
HAL Id: hal-00690016
https://hal.science/hal-00690016v1

Submitted on 21 Apr 2012 (v1), last revised 24 Jan 2013 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TOWARDS A FASTER SYMBOLIC AGGREGATE
APPROXIMATION METHOD

Muhammad Marwan Muhammad Fuad, Pierre-François Marteau

To cite this version:
Muhammad Marwan Muhammad Fuad, Pierre-François Marteau. TOWARDS A FASTER SYM-
BOLIC AGGREGATE APPROXIMATION METHOD. ICSOFT 2010 - Fifth International Confer-
ence on Software and Data Technologies, Jul 2010, Athens, Greece. pp.305-310. �hal-00690016v1�

https://hal.science/hal-00690016v1
https://hal.archives-ouvertes.fr

TOWARDS A TIGHTER, MORE INTUITIVE SYMBOLIC
AGGREGATE APPROXIMATION METHOD

Keywords: Time Series Information Retrieval, Symbolic Representation of Time Series, Symbolic Aggregate
Approximation, Updated Minimum Distance.

Abstract: The similarity search problem is one of the main problems in time series data mining. Traditionally, this
problem was tackled by sequentially comparing the given query against all the time series in the database,
and returning all the time series that are within a predetermined threshold of that query. But the large size
and the high dimensionality of time series databases that are in use nowadays make that scenario inefficient
to tackle this problem. There are many representation techniques that aim at reducing the dimensionality of
time series so that the search can be handled faster at a lower-dimensional space level. Symbolic
representation is one of the promising techniques, because symbolic representation methods try to benefit
from the wealth of search algorithms used in bioinformatics and text mining communities. The symbolic
aggregate approximation (SAX) is one of the most competitive methods in the literature. SAX utilizes a
similarity measure, which is easy to compute because it is based on pre-computed distances obtained from
lookup tables. In this paper we present a new similarity distance that is as easy to compute as the original
similarity distance, it is also tighter because it uses updated lookup tables. In addition, it is more intuitive.
We conduct several experiments, which show that this new similarity distance gives better results than the
original one.

1 INTRODUCTION

Similarity search is a fundamental problem in
computer science. This problem has many
applications in multimedia databases,
bioinformatics, pattern recognition, text mining,
computer vision, medicine, data mining, machine
learning and so on. With the advert of the internet
and the increasing use of it, this problem has
received more attention from researchers. The
richness of information available on the internet
could not be manageable if search engines were not
present. The usefulness of information depends
highly not only on its quality, but also on the speed
at which it is retrieved, which, in turn, depends upon
the way it is represented and indexed. This all poses
questions on indexing, representation and retrieval
methods. Small databases that contain simple data
objects can be handled easily. But managing large

databases, like many of the databases in use today,
requires serious effort, especially when they contain
complex data types.

Another substantial change is the kind of queries
launched, which is, somehow, related to the two
latter changes; searching for data objects that are
identical to a given query in unstructured, weakly-
structured, or imprecise data bases, like many
databases in use today, may not be very meaningful.
Besides, in many cases the user may not be sure of
what they are looking for when they launch the
initial query. Hence range query, in which the user
is interested in retrieving all the data objects that are
within a predefined threshold of a given query, or k-
nearest neighbor, in which the user tries to retrieve
the k closest data objects to the query, have become
popular. All these problems make traditional
retrieving techniques inadequate that it is inevitable
to think of new ways to handle these databases.

Time series are data types that appear in many
applications, which vary from medicine through
science and technology to business and economics.
Time series data mining includes many tasks such as
classification, clustering, similarity search, motif
discovery, anomaly detection, and others. One key
to performing these tasks successfully is
representation methods that can represent the time
series efficiently and effectively. Another key is
indexing time series in appropriate structures, which
direct the query process towards regions in the
search space, where similar time series to the query
are likely to be found, which makes the retrieving
process faster.

