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Abstract

The content access control problem appears in any context with a set of users
and resources. The difference in access rights of the users defines classes where
members of a given class have exactly the same access rights. A hierarchy can
be defined on the classes. Linear hierarchies constitute a particulary interesting
type of hierarchies. They appear in a wide range of applications such as secure
multi-layered data streaming and communications within security corps. Many
proposals have dealt with key management issues for tree hierarchies but they
result in unjustified overhead when applied to linear hierarchies.

In this paper, we discuss the general problem of content access control in a
hierarchy (CACH). Thereafter, we present the main requirements in key man-
agement to ensure confidentiality in linear hierarchies. In particular, we define
a model to make a uniform and coherent description of the existing key man-
agement schemes. Thereafter, we propose an efficient key management scheme
for linear hierarchies that not only provides mechanisms to manage membership
changes but also hierarchy shape changes, and we describe it using our model.
We conduct intensive simulations which show that our solution scales very well
in terms of storage, bandwidth, and computation. Finally, we determine the
complexity of some well-known key management schemes and compare them to
the complexity of our scheme. This comparison shows that our scheme offers
efficient compromises in complexity and overall overheads.
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1. Introduction

Providing content access control is a critical security issue within hierarchies.
A hierarchy is defined using a set of differentiating access rights (privileges),
and each entity in the hierarchy has a subset of these access rights. Content
access control consists of ensuring that users access only items to which they
are entitled. The need for ensuring the Content Access Control in Hierarchies
(CACH) appears in all hierarchically organized establishments, ranging from
government departments to business corporations.

CACH is required in any context where a set of sensitive information items
should be accessed with different access rights, in the sense that some members
have access to particular items while others have not. For example, consider
a multi-layered video streaming application with a basic layer quality, and N
Enhancement Layers (EL). A user who paid for enhancement layer ELi should
be able to access enhancement layers of lower quality , but not to enhancement
layers of better quality. Ensuring content access control in this example can be
carried out by encrypting the different enhancement layers using different keys.
The keys are called Content Encryption Keys (CEK). Each user will get the key
of the enhancement layer to which they are entitled, as well as (some means to
get) the keys for the enhancement layers of lower quality. Key management for
CACH is about how to generate these keys, distribute them and renew them
efficiently while ensuring the security requirements of content access control [1].

Key management for CACH is a challenging security problem. The key
management problem has already been addressed for flat groups. In a flat group,
there is only one data stream, which means that a member can either access
all data or nothing. Adding a hierarchy to a group communication makes the
key management much more complicated than the simple case of a flat group.
In a hierarchy, there are more than one data stream, encrypted using different
keys. Therefore a member having a given subset of keys is authorized to access
corresponding data streams and not to others.

In this paper, we present a new and efficient key management scheme and
we evaluate it. The paper is organized as follows. In the next section, we
introduce the material required to understand the problem of CACH and its
key management issues, and give an overview of the existing key management
schemes. Section 3 presents our key management scheme. Simulation model
and results are presented in section 4. In section 5, we study and compare the
complexity of our scheme to the complexity we computed for some widely-known
key management schemes. We present our conclusions in section 6.

2. Content Access Control in Hierarchies

This section introduces the key management for CACH. We start by giving
a content access control model that we will use to describe both the existing
key management schemes and our new scheme. We then classify hierarchies
into three categories according to their shapes. Finally, we discuss main key
management issues for hierarchies.
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2.1. Security Classes Model

A hierarchy can be defined in two steps. Firstly, the entities within the
system are divided into subgroups according to their access rights. Secondly, an
ordering relation is defined on the subgroups. Ordering the subgroups is based
on the access rights. These access rights allow to say that one subgroup is more
privileged compared to another, thereby defining the hierarchy.

An access right statement gives one entity access to another. We distinguish
two categories of entities: subjects and objects. A subject can access an object.
That is, subjects are active entities (users, processes, . . . ), while objects are
passive entities (messages, documents, system resources, . . . ). We give below
an example of subjects and objects:

Example 2.1Group Communications in a Hierarchy
Ensuring content access control is a critical issue within public security corps
communications. For example, in a deployed military troop, commanders should
be able to access communications within lower classes. The inverse should not
be possible.

Subjects: senders and receivers within the system;

Objects: exchanged messages (voice, mail, . . . ).

