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Generic validity of the multifractal formalism

A. Fraysse*
September 13, 2006

Abstract

The multifractal formalism is a conjecture which gives the spectrum
of singularities of a signal using numerically computable quantities.
We prove its generic validity by showing that almost every function
in a given function space is multifractal and satisfies the multifractal
formalism.

1 Introduction

One motivation of multifractal analysis was the study of fully devel-
oped turbulent flows. Indeed, some experimental results obtained in
wind-tunnels showed that the regularity of the velocity of a turbulent
fluid changes wildly from point to point. This quantity is therefore
hardly computable. Hence, rather than measure the exponent at some
point one rather estimates the fractal dimension of sets where it takes
a given value H.

The spectrum of singularities d(H) is the function which gives the
Hausdorff dimension of those sets. From its definition, it is also almost
impossible to obtain numerically the spectrum of singularities.

In [10], two physicists U. Frisch and G. Parisi proposed an al-
gorithm in order to derive the spectrum of singularities from quan-
tities that are effectively computable on a signal. They proposed to
use the LP modulus of continuity of the velocity, used in the theory
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of turbulent flows since Kolmogorov, [18]. This average quantity is
called the scaling function, or scaling exponent and is denoted §;. It
is defined by [|f(z +1) — f(z)[Pdz ~ [I|¥®) where ~ means that
[1f(z +1) — f(x)Pdzx is of the order of magnitude of |I|5®) when I
tends to 0 (assuming that the limit exists). Numerical estimations and
further results about the scaling function and its wavelet decomposi-
tion can be found in [1, 2].

Frisch and Parisi proposed that the spectrum of singularities of a
function can be obtained as follows:

d(H) = inf (pH = &(p) + d), (1)

see [10] for the derivation of this formula.
First, we state the mathematical framework of multifractal analy-
sis. The main notion we need to define is the Holder exponent.

Definition 1. Let a > 0; a function f : R? — R is C%(xq) if for all
r € R? such that |v — x| < 1 there exists a polynomial P of degree
less than [ and a constant C' such that,

|f(z) = P(x — 20)| < Clz — 20|™. (2)
The Hélder exponent of f at xq s

h¢(xg) = sup{a : f € C%xo)}.

It is proved in [14] that for p > 1, the scaling function ¢(p) is
closely related with Sobolev or Besov smoothness. It is thus natural
for us to replace the scaling function as follows.

Ifp>0 n¢(p) =sup{s: fe€ B;/p’oo}. (3)

So (1) applied to 1y can at most give the increasing part of the spec-
trum.

Defining, as in [16], an auxiliary function s(1/p) = n(p)/p, the
Besov domain of a function f is the set of (q,t) such that f € Bi’/lq/q.
The boundary of the Besov domain of f is then given by the graph
of s. And by Sobolev embeddings, the Besov domain of a function
is a convex set. Thus, functions 7 satisfying (3) are increasing and
concave functions. Furthermore the auxiliary function s is such that
0 < s'(¢) < d. Those conditions lead us to the following definition.



Definition 2. A function n is admissible if s(q) = qn(1/q) is concave
and satisfies 0 < §'(q) < d. It is strongly admissible if furthermore
s(0) > 0.

The following important result from [16] allows us to define a
metric space using admissible functions.

Proposition 1. Any concave function s satisfying 0 < s'(¢) < d
defines the Besov domain of a distribution f.

Thanks to Proposition 1, to each admissible function 7, a metric
space V can be associated by taking

V= m BI(JZE)I;)—‘f)/Pvp‘

e>0,0<p<oco

To be as complete as possible, we also recall the definition of
Legendre transform.

Definition 3. Let f be a lower semi-continuous function defined in
a normed vector space E£. Then the Legendre transform of f is

f*(z) = sup(f(y) — xy). (4)

yekE
This function is convex and lower semi-continuous.