Time series are high dimensional data types, so
even indexing structures can suffer from the so-
called “dimensionality curse”. One of the best
solutions to deal with this problem is to utilize a
dimensionality reduction technique to reduce the
dimensionality of these data objects, then to utilize a
suitable indexing structure on the reduced space.

There have been different suggestions to
represent time series. To mention a few; DFT
(Agrawal et al . 1993) and (Agrawal et al . 1995), DWT
(Chan and Fu 1999), SVD (Korn et al . 1997),
APCA (Keogh et al . 2001), PAA (Keogh et al .
2000) and (Yi and Faloutsos 2000), PLA(Morinaka
et al . 2001)...etc.

Among dimensionality reduction techniques,
symbolic representation has several advantages,
because it allows researchers to benefit from text-
retrieval algorithms and techniques (Keogh et al .
2001).

Similarity between two data objects can be
computed by means of a similarity distance. There
are quite a large number of similarity distances;
some are applied to a particular data type, while
others can be applied to different data types. Among
the different similarity distances, there are those that
can be used on symbolic data types. At first they
were available for data types whose representation is
naturally symbolic (DNA and proteins sequences,
textual data…etc). But later these symbolic
similarity distances were also applied to other data
types that can be transformed into strings by using
some symbolic representation technique.

 Of all the symbolic representation methods in
the times series data mining literature, the symbolic
aggregate approximation method (SAX) (Jessica et
al . 2003) stands out as one of the most powerful
methods. The main advantage of this method is that
the similarity distance that it uses is easy to
compute, because it uses statistical lookup tables. In
this paper we present an improved similarity

distance to be used with SAX. It has the same
advantages as the original similarity distance used in
SAX. But our new similarity distance gives better
results in different time series mining tasks

The rest of this paper is organized as follows: in
section 2 we present background on dimensionality
reduction, and on symbolic representation of time
series in general, and SAX in particular. The
proposed similarity distance is presented in section
3. In section 4 we present some of the results of the
different experiments we conducted. The conclusion
is presented in section 5.

2 BACKGROUND

2.1 Dimensionality Reduction

Handling high-dimensional data is difficult to
achieve. One of the main paradigms to overcome
this problem is to embed the data objects of the
original space into a lower dimensional space. Time
series are highly correlated data, so representation
methods that aim at reducing dimensionality by
projecting the original data onto lower dimensional
spaces and processing the query in those reduced
spaces is a scheme that is widely used in time series
data mining community.

When embedding the original space into a lower
dimensional space and performing the similarity
query in the transformed space, two main side-
effects may be encountered; false alarms, also called
false positivity, and false dismissals. False alarms are
data objects that belong to the response set in the
transformed space, but do not belong to the response
set in the original space. False dismissals are data
objects that the search algorithm excluded in the
transformed space, although they are answers to the
query in the original space. Generally, false alarms
are more tolerated than false dismissals, because a
post-processing scan is usually performed on the
results of the query in the transformed space to filter
out these data objects that are not valid answers to
the query in the original space. However, false
alarms can slow down the search time if they are too
many. False dismissals are a more serious problem
and they need more sophisticated procedures to
avoid them.

False alarms and false dismissals are dependent on
the transformation used in the embedding. If f is a
transformation from the original space

),(originaloriginal dS into another space

),(dtransformedtransforme dS then in order to guarantee
no false dismissals this transform should satisfy:

),())(),((2121 uudufufd originaldtransforme ≤ ,

originalSuu ∈∀ 21 , (1)

The above condition is known as the lower-
bounding lemma. (Yi and Faloutsos 2000)

If a transformation can make the two above
distances equal for all the data objects in the original
space, then similarity search produces no false
alarms or false dismissals. Unfortunately, such an
ideal transformation is very hard to find. Yet, we try
to make the above distances as close as possible.
The above condition can be written as:

1
),(

))(),((
0

21

21 ≤≤
uud

ufufd

original

dtransforme (2)

A tight transformation is one that makes the above
ratio as close as possible to 1.