We denote by S the set of all subjects, by O the set of all objects, , and by
E the set of all the entities in the system. That is, E = S ∪O. We write s � o
to say that subject s has access to object o. The set of entities E is organized
into security classes (SC). A security class contains subjects having exactly the
same access rights. The operator ’�’ can be easily extended to security classes.
So we say that a security class SCi covers (or dominates) another security class
SCj and denote it by SCi � SCj if and only if any subject in SCi has access
to all subjects in SCj

In addition to subjects, each security class SCi contains all objects that
are only accessible by subjects in SCi (and, of course, higher security classes
SCk).This means that members of a given class have access to objects of their
own class, and all lower classes. We define as well the relation ’�’ by :

SCi � SCj ⇔ SCi � SCj and SCi 6= SCj .

Given two security classes SCi and SCj ∈SC, such that SCi � SCj , we say
that SCi is an ancestor of SCj , and SCj is a descendant of SCi. If, in addition,
SCi is a direct ancestor of SCj , i.e there is no other class SCk ∈SC such that
SCi � SCk and SCk � SCj , then SCi is a parent of SCj , and SCj is a child
of SCi. In figure 1, SC1 is an ancestor of SC7 and is a parent of SC2. SC4 is
a descendant of SC1 and is a child of SC2.

2.2. Hierarchy Categories

Hierarchies can be classified into three categories according to the hierarchy
shape [1]. A very interesting type of hierarchy is the linear hierarchies (LH).
In such a hierarchy, security classes form a directed chain. The first class in
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the chain is the most privileged. Indexes can be assigned such that i < j ⇔
SCi � SCj . That is, SC1 is the highest class. An example of a linear hierarchy
is given in figure 2.a. As shown in figure 2.b, contrary to the linear hierarchy
where each element in the hierarchy has only one parent (direct predecessor)
and one child (direct successor), tree hierarchies allow elements to have many
children. In a DAG (Directed Acyclic Graph) hierarchy (cf. 2.c), each security
class has many children and parents.

In this paper, we will focus on linear hierarchies. Typical examples of linear
hierarchies are military communications where an officer has access to com-
munications within lower ranks, but not to higher ones. Multi-layered video
streaming is another example of linear hierarchies. A user can access enhance-
ment layers to which their subscribed while not to higher ones. In the rest of
this section, we review the key management issues for content access control in
hierarchies.

2.3. Key Management Issues

The existing key management schemes model the hierarchy as a group of
communicating members (subjects) [1]. In this context the objects are the ex-
changed messages. Key management typical tasks are content encryption keys
(CEK) generation and renewal. The CEK renewal is necessary to ensure con-
fidentiality when subjects (members) join or leave the hierarchy (group). That
is, a new member must be prevented from accessing data (objects) exchanged
before they join the group. This requirement is called backward secrecy. In-
versely, a leaving member must not have access to data exchanged after they
leave the session (forward secrecy requirement). A renewal should be carried
out after their departure.

Many solutions have been proposed in the group communication literature
to tackle the problem of key management within flat groups (i.e. groups with
only one data stream). The proposed protocols can be divided mainly into
three categories: centralized, decentralized and distributed architectures. In the
centralized approach [2, 3, 4, 5, 6], a logical entity, namely the Group Controller
and Key Server (GCKS ) provides key management services (key generation,
distribution and rekeying) [7]. In the decentralized approach [8, 9, 10, 11, 12,
13, 14], a set of managers share the labor of key management. Finally, in the
distributed approach [15, 16, 17, 18, 19] a set of managers collaborate to agree
on a group key and distribute the key material.

Most of the solutions proposed to meet the CACH requirements in key man-
agement are centralized solutions [1]. Key trees are widely used in centralized
approach, and even in other approaches. This is mainly due to their well-known
good performances [20]. A key tree is a graph with no cycles, in which keys are
represented by nodes. Leaves are user individual keys. The root key is usually
the CEK. All other keys are used to encrypt the rekeying material, and are
so-called key encryption keys KEK.

The keys used to encrypt a given object should be renewed each time that
a subject changes its access rights to the object. An event that causes a key
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renewal is called rekeying trigger. Rekeying triggers will be further discussed in
section 3.

2.4. Existing Key Management Schemes

We divide the existing key management schemes for CACH into two ap-
proaches: the dependent-keys, and the independent-keys approaches [1] as shown
in figure 3. The first approach is issued from information systems (file systems,
databases, . . . ) community. Earlier works in key management for hierarchies
[21, 22, 23] were done in this community.

