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Abstract: The similarity search problem is one of the main problems in time series data mining. Traditionally, this 
problem was tackled by sequentially comparing the given query against all the time series in the database, 
and returning all the time series that are within a predetermined threshold of that query. But the large size 
and the high dimensionality of time series databases that are in use nowadays make that scenario inefficient 
to tackle this problem. There are many representation techniques that aim at reducing the dimensionality of 
time series so that the search can be handled faster at a lower-dimensional space level. Symbolic 
representation is one of the promising techniques, because symbolic representation methods try to benefit 
from the wealth of search algorithms used in bioinformatics and text mining communities. The symbolic 
aggregate approximation (SAX) is one of the most competitive methods in the literature. SAX utilizes a 
similarity measure, which is easy to compute because it is based on pre-computed distances obtained from 
lookup tables. In this paper we present a new similarity distance that is as easy to compute as the original 
similarity distance, it is also tighter because it uses updated lookup tables. In addition, it is more intuitive. 
We conduct several experiments, which show that this new similarity distance gives better results than the 
original one. 

1 INTRODUCTION 

Similarity search is a fundamental problem in 
computer science. This problem has many 
applications in multimedia databases, 
bioinformatics, pattern recognition, text mining, 
computer vision, medicine, data mining, machine 
learning and so on. With the advert of the internet 
and the increasing use of it, this problem has 
received more attention from researchers. The 
richness of information available on the internet 
could not be manageable if search engines were not 
present. The usefulness of information depends 
highly not only on its quality, but also on the speed 
at which it is retrieved, which, in turn, depends upon 
the way it is represented and indexed. This all poses 
questions on indexing, representation and retrieval 
methods. Small databases that contain simple data 
objects can be handled easily. But managing large 

databases, like many of the databases in use today, 
requires serious effort, especially when they contain 
complex data types.  

Another substantial change is the kind of queries 
launched, which is, somehow, related to the two 
latter changes; searching for data objects that are 
identical to a given query in unstructured, weakly-
structured, or imprecise data bases, like many 
databases in use today, may not be very meaningful. 
Besides, in many cases the user may not be sure of 
what they are looking for when they launch the 
initial query.  Hence range query, in which the user 
is interested in retrieving all the data objects that are 
within a predefined threshold of a given query, or k-
nearest neighbor, in which the user tries to retrieve 
the k closest data objects to the query, have become 
popular. All these problems make traditional 
retrieving techniques inadequate that it is inevitable 
to think of new ways to handle these databases. 



 

Time series are data types that appear in many 
applications, which vary from medicine through 
science and technology to business and economics. 
Time series data mining includes many tasks such as 
classification, clustering, similarity search, motif 
discovery, anomaly detection, and others. One key 
to performing these tasks successfully is 
representation methods that can represent the time 
series efficiently and effectively. Another key is 
indexing time series in appropriate structures, which 
direct the query process towards regions in the 
search space, where similar time series to the query 
are likely to be found, which makes the retrieving 
process faster. 

Time series are high dimensional data types, so 
even indexing structures can suffer from the so-
called “dimensionality curse”. One of the best 
solutions to deal with this problem is to utilize a 
dimensionality reduction technique to reduce the 
dimensionality of these data objects, then to utilize a 
suitable indexing structure on the reduced space.      

There have been different suggestions to 
represent time series. To mention a few; DFT 
(Agrawal et al . 1993) and (Agrawal et al . 1995), DWT 
(Chan and Fu  1999), SVD (Korn et al . 1997), 
APCA (Keogh et al . 2001), PAA (Keogh et al . 
2000) and ( Yi and Faloutsos  2000), PLA( Morinaka  
et al . 2001)...etc. 

Among dimensionality reduction techniques, 
symbolic representation has several advantages, 
because it allows researchers to benefit from text-
retrieval algorithms and techniques (Keogh et al . 
2001).  