2.2 Symbolic Representation

One of the dimensionality reduction schemes in time
series data mining is symbolic representation.
Symbolic representation of time series uses an
alphabet A (usually finite) to reduce the
dimensionality of the time series. This can be
defined formally as follows: Given a time series

ntttTS ,...,, 21= . The symbolic representation
scheme can be considered as a map

[] Attf kkji ∈→ αα,:
 (3)

Symbolic representation of time series has been a

hot research topic, because by using this scheme we
can not only reduce the dimensionality of time
series, but can also benefit from the numerous
algorithms used in bioinformatics and text data
mining. However, first symbolic representation
methods were ad hoc and did not give satisfactory
results. But later more sophisticated methods
emerged.

The symbolic aggregate approximation method
(SAX) is one of the most powerful methods of
symbolic representation of time series. SAX is based
on the fact that normalized time series have highly
Gaussian distribution (Larsen and Marx 1986), so by
determining the breakpoints that correspond to the

alphabet size, one can obtain equal sized areas under
the Gaussian curve.

SAX is applied in the following steps: in the first
step the time series are normalized. In the second
step, the dimensionality of the time series is reduced.
This is obtained by using the PAA (Piecewise
Aggregate Approximation) (Keogh, et al . 2000). In
PAA the times series is divided into equal sized
frames and the mean value of the points within the
frame is computed. The lower dimensional vector of
the original time series is the vector whose
components are the means of all successive frames.
In the third step, the PAA representation of the time
series is discretized. This is achieved by determining
the number and the location of the breakpoints. The
number of breakpoints is related to the desired
alphabet size (which is chosen by the user), i.e.
alphabet_size=number(breakpoints)+1 .
Their locations are determined by statistical lookup
tables, so that these breakpoints produce equal-sized
areas under the Gaussian curve. The interval
between two successive breakpoints is assigned to a
symbol of the alphabet, and each segment of the
PAA that lies within that interval is discretized by
that symbol. The last step of SAX is using the
following similarity distance;

2

1
)),((),(

∧

=

∧∧∧

∑≡ i

w

i
i tsdist

w
nTSMINDIST (4)

Where n is the length of the original time series, w is
the length of the strings (the number of the frames),
∧

S and
∧

T are the symbolic representations of the two
time series S andT respectively, and where the
function)(dist is implemented by using the
appropriate lookup table.

We also need to mention that the similarity distance
used in PAA is:

∑=
−=

N

i
yx

N
nYXd

1
2)(),((5)

Where n is the length of the time series, N is the
number of frames. It is proven in (Keogh, et al . 2000)
and (Yi and Faloutsos 2000) that the above
similarity distance is a lower bounding of the
Euclidean distance applied in the original space of
time series . This results in the fact that MINDIST

 (1)The original time series

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(2) Converting the time series to PAA

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(3) Choosing the breakpoints

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(4) Discretization the PAA

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a

a

c

d d d

b b

 aacdddbb

Figure 1: The different steps of SAX

is also a lower bounding of the Euclidean distance,
because it is a lower bounding of the similarity
distance used in PAA. This guarantees no false
dismissals. Figure.1 illustrates the different steps of
SAX.

3 THE UPDATED MINIMUM
DISTANCE (UMD)

The main advantage of SAX, which makes it fast to
apply, is that the similarity distance it uses is easy to
compute, because it is based on pre-computed
distances obtained from corresponding lookup
tables. However, MINDIST has a main drawback;
in order to be lower bounding this similarity distance
ignores all the distances between any successive
symbols of the alphabet and considers them to be
zero. For instance, the lookup table of the MINDIST
for an alphabet size of 3 is the one shown in Table 1.