In the dependent-keys approach, in order to access a given information item
(object), a legitimate user does not need to have the key with which it is en-
crypted. But using merely their own key, combined with some public parame-
ters and/or functions, they can compute the key used to decrypt the item. The
resulting key management schemes typically use complex cryptographic tech-
niques. We further distinguish two categories in the dependent-keys schemes:
indirect access schemes and direct access schemes. In indirect access schemes,
if SCi is an ancestor of SCj , members of SCi must compute all intermediate
keys on the path from SCi to SCj to get the key of SCj . Sandhu [24, 23],
Gudes [21], Yang and Li [25], He et al. [26], Wang et al. [27], and Gawdan
et al. [28] proposed indirect schemes that are based on one-way functions. In
such schemes, the key of a class is computed from the key of its parent using a
one-way function.

A direct scheme avoids the computation of intermediate keys, using addi-
tional public parameters. Most of the schemes proposed in this approach use
prime numbers fundamental properties (Akl and Taylor [22], Ray et al. [29],
Zou et al. [30]), and other theoretical cryptographic notions, including Chinese
reminder theorem (Hardjono et al. [31] and Zheng et al.[32]). Shen and Chen
[33], Zhang et al. [34], Tzang et al. [35] and Das et al. [36] use Newton’s
polynomial interpolation to correlate classes’ indices and their keys. Whereas
Aparna et al. [37] use threshold cryptography to reduce the cost of key renewal,
and Liu et al. [38] use elliptic curves. In these schemes, the key of a class can
be directly computed using the key of any of its ancestors combined with the
parameters defined by the scheme.

The independent keys approach originates from multicast security commu-
nity. More precisely, from works on key management. Thus these schemes use
usual key trees and graphs techniques [20]. In order to access some information
item, the user should have a copy of its decryption key.

Contrary to the dependent key approach, where the principle is to divide
accessible resources and users into security classes and study the relations exist-
ing between the different classes, the independent key approach separates users
from accessible resources, and studies relations between users and resources.
From the resource point of view, users having access to a given resource ri form
a resource group RGi. From the users point of view, users having exactly access
to the same subset of resources form a users service group (service group for
abbreviation).
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In [? ], Sun and Liu proposed to assign a key to each resource group and to
each service group, and then use relations between resource groups and service
groups to reduce the global number of used keys. Their solution takes benefits
from the fact that nodes in a key tree maintain all keys of intermediate nodes
on the path to the root. Ma et al. [39] associate to each resource ri a key Kr

i .
Each user owns a subset of resource keys which is called access key (AK). This
subset contains keys of all resources in the service group. Users in the same
service group SGi are arranged in a key tree, whose root is the set of keys AKi

of SGi. In [40], Karandikar et al. suggest to maintain a resource list RLi for
each resource ri. They use a technique for secure group conferencing which was
proposed in [41]. It consists on building a centralized key tree which contains
all users in leaves and uses intermediate keys in this tree to manage access to
resources.

2.5. Discussion

Independent-keys schemes are quite simple to deploy. However, they do not
offer an efficient support for hierarchy changes. On the other hand, dependent-
keys schemes have the advantage of minimizing the number of keys maintained
by users. This is carried out using well chosen public parameters. However, in
most of the schemes proposed in this approach, number of public parameters is
quite important. Which obsoletes the idea of reducing storage on user’s side.
One-way functions based techniques seem to be a good solution for storage
overhead issues: relating keys using such functions allows to replace a set of
keys by only one key. Nevertheless, changing one key in a set of related keys
implies the renewal of the whole set. This generates an additional renewal
overhead. In the next section we propose an improved one-way function-based
solution that allows to avoid this overhead by using a key table mechanism.

Notations

Table 1 summarizes some important notations that we will use for key man-
agement schemes description and comparison.

3. Our Approach

Linear hierarchies are commonplace in communications within public secu-
rity organisms and multilayered data streaming. A typical example of linear
hierarchies is operational military battalions. As shown in figure 5, members
communicate with others from the same class, and thereby should have the
same content encryption key CEK. Furthermore, commanders should be able
to supervise their subordinates, and hence need to know their respective CEKs.

Our paper focuses on linear hierarchies as most of the existing schemes have
focused on tree and more general hierarchies. The proposed key management
schemes are thus sophisticated and use many parameters in order to carry out
efficient key management for such hierarchies. However, when applying these
sophisticated schemes to the simple case of linear hierarchies, most of the used
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parameters (that are explicitly or implicitly related to the nature of the hierar-
chy) become useless, making an unjustified resource overhead. What we propose
in this paper is a scheme that is optimized for linear hierarchies.