In the present paper, we propose to study the validity of (1) for
ng(p). An equivalent form of this heuristic formula is satisfied by a
large class of invariant measures, see [4, 6, 20]. In the context of signal
analysis, this conjecture is often satisfied if we add particular assump-
tions on f, such as self-similarity. On the other hand, there exist
counterexamples to the general validity of this formula. If it does not
hold for every function, what is its range of validity? Our purpose here
is to show that the validity of formula (1) is not an exceptional phe-
nomenon but it is satisfied for a large class of functions, without any
additional assumption. More precisely, we study the validity of this
formula for "almost every" functions, i.e. in a measure-theoretic sense.

In a finite dimensional space, the notion of "almost every" means
"for the Lebesgue measure". The particular role played by this mea-
sure is justified by the fact that this is the only one which is o-finite and
invariant under translation. In a metric infinite dimensional space no
measure enjoys this properties. The following definition, see [5, 7, 13]
can thus replace the notion of vanishing Haar measure.



Definition 4. Let V be a complete melric vector space. A Borel sel
B in'V is called Haar null if there exists a probability measure p with
compact support such that

w(B+v)=0 YveW (5)

In this case the measure u is said transverse to B.

A subset of V is called Haar null if it is contained in a Borel Haar null
set.

The complement of a Haar null set is called a prevalent set.

With a slight abuse of language we will say that a property is
satisfied almost everywhere when it holds on a prevalent set.
Let us recall some properties of Haar null sets, see [7, 13].

Proposition 2. 1. IfS is Haar-null, thenVx € V, z+ .S is Haar-
null.
2. If dim(V) < oo, S is Haar-null if and only if meas(S) = 0
(where meas denotes the Lebesque measure).

3. Prevalent sets are dense.

4. If S is Haar null and S’ C S then S’ is Haar null.

5. The union of a countable collection of Haar null sets is Haar
null.

6. If dim(V) = oo, compact subsets of V' are Haar-null.

Several kinds of measures can be used as transverse measures of a
Borel set. Here, we will only use the following notion.

Definition 5. A finite dimensional space P is called a probe for the set
T CV if the Lebesque measure on P is transverse to the complement

of T.

Those measures are not compactly supported probability mea-
sures. However one immediately checks that Definition 5 is equivalent
to the same one stated with the Lebesgue measure defined on the unit
ball of P. Note that in this case, the support of the measure is included
in the unit ball of a finite dimensional subspace. The compactness as-
sumption is therefore fulfilled.



The study of generic regularity for a "large" set of functions goes
back to S. Banach [3], who gave differentiability properties of contin-
uous functions, for quasi-all functions in the Baire’s categories sense.
Later B. Hunt [12] proved the same result in the measure-theoretic
sense of prevalence.

In [16], S. Jaffard studied properties of generic functions, in the
Baire’s categories sense, in Sobolev spaces. He also proved that in the
sense of Baire’s categories quasi-all functions in V satisfy:

d(H) = inf (pH —n(p) + d) (6)

P>Pe

where p. is the only critical point such that n(p) = d.

In this paper we will study the validity of the Frisch-Parisi conjec-
ture for almost every function in the prevalence setting. The aim of
this paper is to prove the following theorem.

Theorem 1. Let n be a strongly admissible function and let V be the
space defined by

— (n(p)—e)/p:p.
V= ﬂ Bp?lci pp’ (7)
e>0,0<p<oo
then, in the sense of prevalence, almost every function f in'V satisfies
the following two conditions:
1. Forallp >0,

ns(p) = n(p)

2. The spectrum of singularities is defined on the interval [3(0), p%]
where it is given by:

dy(H) = inf (pH —ny(p) + d) (8)

P=pe
where pe 1s the only critical point such that n(p.) = d.

Remark. We have to impose that n is strongly admissible else, ac-
cording to [8], almost every function in V is nowhere locally bounded.

In section 2 we will solve a simpler problem. We will prove that
almost every function in a given intersection of a Sobolev or a Besov
space and an Holder space satisfies a slight modification of the Frisch
and Parisi conjecture. We will first establish their spectrum of singu-
larities.



Theorem 2. If~v >0 and s — % < 0 the spectrum of singularities of
almost every function in By?(\C7 or in LP*(C7 is given by:

d+(y—s)p . dy
d<H>:{ S H € | gy

—00 otherwise.