Table 1: The lookup table of MINDIST for alphabet size
=3. All values between any successive symbols are equal
to zero. The breakpoints in this case (obtained from
statistical tables) are: -0.43 and 0.43. The distance
between them is 0.86

 a b c

a 0 0 0.86

b 0 0 0

c 0.86 0 0

This has two consequences: the first is that
MINDIST is not tight enough, which produces many
false alarms. The second consequence can be shown
by the following example. Let the symbolic
representing of the five time series 1TS , 2TS ,

3TS , 4TS , 5TS using SAX with alphabet size =4
be : aabddTS =1 , bacdcTS =2 ,

abbcdTS =3 , bacddTS =4 , bbbdcTS =5 .
The MINDIST between any two of these five times
series is zero, which is not only unintuitive, since no
two time series of these five are identical, but this
also produces many false alarms.

In this section we present a modified minimum
distance, which remedies the above problems. The
new minimum distance has all the advantages of the
original distance, in that it is also a lower bounding
of the Euclidean distance, and it is also fast to
compute, as it uses pre-computed distances. But the
new minimum distance is tighter. It is also intuitive,
in that it does not ignore the distances between

 c c

 c
 0.5 value3

 value1 b
 b b
 b value0
 b
 value2 b b

 -0.5 value4 a

 a

Figure 2: The PAA representation of two time series: TS1
=cbcbab (bold black) and TS2=bcbbab (bold grey). The
solid arrows show the ignored distances and the dashed
arrow shows the only distance considered by MINDIST :
dist (a,c)=value0 (0.86)

successive symbols.
The principal of our new minimum distance,

which we call the updated minimum distance
(UMD) is to recover the distances between any
successive symbols, which were ignored in
MINDIST. Figure 2 shows an example of the
ignored distances in the case of alphabet size =3, and
which are recovered in UMD.
Figure 2 shows that in the case of alphabet size =3
the breakpoints are -0.43 and 0.43. In this case the
only non-zero distance according to MINDIST is
dist (a,c) which is equal to 0.86 (the distance
indicated by the dashed arrow). The distances
represented by the solid arrows are the distances
between the minima or the maxima of all the
symbols of the alphabet and the corresponding
breakpoint. These distances are ignored in
MINDIST, but as we can see they are not equal to
zero. So dist(a,b), which was zero in MINDIST can
be updated to become value2+value4 , and dist (b,c)
which was also zero in MINDIST can be updated to
become value1+value3, and even dist (a,c) is
updated to become value4+value 3+value0 (value 0
is the original value). Lookup tables of different
alphabet sizes are updated in a like manner.
Obviously, this update of lookup tables results in a
tighter similarity distance. For instance, the lookup
table shown at the beginning of this section can be
updated to become the one shown in Table2.

We can easily notice that this new distance is a
lower bounding of the PAA distance presented in (5)
in section 2.2, since we take the closest distance
between two successive symbols among all the
distances of all the PAA segments of these two

symbols. As a result, our new distance is also a
lower bounding of the Euclidean distance (c.f
section 2.2). This is the same property that
MINDIST has.

Table 2: The updated lookup table for alphabet size =3.
We can see that the distances between successive symbols
are no longer equal to zero. And the distance dist (a,c) is
tighter

 a b c

a

 0

value2+
value4

0.86+
value4+
value3

b

value2+
value4

 0

Value1+
Value3

c

0.86+
value4+
value3

Value1+
Value3

 0

The other consequence of this update is that

UMD, which is based on the updated lookup tables,
is intuitive, because it gives non-zero values to
successive symbols, so the UMD of any two of the
five time series presented at the beginning of this
section is not zero, which is what we expect from
any similarity distance applied to these time series
because they are not identical.