Similarity between two data objects can be 
computed by means of a similarity distance. There 
are quite a large number of similarity distances; 
some are applied to a particular data type, while 
others can be applied to different data types. Among 
the different similarity distances, there are those that 
can be used on symbolic data types. At first they 
were available for data types whose representation is 
naturally symbolic (DNA and proteins sequences, 
textual data…etc). But later these symbolic 
similarity distances were also applied to other data 
types that can be transformed into strings by using 
some symbolic representation technique.  

 Of all the symbolic representation methods in 
the times series data mining literature, the symbolic 
aggregate approximation method (SAX) (Jessica et 
al . 2003) stands out as one of the most powerful 
methods. The main advantage of this method is that 
the similarity distance that it uses is easy to 
compute, because it uses statistical lookup tables. In 
this paper we present an improved similarity 

distance to be used with SAX. It has the same 
advantages as the original similarity distance used in 
SAX. But our new similarity distance gives better 
results in different time series mining tasks  

The rest of this paper is organized as follows: in 
section 2 we present background on dimensionality 
reduction, and on symbolic representation of time 
series in general, and SAX in particular. The 
proposed similarity distance is presented in section 
3. In section 4 we present some of the results of the 
different experiments we conducted. The conclusion 
is presented in section 5. 

2 BACKGROUND 

2.1 Dimensionality Reduction 

 
Handling high-dimensional data is difficult to 
achieve. One of the main paradigms to overcome 
this problem is to embed the data objects of the 
original space into a lower dimensional space. Time 
series are highly correlated data, so representation 
methods that aim at reducing dimensionality by 
projecting the original data onto lower dimensional 
spaces and processing the query in those reduced 
spaces is a scheme that is widely used in time series 
data mining community.  

When embedding the original space into a lower 
dimensional space and performing the similarity 
query in the transformed space, two main side-
effects may be encountered; false alarms, also called 
false positivity, and false dismissals. False alarms are 
data objects that belong to the response set in the 
transformed space, but do not belong to the response 
set in the original space. False dismissals are data 
objects that the search algorithm excluded in the 
transformed space, although they are answers to the 
query in the original space. Generally, false alarms 
are more tolerated than false dismissals, because a 
post-processing scan is usually performed on the 
results of the query in the transformed space to filter 
out these data objects that are not valid answers to 
the query in the original space. However, false 
alarms can slow down the search time if they are too 
many. False dismissals are a more serious problem 
and they need more sophisticated procedures to 
avoid them.                          

False alarms and false dismissals are dependent on 
the transformation used in the embedding. If f is a 
transformation from the original space 

),( originaloriginal dS into another space 



 

),( dtransformedtransforme dS then in order to guarantee 
no false dismissals this transform should satisfy: 
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The above condition is known as the lower-
bounding lemma. ( Yi and Faloutsos  2000) 

If a transformation can make the two above 
distances equal for all the data objects in the original 
space, then similarity search produces no false 
alarms or false dismissals. Unfortunately, such an 
ideal transformation is very hard to find. Yet, we try 
to make the above distances as close as possible. 
The above condition can be written as:  
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A tight transformation is one that makes the above 
ratio as close as possible to 1. 

2.2 Symbolic Representation 

One of the dimensionality reduction schemes in time 
series data mining is symbolic representation. 
Symbolic representation of time series uses an 
alphabet A  (usually finite) to reduce the 
dimensionality of the time series. This can be 
defined formally as follows: Given a time series 

ntttTS ,...,, 21= . The symbolic representation 
scheme can be considered as a map  

[ ] Attf kkji ∈→ αα,:
             (3) 

                  
Symbolic representation of time series has been a 

hot research topic, because by using this scheme we 
can not only reduce the dimensionality of time 
series, but can also benefit from the numerous 
algorithms used in bioinformatics and text data 
mining. However, first symbolic representation 
methods were ad hoc and did not give satisfactory 
results. But later more sophisticated methods 
emerged.  

The symbolic aggregate approximation method 
(SAX) is one of the most powerful methods of 
symbolic representation of time series. SAX is based 
on the fact that normalized time series have highly 
Gaussian distribution (Larsen and Marx 1986), so by 
determining the breakpoints that correspond to the 

alphabet size, one can obtain equal sized areas under 
the Gaussian curve.   