Remarks. 1. Using the Sobolev embeddings B;’l — LP% — By™,
the same result holds in Sobolev and in Besov spaces. As Besov
spaces have a very simple wavelet expansion, we will only prove
the result in those spaces. To obtain the Sobolev case, we only
need to pick ¢ = oo in the following.

2. In Theorem 2 we only state the spectrum of singularities of func-
tions in the case By 'NC™ where s—% < 0. Other cases are proved
in [9]. To be complete, we recall the following result from [9].

Proposition 3. e [fs—d/p <0, then almost every function
in LP* or in Bp? is nowhere locally bounded, and therefore
its spectrum of singularities is not defined.

o Ifs—d/p >0, then the Holder exponent of almost every
function f of LP*, or of Bp? takes values in [s —d/p, s] and

VHels—d/ps],  dj(H)=Hp—sp+d; (9)
furthermore, for almost every x, hy(x) = s.

Our purpose here is to expand the result of [9] in two directions.
On one hand, we will work with an intersection of Besov spaces.
On the other hand, we will see in the last part another stronger
generic result, in the topological sense mentioned above.

The main tool that we will use in the following is the wavelet
expansion of functions. First, it yields a simple characterization of
functional spaces and it offer a simple condition for pointwise regular-
ity. Let us recall some properties of wavelet expansion.

There exist 2¢ — 1 oscillating functions (¢(i))ie{1,...72d_1} in the
Schwartz class such that the functions

2Uy (Vg — k), jeZ keZl

form an orthonormal basis of L?(R?), see [19]. Wavelets are indexed
by dyadic cubes A = [2%, %[d. Thus, any function f € L? can be
written:

fa) = (@a — k)

6



where
=20 [ )o@~ e

(Note that we use an L° normalization instead of an L? one, which
simplifies the formulas). If p > 1 and s > 0, Sobolev space have thus
the following characterization, see [19]:

1/2

fel’’ < (Z leal*(1 + 4jS)X/\(5E)> € P(RY),  (10)
AEA

where x(z) denotes the characteristic function of the cube A and A

is the set of all dyadics cubes. Homogeneous Besov spaces, which will

also be considered, are characterized (for p,q > 0 and s € R) by

q/p

feBY = > | > exr2lr=di <C (11)
J AEA;
where A; denotes the set of dyadics cubes at scale j, see [19]. Note
that, if p €]0, 1], Besov spaces are not Banach spaces since they are
not locally convex but nonetheless are separable complete metric vec-
tor spaces.

Pointwise regularity can also be expressed in terms of a condition
on wavelet coefficients, see [14].

Proposition 4. Let x be in R If f is in C%(z) then there exists
c > 0 such that for all \:

lea] < €279 (1 + |27 — k|)°. (12)

2 Multifractal formalism in a given Besov
space

The Frisch-Parisi conjecture gives the spectrum of singularities as
the Legendre transform of the scaling function. We will determine
the validity of this formula for measure theoretic generic functions in
a given Besov space, in two steps. First we will prove Theorem 2,
which one gives the spectrum of singularities of almost every function.
Afterwards, we will give the prevalent scaling function. This allows
us to merge the spectrum obtained with formula (1) applied to the
scaling function.



2.1 Proof of Theorem 2

Proposition 3 states that if s — % < 0, almost every function in By
is nowhere locally bounded and the spectrum of singularities is not
defined for any H. To define this spectrum, we need to assume a
minimum uniform regularity. That is why, in the following, we choose
s — % < 0 and 0 < 7 < s and we study almost every function in

ByinC.

Theorem 2.1 from [17], yields an upper bound of the spectrum of
singularities.
Lemma 1. Let s—% < 0. For all functions f € By'(C7, the Haus-
dorff dimension of the set {z : f ¢ C*(x)} is bounded by @a.

We need also the following definition.