In order to obtain the minimum and the maximum
values of each symbol, the SAX algorithm is
modified so that at the step where the different
segments of the PAA are compared against the
breakpoints to decide what symbol is used to
discretize that segment, at that step we modify SAX
so that it keeps a record of the minimum and
maximum values of each segment of that time series.
This is performed offline, so it does not include any
extra cost at query time. Then when comparing two
time series, we take the minimum (maximum) that
corresponds to the same symbol of the two times
series to find the mutual minimum (maximum,
respectively) that corresponds to each symbol. These
minima and maxima are used to update the lookup
tables. The update process includes very few
addition operations (three for alphabet size= 3, for
instance), whose cost is very low compared with the
cost of computing the distance. So UMD is as fast as
MINDIST.

So, as we can see, the cost of UMD is a little bit
higher at the indexing phase, which is not important,
but it has the same complexity as MINDIST at the
retrieval phase

4 EXPERIMENTS

We conducted extensive experiments on the
proposed similarity distance. In our experiments we
tested UMD on all the 20 data sets available at UCR
(UCR Time Series datasets) and for all alphabet
sizes, which vary between 3 (the least possible size
that was used to test MINDIST) to 20 (the largest
possible alphabet size). The size of these data sets
varies between 28 (Coffee) and 6164 (wafer). The
length of the time series varies between 60
(Synthetic Control) and 637 (Lightning-2). So these
data sets are very diverse. In all our experiments we
took the Euclidean distance as the reference
distance, because this distance is widely used in the
time series data mining community (Keogh and
Kasetty 2002 and Reinert et al . 2000), even though
it is has a few inconveniences; it is sensitive to noise
and to shifts on the time axis. It is also applied to
series of identical lengths only (Megalooikonomou
et al . 2005).

4.1 Tightness

As mentioned in section 2.1, tightness of the
similarity distances enhances the search process,
because it minimizes the number of false alarms. As
a result, it decreases the post processing time.

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

 CBF FaceAll wafer TwoPatterns yoga SwedishLeaf

%
 o

f t
he

 E
uc

lid
ea

n
D

is
ta

nc
e

 UMD
 MINDIST

Figure 3: Comparison of the tightness of UMD with the
tightness of MINDIST in 6 data sets and for alphabet
size=3. The figure shows that UMD is tighter than
MINDIST.

We compared the tightness of UMD with the
tightness of MINDIST, for all the datasets and for all
values of the alphabet size. In all the experiments,
UMD was tighter than MINDIST. In Figure 3 and
Figure 4, we present some of the results we obtained
for alphabet size=3 and for alphabet size=10,
respectively. We chose to report these data sets
because they are the largest data sets in the UCR

archive, so these results are the most significant
statistically.

The experiments conducted on other data sets and
for all values of the alphabet size, in addition to the
other values of the alphabet size on the data sets
presented in Figures 3 and 4, all gave similar results.

1 2 3 4 5 6
0

10

20

30

40

50

60

70

80

 CBF FaceAll wafer TwoPatterns yoga SwedishLeaf

%
 o

f t
he

 E
uc

lid
ea

n
D

is
ta

nc
e

UMD
MINDIST

Figure 4: Comparison of the tightness of UMD with the
tightness of MINDIST in 6 data sets and for alphabet
size=10. The figure shows that UMD is tighter than
MINDIST.

4.2 Classification

Classification is one of the main tasks in time series
data mining. We tested the proposed similarity
distance in a classification task based on the first
nearest-neighbor rule on all the data sets available at
UCR. We used leaving-one-out cross validation.

In order to make a fair comparison, we used the
same compression ratio (the number of points used
to represent one segment in PAA) that was used to
test SAX with MINDIST (i.e.1 to 4).

4.2.1 The First Experiment

The first version of SAX used alphabet size that
varies between 3 and 10. In the first classification
experiment we conducted we used an alphabet size
that varies between 3 and 10. We tested all the data
sets in the UCR archive . We start by varying the
alphabet size between 3 and 10 on the training set of
each data set to find the optimal value of the
alphabet size of that data set; i.e. the value that
minimizes the classification error rate. Then we use
that optimal alphabet size on the testing set of that
data set. Table 3 shows the results of our
experiment (There is no training phase for the
Euclidian distance). The best result between UMD
and MINDIST is highlighted. The results show that
for this range of alphabet size UMD outperforms
MINDIST in 14 data sets, and MINDIST
outperforms UMD in 5 data sets, and in one case
they both give the same result.