SAX is applied in the following steps: in the first 
step the time series are normalized. In the second 
step, the dimensionality of the time series is reduced. 
This is obtained by using the PAA (Piecewise 
Aggregate Approximation) ( Keogh, et al . 2000). In 
PAA the times series is divided into equal sized 
frames and the mean value of the points within the 
frame is computed. The lower dimensional vector of 
the original time series is the vector whose 
components are the means of all successive frames. 
In the third step, the PAA representation of the time 
series is discretized. This is achieved by determining 
the number and the location of the breakpoints. The 
number of breakpoints is related to the desired 
alphabet size (which is chosen by the user), i.e.  
alphabet_size=number(breakpoints)+1 .  
Their locations are determined by statistical lookup 
tables, so that these breakpoints produce equal-sized 
areas under the Gaussian curve. The interval 
between two successive breakpoints is assigned to a 
symbol of the alphabet, and each segment of the 
PAA that lies within that interval is discretized by 
that symbol. The last step of SAX is using the 
following similarity distance; 
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Where n is the length of the original time series, w is 
the length of the strings (the number of the frames), 
∧

S and
∧

T are the symbolic representations of the two 
time series  S andT  respectively, and where the 
function )(dist  is implemented by using the 
appropriate lookup table.  

 
We also need to mention that the similarity distance 
used in PAA is: 
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Where n is the length of the time series, N is the 
number of frames. It is proven in ( Keogh, et al . 2000) 
and (Yi and Faloutsos 2000) that the above 
similarity distance is a lower bounding of the 
Euclidean distance applied in the original space of 
time series . This results in the fact that MINDIST  
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(2) Converting the time series to PAA 
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(3) Choosing the breakpoints 
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(4) Discretization the PAA 

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

a

a

c

d d d

b b

 
 

 
                            aacdddbb 

 

Figure 1: The different steps of SAX 

is also a lower bounding of the Euclidean distance, 
because it is a lower bounding of the similarity 
distance used in PAA. This guarantees no false 
dismissals. Figure.1 illustrates the different steps of 
SAX. 

3 THE UPDATED MINIMUM 
DISTANCE (UMD) 

The main advantage of SAX, which makes it fast to 
apply, is that the similarity distance it uses is easy to 
compute, because it is based on pre-computed 
distances obtained from corresponding lookup 
tables.  However, MINDIST has a main drawback; 
in order to be lower bounding this similarity distance 
ignores all the distances between any successive 
symbols of the alphabet and considers them to be 
zero. For instance, the lookup table of the MINDIST 
for an alphabet size of 3 is the one shown in Table 1.   

Table 1: The lookup table of MINDIST for alphabet size 
=3. All values between any successive symbols are equal 
to zero. The breakpoints in this case (obtained from 
statistical tables) are: -0.43 and 0.43. The distance 
between them is 0.86 

 a b c 

a 0 0 0.86 

b 0 0 0 

c 0.86 0 0 

 
This has two consequences: the first is that 
MINDIST is not tight enough, which produces many 
false alarms. The second consequence can be shown 
by the following example. Let the symbolic 
representing of the five time series 1TS , 2TS , 

3TS , 4TS , 5TS  using SAX with alphabet size =4 
be : aabddTS =1 , bacdcTS =2 ,  

abbcdTS =3 , bacddTS =4 , bbbdcTS =5 . 
The MINDIST between any two of these five times 
series is zero, which is not only unintuitive, since no 
two time series of these five are identical, but this 
also produces many false alarms.  

