetric around and peaked on zersspre, and each part is
well fit by an exponential form. This symmetry in the struetof self-stresses must be contrasted with the asymmetric
distribution of forces (Fig. 20) due to the cutoff on ten$deces. Obviously, the exponential shape of particle press
distributions reflects statistically that of bond forcehisIdistribution extends to the centar= 0.

Zero particle pressure corresponds to a state where alpasticalanced under the combined action of tensile and
compressive forces. Such particle states are not margenaldnd they reflect a particular stress transmission in a wet
packing. The positive and negative particle pressures tmparate phases as observed in Fig. 23 where positive and



negative pressures are represented in black and whiteatasgly. Each phase percolates throughout the system. The
morphology of each phase is approximately filamentary wéthiable thickness and a large interface between them. A
detailed analysis of this structure shows that the pagtiatehe interface between the two phases have a weak pressure
and the largest negative or positive pressures are locatbd heart of each phase [46].

CONCLUSION

In this paper, the distributions of contact forces and stesvere investigated in cohesive and noncohesive granular
media by means of different numerical methods. The expaaidall-off of the number of strong forces and stresses is

a robust feature of the distributions in packings of diffénearticle shapes and size distributions with both liquid a
solid bonding. In contrast, the force probability densitythie range of weak forces and stresses was found to depend
on system parameters, taking different shapes from a pedikeibution to a decreasing power law distribution. For
wet granular media with a homogeneous distribution of tidaonds, we showed the nontrivial organization of patrticle
pressures in two separate percolating phases of tensileangressive particle pressures with an interphase at zero
pressure.

For the simulation of solid bonding, we used the lattice @lahmethod which provides a suitable framework
for the investigation of stress fields in complex granuldidsoinvolving a solid matrix sticking to the particles. By
coarse-graining the sub-particle stresses, we arriveddeasame contact force distributions as in DEM simulations
and experiments. Our data are consistent with the fact ieadlécreasing exponential distribution of strong forces is
a signature ofjranular disorder i.e. the disorder induced by a contiguous network of stiifticles. This signature
disappears in the homogeneous limit where there is no etifficontrast between the particle and matrix phases and
the porosity vanishes or when the particles are interpogety@here by the binding matrix. Our 3D simulations
evidence the two limits of homogeneous and granular digiohs. For different values of the matrix volume fraction
and particle/matrix stiffness ratio, the distributionsywhetween these two limits.
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