Table 3: The error rate of UMD and MINDIST for α (the
alphabet size) between 3 and 10. Column 2 shows the
error rate of the Euclidean distance

 1-NN
Euclidean
Distance

UMD
(α between
3 and 10)

MINDIST
(α between
3 and 10)

Synthetic
Control

0.12 0.007

0.033

Gun-Point

0.087 0.213

0.233

CBF 0.148 0.131

0.104

Face (all) 0.286 0.306

0.319

OSULeaf 0.483 0.471

0.475

Swedish-
Leaf

0.213 0.291

0.490

50words 0.369 0.338

0.327

Trace 0.24 0.34

0.42

Two_
Patterns

0.09 0.076

0.081

Wafer 0.005 0.004

0.004

Face (four) 0.216 0.273

0.239

Lighting-2 0.246 0.230

0.213

Lighting-7 0.425 0.411

0.493

ECG200 0.12 0.11

0.09

Adiac 0.389 0.634

0.903

Yoga 0.170 0.193

0.199

Fish 0.217 0.366

0.514

Beef 0.467 0.367

0.533

Coffee 0.25 0.179

0.464

OliveOil 0.133 0.367

0.833

MEAN 0.234 0.265 0.348

STD 0.134 0.158 0.247

It is worth to mention that for the Euclidian
distance, there is no compression of information, so
in some cases it may give better results than
symbolic, compressed distances.

The average error of UMD over all the datasets
and for this range of alphabet size is smaller than
that of MINDIST. The standard deviation for UMD
is also smaller than that of MINDIST. The
significance of this statistical parameter is that when
the standard deviation is small, the similarity
distance is more robust, and can be applied to
different kinds of datasets

4.2.2 The Second Experiment

SAX appeared in two versions; in the first one the
average size varied in the interval (3:10), and in the
second one the alphabet size varied in the interval
(3:20). So we also conducted another experiment,
where the alphabet size ranged in the interval (3:20),
and on all the datasets in the UCR archive. We
proceeded in the same way; we start by varying the
alphabet size between 3 and 20 on the training set to
find the optimal value of the alphabet size of that
data set. Then we use this optimal alphabet size on
the testing set. The results of our second experiment
are shown in table 4 (We did not report the results of
the Euclidean distance, because they are the same as
in table 3). The results in table 4 show that UMD
outperforms MINDIST in 14 datasets and MINDIST
outperforms UMD in 4 datasets, and in 2 data sets
they both give the same results.

In this experiment too, the mean and the standard
deviation of UMD is better than that of MINDIST

The results of the two experiments show that the
general performance of UMD is better than that of
MINDIST

5 CONCLUSION AND
PERSPECTIVES

In this paper we presented a new similarity distance
to be used with the symbolic aggregate
approximation (SAX). The new distance UMD
improves the performance of SAX compared with
the original similarity distance MINDIST used with
SAX. We conducted several experiments of times
series data mining tasks. The results obtained show
that SAX with UMD gives better results than SAX
with MINDIST. Another interesting feature of the
new similarity distance is that it as fast to compute
as the original one

Table 4: The error rate of UMD and MINDIST for α (the
alphabet size) between 3 and 20.