In this section we present a modified minimum 
distance, which remedies the above problems. The 
new minimum distance has all the advantages of the 
original distance, in that it is also a lower bounding 
of the Euclidean distance, and it is also fast to 
compute, as it uses pre-computed distances. But the 
new minimum distance is tighter. It is also intuitive, 
in that it does not ignore the distances between 
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Figure 2: The PAA representation of two time series: TS1 
=cbcbab (bold black) and  TS2=bcbbab (bold grey). The 
solid arrows show the ignored distances and the dashed 
arrow shows the only distance considered by MINDIST : 
dist (a,c)=value0 (0.86) 

successive symbols. 
The principal of our new minimum distance, 

which we call the updated minimum distance 
(UMD) is to recover the distances between any 
successive symbols, which were ignored in 
MINDIST. Figure 2 shows an example of the 
ignored distances in the case of alphabet size =3, and 
which are recovered in UMD.  
Figure 2 shows that in the case of alphabet size =3 
the breakpoints are -0.43 and 0.43. In this case the 
only non-zero distance according to MINDIST is 
dist (a,c) which is equal to 0.86 (the distance 
indicated by the dashed arrow). The distances 
represented by the solid arrows are the distances 
between the minima or the maxima of all the 
symbols of the alphabet and the corresponding 
breakpoint. These distances are ignored in 
MINDIST, but as we can see they are not equal to 
zero. So dist(a,b), which was zero in MINDIST can 
be updated to become value2+value4 , and dist (b,c) 
which was also zero in MINDIST can be updated to 
become value1+value3, and even dist (a,c) is 
updated to become value4+value 3+value0 (value 0 
is the original value). Lookup tables of different 
alphabet sizes are updated in a like manner. 
Obviously, this update of lookup tables results in a 
tighter similarity distance. For instance, the lookup 
table shown at the beginning of this section can be 
updated to become the one shown in Table2.  

We can easily notice that this new distance is a 
lower bounding of the PAA distance presented in (5) 
in section 2.2, since we take the closest distance 
between two successive symbols among all the 
distances of all the PAA segments of these two 

symbols.  As a result, our new distance is also a 
lower bounding of the Euclidean distance (c.f 
section 2.2). This is the same property that 
MINDIST has.  

Table 2: The updated lookup table for alphabet size =3. 
We can see that the distances between successive symbols 
are no longer equal to zero. And the distance dist (a,c) is 
tighter  

     a     b     c 

 
a 

 
   0 

 
value2+ 
value4 

0.86+    
value4+ 
value3 

 
b 

 
value2+ 
value4 

 
   0 

 
Value1+ 
Value3 

 
c 

0.86+    
value4+ 
value3 

 
Value1+ 
Value3 

 
   0 

 
The other consequence of this update is that 

UMD, which is based on the updated lookup tables, 
is intuitive, because it gives non-zero values to 
successive symbols, so the UMD of any two of the 
five time series presented at the beginning of this 
section is not zero, which is what we expect from 
any similarity distance applied to these time series 
because they are not identical.  

In order to obtain the minimum and the maximum 
values of each symbol, the SAX algorithm is 
modified so that at the step where the different 
segments of the PAA are compared against the 
breakpoints to decide what symbol is used to 
discretize that segment, at that step we modify SAX 
so that it keeps a record of the minimum and 
maximum values of each segment of that time series. 
This is performed offline, so it does not include any 
extra cost at query time. Then when comparing two 
time series, we take the minimum (maximum) that 
corresponds to the same symbol of the two times 
series to find the mutual minimum (maximum, 
respectively) that corresponds to each symbol. These 
minima and maxima are used to update the lookup 
tables. The update process includes very few 
addition operations (three for alphabet size= 3, for 
instance), whose cost is very low compared with the 
cost of computing the distance. So UMD is as fast as 
MINDIST.  