Definition 6. Let o € [1, mL A point xg belongs to J,, if there
exists an infinite sequence (7,k) € N x {0,....,27 — 1} k = (ky, ..., kq)

such that for each i =1,....d k; can be written ;27" and:

1
=+

k
2

1

< 2aL

o — (13)

where L := [M] We define the exponent of approximation of
x as o (x) =sup{a:z € J,}.

In [15], it is proved that the Hausdorff dimension of J, is 2.

Let a € [l,mya > 0 and n € N such that N = 29" > 8%—i—l
be fixed. We denote H(a) = m and B(a) = H(a) +e. Fach

dyadic cube of size 2=% can be split into 2% subcubes i()\) with side
2=+ We define the probe P spanned by N functions ¢” with the
following wavelet coefficients dY:

- (14)

. 4729277 if each k; is a multiple of 27~F and r = i(\)
0 elsewhere

where for each j we denote L = [M}

One can check that these functions ¢g" belong to ByYNC7, see [16].



) d
Let Joli) = § + [~ahr]”

Let us first check that the set of points S.(«) defined by

Se(a) ={f= Zc)\w,\ € ByINCY : A € Jo Vi k len| < 27T (14|20 p—k|)P ()},

is a Haar null Borel set. Indeed this set can be included in the lim sup
on 7 of the countable union over [ of sets:

Se(a)t = {f = expp € ByINCY : Iz € Jo(i,1) Vi k |ea] < 2P (14 (27 p—k|)P

which are closed sets.

We pick a sequence of functions f, in S.(a)"! and such that f,, con-
verges to f in By? N C7. For each n, there exists z,, in J,(7,1) such
that f,, satisfies condition (12) at x,. But J,(4,1) is a compact set, so
there exists © € Ju(i,1) and a subsequence (7,(;))ien such that
converges to . As the mapping which gives wavelet coefficients of a
function is continuous, f satisfies also (12) at z.

Let f € ByY N C7 be fixed. Consider the affine subset M = {§ €
RN:  f+>25'g" € Se(a)}. Let 61 and 2 be in M. There exists
x1 € Jo and a9 € J, such that for [ =1, 2:

lex+ > Sjdy| < c27P@I (14 |205 — k)P < 7Pl (15)

Furthermore H(a) > v and, if A is such that each k is a multiple of
2k,

j2/4
So, taking (15) and (16) we obtain:

| > —9~H(L (16)
J

H51 _ 62HRN S 2027045(04)[/2]’1(&)[/]'2/(] — 20j2/q27a5L.

When j tends to infinity, the Lebesgue measure of S.(«) tends to zero.
Now, we take the countable union over ¢ and ¢, — 0. As Haar null
set are stable under inclusion, we obtain:

Va € [1 | ae.in ByINCY Vx € Jy hy(z) < H(a).

Td+(y—s)p
Let (o) be a dense sequence in [1, W‘Qs)p]. As a countable union

of Haar null sets is still a Haar null set, for almost every function in

ByinC,

hy(xz) < H(oap) YnVx € Jg,. (17)

9
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Let f be a function satisfying (17). Let « be fixed, there exists
a nondecreasing subsequence (a, ) which converges to v and the in-

tersection of the subsets Ju,,, (:= Ja) contains J,. Furthermore there
exist a measure such that any set of dimension less than d/« is of mea-
sure zero. And the measure of J, is positive. If Gy = {x : hy(z) <
H}, with Lemma 1 we have that the Hausdorff dimension of Gy is

@H. And the g Hausdorff measure of the set {z : hy(z) < H}
equals zero. This way for almost every function in By N C7,
_d+(y—5)

PH for H e [% d’y}
Y

4(H) d+(y—s)p

2.2 The scaling function

Let us now determine the scaling function of almost every function in
a given Besov space. We will now show the following result.

Proposition 5. Let sg and po be fized such that sqg— p% > 0. Outside
a Haar null set in Bpy'™, we have:

(18)

PSo P <po
ny(p) =

d+p(50—p%) P = Ppo-

Let 0 < v < s be fized. If so — p% < 0, then outside a countable union
of compact set in Bpy"* (C7:

DSo P <po
ns(p) = (19)
{’yp—i—po(so—’Y) P> po.