3.1. Key Management for Linear Hierarchies

We focus here on the generation and renewal of content encryption keys
for linear hierarchies. Every member of SCi maintains a secret CEK Kc to be
used as an encryption/decryption key for their class. The hierarchy (group) is
divided into C security classes SCc, 1 ≤ c ≤ C. Every class SCc contains Nc

members. Classes follow a linear hierarchy, i.e ∀i, j ∈ {1, . . . , C} : SCi < SCj

or SCi > SCj . We reassign indexes to SCs in such a way that: SC1 � SC2 �
· · · � SCC−1 � SCC . Note that SC1 is the highest class in the hierarchy.

3.1.1. Confidentiality Requirements

In addition to the backward and forward secrecy mentioned above, we have
determined two linear hierarchies specific requirements: Upward Secrecy, and
Downward Secrecy. They correspond to promotions and degradations of class
members. Promotion of a member is passing from a class to a higher one.
Inversely, passing from a class to a lower one, is called degradation. Thus, the
confidentiality requirements are defined as follows:

1. Upward Secrecy: The promotion of a member from a class u to a higher
class t will give them access to current communications of classes between t
and u. However, they should be prevented from accessing old communica-
tions of the classes to which they had not access before the promotion(i.e.
any class x verifying SCu < SCx ≤ SCt);

2. Downward Secrecy: The degradation of a member from a class t to a
lower class u should prevent them from accessing future communications
of the classes to which they have no more access after the degradation (i.e.
any class x verifying SCu < SCx ≤ SCt).

3.1.2. Rekeying Triggers

A key renewal can be triggered by a join/leave of a host, or by promo-
tion/degradation of a member.

Join: Backward Secrecy
The arrival of a new member to class SCt causes a key renewal of all classes
SCu, SCu ≤ SCt. Otherwise, once that the new member has obtained her
key set containing {Kt, Kt+1, ..., KC}, they will be able to decrypt old
traffic sent before their arrival. Therefore, the rekeying pattern consists
in the renewal of all the keys of class SCt and all the lower classes.

Leave: Forward Secrecy
Similarly to the previous case, a departure of a member of class t causes
a rekeying of all the classes SCu where SCu ≤ SCt. The rekeying pattern
is the same.
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Promotion: Upward Secrecy
The promotion of a member of class SCu to class SCt, SCu < SCt,
requires a slightly more complicated rekeying pattern. Backward secrecy
of classes implies that we should renew keys Kc, such that SCu < SCc ≤
SCt. Therefrom, the rekeying pattern consists on the renewal of all keys
of all the classes SCc such that SCu < SCc ≤ SCt.

Degradation: Downward Secrecy
When a member is degraded from class SCt to class SCu < SCt, they
should no longer be able to decrypt traffic of their old class, as well as
traffic of intermediate classes, i.e all classes c such that SCu < SCc ≤ SCt.
This is due to the constraint of future confidentiality of these classes. The
rekeying is exactly the same as promotion rekeying.

3.1.3. Rekeying Patterns

We have shown that forward and backward secrecy imply the same rekeying
steps. Upward and downward secrecy share the same rekeying steps as well.
This suggests to divide rekeying processes into two different generic patterns:

Partial Renewal Rt : consists in renewing the keys of the classes SCt, SCt+1,
. . . , SCC and updating the system accordingly. A partial renewal Rt is
triggered when a member joins/leaves class SCt.

Bounded Renewal Rt,u : consists in renewing the keys of the classes SCt,
SCt+1, . . . , SCu−1 and updating the system accordingly. A partial re-
newal Rt,u is triggered when a member is promoted (resp. degraded)
from u to t (resp. t to u).

Any key management scheme for linear hierarchy will need to clearly specify
how these two patterns are carried out. We specify them for our scheme in 3.3.2

3.1.4. Key Management Schemes for Linear Hierarchies

There is no linear hierarchies-specific key management schemes. All the
existing schemes were proposed for tree and DAG hierarchies. However, it is
interesting to note that almost all independent and dependent indirect schemes
are reduced to only two schemes when applied to linear hierarchies: the inde-
pendent scheme, and the dependent scheme.