 UMD
(α between 3 and
20)

 MINDIST
(α between 3 and
20)

Synthetic
Control

0.003 0.023

Gun-Point

0.14 0.127

CBF 0.054 0.073

Face (all) 0.305 0.305

OSULeaf 0.471 0.475

Swedish-
Leaf

0.242 0.253

50words 0.345 0.334

Trace 0.27 0.35

Two_
Patterns

0.065 0.066

Wafer 0.004 0.004

Face (four) 0.273 0.239

Lighting-2 0.229 0.148

Lighting-7 0.411 0.425

ECG200 0.11 0.13

Adiac 0.494 0.867

Yoga 0.172 0.181

Fish 0.257 0.263

Beef 0.333 0.433

Coffee 0.071 0.143

OliveOil 0.3 0.833

MEAN 0.227 0.284

STD 0.147 0.237

The future work can be improving this distance by
tracing other values in the original time series. This
can make the distance even tighter, which is what
we are working on now.

Another direction of future work focuses on
modifying SAX to benefit more from UMD. We
think this can be achieved by using a representation
method other than PAA. This may include more
calculations or more storage space at indexing time,
but it could give better results

REFERENCES

Agrawal, R., Faloutsos, C., & Swami, A. 1993: Efficient

similarity search in sequence databases”.

Proceedings of the 4th Conf. on Foundations of Data

Organization and Algorithms.

Agrawal, R., Lin, K. I., Sawhney, H. S. and Shim. 1995,

K,.: Fast similarity search in the presence of noise,

scaling, and translation in time-series databases, in

Proceedings of the 21st Int'l Conference on Very

Large Databases. Zurich, Switzerland, pp. 490-501.

Chan, K. & Fu, A. W. 1999: Efficient Time Series

Matching by Wavelets. In proc. of the 15th IEEE

Int'l Conf. on Data Engineering. Sydney, Australia,

Mar 23-26. pp 126-133..

Jessica Lin, Eamonn J. Keogh, Stefano Lonardi, Bill

Yuan-chi Chiu. 2003: A symbolic representation of

time series, with implications for streaming

algorithms. DMKD 2003: 2-11.

Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra.

2000: Dimensionality reduction for fast similarity

search in large time series databases. J. of Know. and

Inform. Sys.

Keogh, E,. Chakrabarti, K,. Pazzani, M. & Mehrotra.

2001: Locally adaptive dimensionality reduction for

similarity search in large time series databases.

SIGMOD pp 151-162 .

Keogh, E. & Kasetty, S. 2002.. On the Need for Time

Series Data Mining Benchmarks: A Survey and

Empirical Demonstration. In proceedings of the 8th

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. July 23 -

26, 2002. Edmonton, Alberta, Canada. pp 102-111.

Korn, F., Jagadish, H & Faloutsos. C. 1997: Efficiently

supporting ad hoc queries in large datasets of time

sequences. Proceedings of SIGMOD '97, Tucson,

AZ, pp 289-300.

Larsen, R. J. & Marx, M. L. 1986. An Introduction to

Mathematical Statistics and Its Applications.

Prentice Hall, Englewood, Cliffs, N.J. 2nd Edition.

Megalooikonomou, V., Wang, Q., Li, G. & Faloutsos, C

2005. Multiresolution Symbolic Representation of

Time Series. In proceedings of the 21st IEEE

International Conference on Data Engineering

(ICDE). Tokyo, Japan. Apr 5-9. .

Morinaka, Y., Yoshikawa, M. , Amagasa, T., and

Uemura, S 2001.: The L-index: An indexing

structure for efficient subsequence matching in time

sequence databases. In Proc. 5th PacificAisa Conf.

on Knowledge Discovery and Data Mining, pages

51-60 .

Reinert, G., Schbath, S. & Waterman, M. S. 2000

Probabilistic and Statistical Properties of Words: An

Overview. Journal of Computational. Biology. Vol.

7, pp 1-46.

Yi, B,K., & Faloutsos, C. 2000: Fast time sequence

indexing for arbitrary Lp norms. Proceedings of the

26st International Conference on Very Large

Databases, Cairo, Egypt .

UCR Time Series datasets

 http://www.cs.ucr.edu/~eamonn/time_series_data/