Proof: 1In each case, we can find in [21]| the lower bound. Indeed,
this bound is given by the Sobolev embedding.

To prove the upper bound, we will first consider the case sg— p% >
0. Let € > 0 be fixed and denote

. pso +¢€ P =< Do
5(p) = J .
d+p(so—5;)+e  p=po.

Let 0 < p < 0o be fixed. We want to show that the set of functions

5(p),00

belonging to B, for all 0 < p < oo is Haar null. This set is clearly

10



closed and Borel. Let 7 > 1 and k € {0, 20— l}d. We define J < j

and K € Z% such that
K k

27~ 2
is an irreducible fraction. Let a > % We define a probe spanned by
the function F' with the following wavelet coefficients:

dy :jfaQ(pf) 0)ig=767
This function belongs to Bpo*°.
Let f be in Bp)*° and consider the affine subset
M ={a €R; f+aF € BiP>},

Suppose that there exist a1 and ao in M. We have then three cases,
following position of p.

e If p=pg, then 3(p) = po + ¢ and

a1 — Qa2

[f+aF = (f+aF)|, 52,00 = SUD Z | 7

T kefo,..,27-1}d

N D S

J J=0 K€{0,...,27 —1}4

= sup 4‘0&1 _ (X2| 21008j_
j J*

But if a; and ag belong to M, this implies that
f+aiF — (f + asF) belong to B3P

This is possible only if a3 = ao.

o If p> po, then 5(p) =d+ p(so — p%) + . In this case,

fH+aF —(f+aF) € Bg(p)’oo
implies that there exist ¢ > 0 such that:

[ frarF=(f+aal)| i .o < [[fHoaF|| gsw) oot fHaoF || s < c
p P p
We have then the following inequalities:

11

=750 (e —s0)i o
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Vi >0 Z |Laa22(§—%)j2(%—50)j2—%t7’p <ec
ke{0,...,29 —1}4 J
o1 dp

7‘;:2 52 pJQ(pO 0)Pj Z Z 27w’ < ¢
J¢

J=0 K€{0,...,27 —1}4

Vi>0 |

By definition of J. And

p J d - .
Vi >0 _ (%) ZQ(d—ﬁ)J < 62(—5-&-%—%—%—50)1)]
J=0
1 (20)
7> 0 ‘041 — 02| p(-SHE— o) '1 p !
ja 1 _ 2](d_d%)

i(d—d-2-
As p > po, 1 — 9lddyg

implies

) is equivalent to 1 for large j and (2.2)

o — ap| < 27

which tends to zero when j tends to infinity.

S Ad—d P
](d dPO

o pr<p0,then§():so+5and1— )

2.7 j(d—d )

is equivalent to
when j tends to infinity. Thus in (2.2), we obtain again

|y — ag| < %27,

In each case we have obtained that M is of Lebesgue measure zero.
Taking countable union over € — 0, and over p, we obtain the desired
scaling expomnent.

The second case, for so — p% < 0 can be treated the same way
for p < pg. The case p > pg is obtained taking the function which
coefficients are given by (14) instead of F'.

a

From Theorem 2 and Proposition 5, we obtain the following Leg-
endre transform of the scaling function of almost every function in a
given Besov space.

Proposition 6. Let so >0 and 0 < pg < oo.

12



o Jfsy— pio > 0, then for almost every function in By:

d
VH € {So -—, So} igg(d —n(p) + Hp) = d — poso + Hpo.
p

Po
(21)
o Ifsy— p% < 0, then for almost every function in By?(C7 we
have:
VH € [v, so] ;I;%(d —n(p) + Hp) = d — poso + Hpo. (22)

This proposition shows that for sg — p% > (, the increasing part
of the spectrum given by Frisch-Parisi conjecture is valid for almost
every function. But for sg — p% < 0, this Legendre transform does not
correspond to the spectrum of singularities given by Theorem 2.