Dependent Scheme
In this scheme, all the keys are related using a one way function f such
that the key Ki of class SCi is: Ki+1 = f(Ki), where the key of SC1, K1,
is generated randomly. Any membership or hierarchy change induces a
complete renewal. This scheme has the advantage of reducing the storage
per user to one key, and thus the number of CEKs sent to each user to
renew their set of keys to one CEK.

Independent Scheme
This scheme randomly generates a key for each class. Each member of a
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particular class stores the key of their own class as well as the keys of all
the lower classes. In the case of a membership or hierarchy change, only
concerned CEKs are renewed. This scheme does not require particular
computation overhead for CEKs management contrary to the dependent
scheme.

We will use these two schemes when comparing our scheme, using simulations,
to the existing schemes.

3.2. Our Scheme: KTLH

We propose a key management scheme for group communications within hi-
erarchical environnements: Key Tables-based key management scheme for Lin-
ear Hierarchies (KTLH). KTLH relates keys in such a way that, knowing their
own class key, a member can compute keys of lower classes. Key tables are used
in KTLH to maintain this keys relation as described below.

Initialization

In KTLH, keys are initialized as follows. First, KTLH randomly generate a
key K1. Then, KTLH uses a hash function H to compute a chain of keys using
the formula: Kt+1 = H(Kt), where Kt is the key of the tth class. Then each
key Kt is sent to its corresponding class t. Thus, only one key per member is
sent. Once a member ut of class SCt receives their key, they can, if required,
compute the key of any class SCu, SCu < SCt, by simply applying (u− t) times
H to Kt.

Since the keys are renewed several times, we denote by Kp
t the key of SCt

after the (p− 1)th key renewal. That is, the initial key of SCt is denoted SC1
t .

In what follows we specify the rekeying patterns for our scheme.

3.2.1. Partial Rekeying (Rt): Join/Leave

The partial rekeying Rt in KTLH is carried out as follows:

Partial Rekeying Algorithm in KTLH

Step 1: The key generation mechanism (a Group Controller and Key
Server, GCKS, for instance) randomly generates a new key Kp+1

t for
class SCt

Step 2: The GCKS computes the new keys Kp+1
c , SCC ≤ SCc < SCt

using H: Kp+1
c =H(Kp+1

c−1 )
Step 3: The GCKS sends every key Kp+1

c , SCC ≤ SCc ≤ SCt to its
corresponding class and sends an update message to superior classes SCs

(SCs > SCt) containing the couple (t , Kp+1
t )

Step 4: Members of each class update their key tables according to the
received messages

Update messages are used to maintain the key chain. For instance, when
a partial rekey occurs at the tth class, it is clear that, if we do not use the
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update messages, members of higher classes will have no idea about Kt. This
is because it was not computed based on Kt−1 using H. To overcome chain
discontinuity problem, members should maintain a key table. Each time that a
member receives an update message, they make necessary updates to their key
table. Later, when they need to compute the key of a lower class u, they look
in their table for the biggest class index t such that t ≤ u.

Example 3.1. Let’s consider a group with five security classes (C = 5). Ini-
tially, every member needs to know merely their own class key. Assume that a
member of SC3 leaves the group. Keys of SC3, SC4 and SC5 must be renewed.
That is, the partial renewal R3 should be triggered. If we assume that we use a
centralized key distributer S, then it should generate a new key K2

3 (2nd version
of K3), and compute from it, using the one-way function H, K2

4 and K2
5 . Secu-

rity classes SC3, SC4 and SC5 will receive K2
3 ,K

2
4 and K2

5 respectively. While
classes SC1 and SC2 will receive the pair (K2

3 , 3), to indicate that K2
3 is the

new key of SC3.
Once a member of SC1 for example receives the pair (K2

3 , 3), they update
their table which becomes as shown in TAB. 2.
If a member of SC1 wants to access an information item within SC2, then they
will compute K2

2 by applying H one time on K2
1 . If they want to access SC5’s

information items, then they will use the second entry of her key table: K2
3 . K2

5

is computed by applying H two times consecutively on K2
3 .

Members of SC4 will have TAB. 3. It contains their class’s key, and they can
calculate K2

5 when needed by applying K2
5 = H(K2

4 )

3.2.2. Bounded Rekeying (Rt,u): Promotion/Degradation

As we have seen in section 3.1, a bounded rekeying is required each time
a member moves up or down in the hierarchy. The bounded rekeying Rt,u is
implemented in KTLH as follows:

Bounded Rekeying Algorithm in KTLH

Step 1: The GCKS randomly generates a new key Kp+1
t for class t

Step 2: The GCKS computes the new keys Kp+1
c , SCu ≤ SCc < SCt

using H
Step 3: The GCKS sends every key Kp+1

c , SCu ≤ SCc ≤ SCt to its
corresponding class and sends two update messages.