So, as we can see, the cost of UMD is a little bit 
higher at the indexing phase, which is not important, 
but it has the same complexity as MINDIST at the 
retrieval phase 



 

4 EXPERIMENTS 

We conducted extensive experiments on the 
proposed similarity distance. In our experiments we 
tested UMD on all the 20 data sets available at UCR 
(UCR Time Series datasets) and for all alphabet 
sizes, which vary between 3 (the least possible size 
that was used to test MINDIST) to 20 (the largest 
possible alphabet size).  The size of these data sets 
varies between 28 (Coffee) and 6164 (wafer). The 
length of the time series varies between 60 
(Synthetic Control) and 637 (Lightning-2). So these 
data sets are very diverse. In all our experiments we 
took the Euclidean distance as the reference 
distance, because this distance is widely used in the 
time series data mining community (Keogh and 
Kasetty 2002 and Reinert et al . 2000), even though 
it is has a few inconveniences; it is sensitive to noise 
and to shifts on the time axis. It is also applied to 
series of identical lengths only (Megalooikonomou 
et al . 2005). 

4.1 Tightness 

As mentioned in section 2.1, tightness of the 
similarity distances enhances the search process, 
because it minimizes the number of false alarms. As 
a result, it decreases the post processing time.  
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Figure 3: Comparison of the tightness of UMD with the 
tightness of MINDIST in 6 data sets and for alphabet 
size=3. The figure shows that UMD is tighter than 
MINDIST. 

We compared the tightness of UMD with the 
tightness of MINDIST, for all the datasets and for all 
values of the alphabet size. In all the experiments, 
UMD was tighter than MINDIST. In Figure 3 and 
Figure 4, we present some of the results we obtained 
for alphabet size=3 and for alphabet size=10, 
respectively. We chose to report these data sets 
because they are the largest data sets in the UCR 

archive, so these results are the most significant 
statistically.   

The experiments conducted on other data sets and 
for all values of the alphabet size, in addition to the 
other values of the alphabet size on the data sets 
presented in Figures 3 and 4, all gave similar results.  
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Figure 4: Comparison of the tightness of UMD with the 
tightness of MINDIST in 6 data sets and for alphabet 
size=10. The figure shows that UMD is tighter than 
MINDIST. 

4.2 Classification 

Classification is one of the main tasks in time series 
data mining. We tested the proposed similarity 
distance in a classification task based on the first 
nearest-neighbor rule on all the data sets available at 
UCR. We used leaving-one-out cross validation.  

In order to make a fair comparison, we used the 
same compression ratio (the number of points used 
to represent one segment in PAA) that was used to 
test SAX with MINDIST (i.e.1 to 4).  

4.2.1 The First Experiment 

The first version of SAX used alphabet size that 
varies between 3 and 10. In the first classification 
experiment we conducted we used an alphabet size 
that varies between 3 and 10. We tested all the data 
sets in the UCR archive . We start by varying the 
alphabet size between 3 and 10 on the training set of 
each data set to find the optimal value of the 
alphabet size of that data set; i.e. the value that 
minimizes the classification error rate. Then we use 
that optimal alphabet size on the testing set of that 
data set.  Table 3 shows the results of our 
experiment (There is no training phase for the 
Euclidian distance). The best result between UMD 
and MINDIST is highlighted. The results show that 
for this range of alphabet size UMD outperforms 
MINDIST in 14 data sets, and MINDIST 
outperforms UMD in 5 data sets, and in one case 
they both give the same result.  



 

Table 3: The error rate of UMD and MINDIST for α (the 
alphabet size) between 3 and 10. Column 2 shows the 
error rate of the Euclidean distance 

 1-NN 
Euclidean 
Distance 

UMD 
(α between 
3 and 10) 

MINDIST 
(α between 
3 and 10) 