• The first to superior classes s (SCs > SCt) containing the couple
(t, Kp+1

t

• The second message contains (u+1, kp+1
u+1) to all classes s such that

SCs ≥ SCu

Step 4: Members of each class update their key tables according to the
received messages
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Example 3.2. Let’s reconsider the previous example in its initial status: C = 5
and each member initially knows only the key of their own class. Assume that
a member of SC4 has just been promoted to SC2. Upward secrecy requires
changing keys of SC2 and SC3. The system generates a new key K2

2 for SC2.
Then S computes K2

3 by: K2
3 = H(K2

2 ). That is, the new content encryption
keys are K2

1 = K1
1 (has not changed), K2

2 , K2
3 , K2

4 = K1
4 (has not changed)

and K2
5 = K1

5 (has not changed). The system sends K2
2 to members in SC2

and K2
3 to those in SC3. It also sends key tables update messages to SC1, SC2

and SC3; members of SC2 and SC3 will receive only one message containing
the pair (K2

4 , 4). Whereas members of SC1 will receive two messages: the first
containing (K2

2 , 2); and the second containing (K2
4 , 4).

Upon receiving these messages, members of SC1 will build key tables of the form
TAB. 4. While members of SC3 will build TAB. 5.

3.2.3. Hierarchy Change Management

Possible hierarchy change events for linear hierarchies are class addition and
class deletion. We show here how KTLH achieves them

1- Class Addition: Let SCt be the class after which a new class SC ′t is in-
serted. KTLH carries out the class addition as follows:

Class Addition Algorithm in KTLH

Step 1: The number of classes C is incremented
Step 2: indexes are reassigned such that SCt+1 becomes SCt+2,
SC′t becomes SCt+1 and so on
Step 3: make the partial rekeying Rt+1

2- Class Deletion: Suppose that SCt+1 will be deleted. The class deletion is
made as follows:

Class Deletion Algorithm in KTLH

Step 1: The number of classes C is decremented
Step 2: indexes are reassigned such that SCt+2 becomes SCt+1 and
so on
Step 3: make the partial rekeying Rt+1
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Hierarchy change management is carried out by partial rekeying. The cost
of a hierarch change is exactly the same as the cost of a join/leave event which
is the cost of a partial rekeying. This is a great advantage for our scheme com-
pared to several existing schemes where resource consuming operations should
be executed for each hierarchy change.

4. Simulation

We conducted intensive simulations to compare our scheme with the inde-
pendent and dependent schemes. We make the comparison according to the
three main system resources: the storage needed on user side, the bandwidth
required to update the system after a renewal , and the computation overhead
on the key generator’s (a GCKS for example) side:

1. Storage: number of content encryption keys stored on each member, their
own class key included;

2. Bandwidth: number of messages sent per member in order to make rekey-
ing when a membership changement arises.

3. Computation: number of the applications of the one-way function by the
the key generator per membership or hierarchy change.

4.1. A First Scenario

We will consider a group containing 5 classes which is a real example that we
find in several cases (military communications, multi-layered video streaming).
Members arrival follows a Poisson law and their membership duration follows
an exponential distribution [42].

A typical member session starts by a join event, which can be followed
by one or more rise and/or degrade events before a leave occurs. At the
end of their membership in some class, a member leaves the group with prob-
ability prob leave, or changes the class with probability prob change(= 1 −
prob leave). A member who changes their class, is degraded according to
probability prob degrade, and is promoted with probability prob rise = (1 −
prob degrade).

We will consider a session of 3 hours. Inter-arrival average λ is of 20 sec-
onds, and average membership duration µ is 30 minutes. Table 6 summarizes
simulation parameters.

Results

Figure 6 compares key storage per class between KTLH and the dependent
and independent schemes. In the independent solution, storage is constant per
class, because every member stores, in addition to their class key, keys of all
lower classes. In KTLH, every member permanently stores initially only their
class’s key, and according to group membership evolution, number of stored keys
can increase or decrease. KTLH decreases the required key storage by 36,76%.
On the other hand, since the dependent scheme allows each member to compute
keys of lower classes, the key storage per class is equal to 1.
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Figure 7 compares bandwidth overhead per class between the three schemes.
It gives, for each class, the number of messages required to update its key table.
The independent scheme sends a number of keys equal to number of key stored
on each member. KTLH reduces number of sent messages to 0, 1 or 2 according
to rekeying type and class position. Thus, KTLH allows to save 45,19% of the
bandwidth overhead. Note that, for KTLH, the average bandwidth for lower
classes is inferior to 1. This is logical because many rise/degrade events do
not require to update their keys. According to our simulations, the average
bandwidth required by KTLH to update keys of a given class is 1.00. The
dependent scheme sends one key to each class for any membership change;
hence KTLH has the same average bandwidth as the dependent schemes.

Figure 8 compares computation overhead per membership change of the
three schemes through successive simulation runs. Since it uses no one-way
function, the computation overhead of the independent scheme is 0. The com-
putation overhead of the dependent scheme is constant as well and is equal to
4 one-way function computations per membership change. This is due to the
fact that all the keys need to be changed after any membership change because
they are related‘. Whereas the average computation overhead per membership
change for KTLH is 1.28.

Table 7 summarizes the simulation results for a hierarchy of five classes.
It shows that KTLH trades very well the three criteria and gives best overall
results. Comparing KTLH to each of the schemes shows that it tunes very well
the system resources.

4.2. Scalability

In this subsection, instead of focusing on the average cost, we will consider
how the total cost of a communication session for each approach varies as a
function of each parameter. This allows us to study and emphasize the scala-
bility of each solution according to each parameter. In what follows, we study
how KTLH scales according to three parameters:

1. Number of classes within the group;

2. Group size: the number of members within the group;

3. Group dynamicity: the number of rekeying triggers per time unit. It
is interesting to note that increasing the group dynamicity increases the
arrival rate and that group dynamicity is inversely proportional to the
membership duration within each group class.

4.2.1. Number of Classes

Figure 9(a) shows how the storage overhead varies as a function of the num-
ber of classes. We note that the storage overhead is constant for 30 classes and
above and is equal to about 2.7 keys. It is very interesting to note that even
for 100 classes, the average storage overhead per class is less than 3 keys. We
observe the same thing for the bandwidth overhead in figure 9(b). The average
bandwidth is constant and is equal to 1.007, that is why the dependent approach
curve (which is constant and equal to 1) overlaps with the KTLH curve. Figure
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9(c) shows that the computation overhead of KTLH is about one third of the
overhead of the independent scheme. Of course, the computation overhead of
the independent approach is equal to zero.

4.2.2. Group Size

Figure 10(a) shows that the total storage of KTLH is linear, and that its
overhead is about the average of the two other schemes. As we can see in figure
10(b), the bandwidth overhead of KTLH is the same as the dependent scheme.
The computation overhead is shown in figure 10(c), the computation overhead
of the independent scheme is obviously equal to zero. All KTLH overheads are
linear and thus scale very well when the group size increases.

4.2.3. Group Dynamicity

We vary the group dynamicity by varying the arrival rate λ and the mem-
bership duration µ. Figure 11(a) shows that the total storage of KTLH is about
the average of the two other schemes. As for the group size, figure 11(b) shows
that the the bandwidth overhead of KTLH is the same as the dependent scheme.
The computation overhead is shown in figure 11(c), the computation overhead
of the independent scheme is nil. As for the group size, KTLH scales very well
for highly dynamic groups.

4.3. Discussion

Simulations have shown that KTLH reduces members storage by more than
35%, and bandwidth by more than 45% relatively to the independent solution.
It has the same bandwidth overhead as the dependent scheme, and an average
storage overhead less than three keys per class. We showed also that KTLH
requires a small amount of computation compared to the dependent solution.
KTLH scales very well, particularly when the number of classes changes, which
is not the case for many of the existing schemes as we will see in the next section.

5. Complexity Comparison

In this section, we study the complexity of a key renewal in KTLH. We study
the computation, bandwidth and storage complexity in terms of the number of
classes C. We then compare KTLH to the schemes we presented in subsection
2.2.4.

As shown in figure 9(b), the required bandwidth is constant. The bandwidth
complexity is O(1). Whereas figure 9(c) shows that the computation overhead
goes linearly with the number of classes. The computation overhead is O(C).
Figure 9(a) shows that the average number of keys stored per class is constant
for 30 classes and over. That is, the storage overhead is inferior to a constant
α (α < 3). Therefore the storage complexity is O(1).