Synthetic 
Control 

0.12 0.007  
 

0.033 
 

Gun-Point 
 

0.087 0.213  
 

0.233 
 

CBF 0.148 0.131  
 

0.104 
 

Face (all) 0.286 0.306  
 

0.319 
 

OSULeaf 0.483 0.471 
 

0.475 
 

Swedish- 
Leaf 

0.213 0.291 
 

0.490 
 

50words 0.369 0.338  
 

0.327 
 

Trace 0.24 0.34   
 

0.42 
 

Two_ 
Patterns 

0.09 0.076 
 

0.081 
 

Wafer 0.005 0.004 
 

0.004 
 

Face (four) 0.216 0.273 
 

0.239 
 

Lighting-2 0.246 0.230 
 

0.213 
 

Lighting-7 0.425 0.411  
 

0.493 
 

ECG200 0.12 0.11  
 

0.09 
 

Adiac 0.389 0.634 
 

0.903 
 

Yoga 0.170 0.193  
 

0.199 
 

Fish 0.217 0.366  
 

0.514 
 

Beef 0.467 0.367 
 

0.533 
 

Coffee 0.25 0.179 
 

0.464 
 

OliveOil 0.133 0.367   
 

0.833 
 

MEAN 0.234 0.265  0.348 

STD 0.134 0.158  0.247 

It is worth to mention that for the Euclidian 
distance, there is no compression of information, so 
in some cases it may give better results than 
symbolic, compressed distances.  

The average error of UMD over all the datasets 
and for this range of alphabet size is smaller than 
that of MINDIST. The standard deviation for UMD 
is also smaller than that of MINDIST. The 
significance of this statistical parameter is that when 
the standard deviation is small, the similarity 
distance is more robust, and can be applied to 
different kinds of datasets  

4.2.2 The Second Experiment 

SAX appeared in two versions; in the first one the 
average size varied in the interval (3:10), and in the 
second one the alphabet size varied in the interval 
(3:20). So we also conducted another experiment, 
where the alphabet size ranged in the interval (3:20), 
and on all the datasets in the UCR archive. We 
proceeded in the same way; we start by varying the 
alphabet size between 3 and 20 on the training set to 
find the optimal value of the alphabet size of that 
data set. Then we use this optimal alphabet size on 
the testing set. The results of our second experiment 
are shown in table 4 (We did not report the results of 
the Euclidean distance, because they are the same as 
in table 3). The results in table 4 show that   UMD 
outperforms MINDIST in 14 datasets and MINDIST 
outperforms UMD in 4 datasets, and in 2 data sets 
they both give the same results. 

In this experiment too, the mean and the standard 
deviation of UMD is better than that of MINDIST 

The results of the two experiments show that the 
general performance of UMD is better than that of 
MINDIST 

5 CONCLUSION AND 
PERSPECTIVES  

In this paper we presented a new similarity distance 
to be used with the symbolic aggregate 
approximation (SAX). The new distance UMD 
improves the performance of SAX compared with 
the original similarity distance MINDIST used with 
SAX. We conducted several experiments of times 
series data mining tasks. The results obtained show 
that SAX with UMD gives better results than SAX 
with MINDIST. Another interesting feature of the 
new similarity distance is that it as fast to compute 
as the original one    



 

Table 4: The error rate of UMD and MINDIST for α  (the 
alphabet size)  between 3 and 20.  

 UMD 
(α between 3 and  
20) 

     MINDIST 
(α between 3 and 
20) 

Synthetic 
Control 

0.003  0.023 
 

Gun-Point 
 

0.14  0.127 
 

CBF 0.054  0.073 
 

Face (all) 0.305 0.305 
 

OSULeaf 0.471  0.475 
 

Swedish- 
Leaf 

0.242 0.253 
 

50words 0.345 0.334 
 

Trace 0.27   0.35 
 

Two_ 
Patterns 

0.065 0.066 
 

Wafer 0.004   0.004 
 

Face (four) 0.273  0.239 
 

Lighting-2 0.229 0.148 
 

Lighting-7 0.411   0.425 
 

ECG200 0.11   0.13 
 

Adiac 0.494  0.867 
 

Yoga 0.172 0.181 
 

Fish 0.257  0.263 
 

Beef 0.333 0.433 
 

Coffee 0.071  0.143 
 

OliveOil 0.3   0.833 
 

MEAN 0.227  0.284 

STD 0.147  0.237 

 

The future work can be improving this distance by 
tracing other values in the original time series. This 
can make the distance even tighter, which is what 
we are working on now. 

Another direction of future work focuses on 
modifying SAX to benefit more from UMD. We 
think this can be achieved by using a representation 
method other than PAA. This may include more 
calculations or more storage space at indexing time, 
but it could give better results  
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