We have studied the complexity of all the schemes presented in 2.2.4 when
applied to a linear hierarchy. Table 8 summarizes the results of our study.
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This table clearly shows that KTLH tunes very well the three criteria and
gives best combined performances. Table 9 makes an ”abstract” comparison
between our scheme and the three approaches: independent, direct dependent
and indirect dependent key management schemes. The only approach that gives
better performance on one of the three criteria is the independent approach. But
KTLH is better than this approach for the two other criteria.

6. Conclusion

In this paper, we introduced the linear hierarchical group model which, as
far we can say, is a very promising communication model. We identified two
new security requirements: upward secrecy and downward secrecy.

Furthermore, we classified the existing key management schemes into two
categories and showed that most of this schemes are reduced to one of two
schemes in the case of linear hierarchies: the independent and the dependent
schemes, then we described each of them. Thereafter, we presented our solution
KTLH which is a key tables and hash functions-based solution. We conducted
intensive simulations to compare KTLH to the two key management approaches
and showed that KTLH has good performances. We also computed the key
renewal complexity for several key management schemes and compared them to
KTLH. This comparison had also shown that KTLH tunes very well storage,
bandwidth and computation overheads.
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Notation Meaning

GCKS The Group Controller and Key Server
CEK Content Encryption Key

E The set of all entities within
the system

S The set of all subjects
O The set of all objects

SC The set of all security classes

s � o Subject s has access to object o
SCi � SCj Security class SCi dominates SCj

Table 1: Used notations.

Security Class Key
1 K2

1 (= K1
1 )

3 K2
3

Table 2: Key table maintained by SC1 members.

Security Class Key
4 K2

4

Table 3: Key table maintained by SC4 members.

Security Class Key
1 K2

1 (= K1
1 )

2 K2
2

4 K2
4 (= K1

4 )

Table 4: Key table maintained by SC1 members.
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Security Class Key
3 K2

3

4 K2
4 (= K1

4 )

Table 5: Key table maintained by SC3 members.

Parameter Role Value

prob leave probability to leave the group 0.95

prob change probability to change class 0.05

prob rise probability to have a promotion 0.5

prob degrade probability to have a degradation 0.5

λ Inter-arrival average 20 sec

µ Average membership duration 30 min

T Session duration 3 h

Table 6: List of simulation parameters.

Scheme Storage Bandwidth Computation

Independent 3 1.81 0

KTLH 1.90 1 1.28

Dependent 1 1 4

Table 7: Schemes Comparison in the case of a hierarchy of 5 classes.
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Scheme Computation Bandwidth Storage

KTLH O(C) O(1) O(1)

Sandhu[23] O(C) O(C) O(1)

Gudes[21] O(log(C)) O(log(C)) O(log(C))

Yang & Li[25] O(C) O(C) O(1)

Akl & Taylor [22] O(C2) O(C) O(1)

Ray et al.[29] O(C2) O(C) O(C)

Shen& Chen[33] O(C2 O(C) O(log(C))
×log(C))

Das et al.[36] O(C2 O(Nsc) O(log(C))
×log(C))

Sun & Liu. [? ] O(log(C)) O(log(C)) O(log(C))

Ma et al. [39] O(C) O(C) O(C)

Karandikar O(log(C)) O(log(C)) O(1)
et al. [40]

Table 8: A comparison of key renewal cost of CACH key management schemes.

Approach Computation Bandwidth Storage

Indirect O(C) O(C) ≥ O(log(C))

Direct ' O((C2)) O(C) O(1)

Indep. O(log(C)) O(log(C)) O(log(C))

KTLH O(C) O(1) O(1)

Table 9: A comparison of overheads of key management approaches.

Figure 1: An example of a Hierarchy
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Figure 2: Hierarchy Shapes

Figure 3: A classification of CACH key management schemes
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Figure 4: Indirect and direct key management schemes

Figure 5: A linear hierarchy within a military group
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Figure 6: Per-class storage for each approach

Figure 7: Per-class bandwidth for each approach
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Figure 8: Computation comparison
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(a) Storage function of classes number

(b) Bandwidth function of classes number

(c) Computation function of classes number

Figure 9: Performance criteria function of classes number
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(a) Storage function of group size

(b) Bandwidth function of group size

(c) Computation function of group size

Figure 10: Performance criteria function of group size
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(a) Storage function of group dynamicity

(b) Bandwidth function of group dynamicity

(c) Computation function of group dynamicity

Figure 11: Performance criteria function of group dynamicity
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