3 The Frisch-Parisi conjecture

We will now prove Theorem 1. Instead of Bpy'® we will now work
with:

V= ﬂ Bnw)—e)/pp

p,loc
e>0,0<p<oo

This set V' can also be written as a countable intersection over
(n(pn)*gn)/pnvpn
Pn;loc

Note that V is a topological vector space. For p < 1 Besov spaces

are only quasi-Banach spaces, as the triangle inequality is only satisfied
up to a constant, V' is not a Banach space but a complete metric space.
Indeed, if p > 1 we take for distance between two functions f and g in
By

q
p

d(f.g) = Z Z )(Cj,k - dj,k)2(s_%)j ’

J20 \ke{0,...,27 -1}

where c; . are the wavelet coefficients of f and d;; are those of g.
If p < 1 Besov spaces are not Banach spaces, but complete metric
space with the following distance:

min(p,q)
q

SIS

d(f.g)= > > len— dj )20

720 \ke/{o,...,27 —1}4

13



Thus, we obtain a distance in V' taking:

dn )
VeV difg) =2l

where d,, denotes the distance in B;Z(fgc)_en)/ ProPr With this distance

V is clearly a complete space. Note that the measure used is the
Lebesgue measure in the unit ball of a probe, so this is a probability
measure with compact support.

In the following subsection we prove that the spectrum of singu-
larities of almost every function in V satisfies:

d(H) = inf (pH —n(p) + d).

3.1 Proof of Theorem 1

Let us now study the spectrum of singularities on a prevalent set of
functions in V.

Proposition 7. For almost every function f € V, the spectrum of

singularities satisfies:

VH € [s(0), L] d(H) = inf (Hp — n(p) + d). (23)

DPc DP>Pe

Proof:
We will first construct the probe. Denote:

a(j, k) = inf (dU —J) - n<p>j>

p p

and define g via its wavelet coefficients:

1 .
dy = —205k) (24)
](,1
where we denote a = a; = logj and J < j is such that there exists

K € 7% and 2% = 25] is an irreducible form.

First, we check that g belongs to V. Let p > 0 be fixed. Thus we have

to show that g € Bg(p)/p’oo. Let s = @. Since a(j,k) < # — 87,

pa(j, k) + (n(p) —p)j = —Jd and g € Bg(p)/p’oo. For further details
upon this function g, we refer to [16].

14



Definition 7. Let a be fivred. We denote

kn

r— —
2in

< 2aljn } (25)

The dyadic exponent of x is defined by a(xg) = sup{a : xo is a-
approzimable by dyadics}

Fo = {513 : d a sequence ((knvjn))neN

As it is stated in [16], the Hausdorff dimension of the set F,, is at
least g.

First, let a € (1,00) be fixed and let F, be the set given by
Definition 7. Let € > 0 be fixed, and let

(@) = & sup (wsup(s(o) — (1 = Do)
QO y>a q>0 w

and v = v(a) = H(a) +¢.

Let n € N be such that N = 29" > g + 1 be fixed. The probe P
is spanned by N functions g; which are deduced from g by taking its
wavelets coefficients only over some sub-cubes i(\) with size 2-4+7),
The aim of this part is to prove that the set of functions f such that
there exist a point in F, where f is C is a Haar null set. This set is
included in the countable union of:

Se(e) ={f =D extha: Jw € Fo Vi k |ea] < 277 (1420 0—k|)7(¥}.

We can find a subsequence (j, k) such that J < aj and:
1 1 .
H(a) = —sup (wsup(s(q) —d(1 — —)q) | = —a(j, k).
QO y>a >0 w

If © € F, is fixed and A is such that |z — \| < A for A > 2N, the
wavelet coefficients of g; satisfy:

| > Cgf) 9—H()j (26)

We will now prove that the set S.(«) is a Borel Haar null set.
First, this set is included in the countable union over A of:

Sl = {f =S extat Fr € FIF Vi k fea] < 277 (14 20a—k|) (),

Where F2* = {x : |z — 2% < 51}, This set S.(a)?* is a closed set

— 9aj

and Sc(a) is a Borel set. Let f be in V and (; and (2 be such that

15



the functions f+ B¢ and f+ Y Big" are in S.(c). There exist two
points x1 and x3 in F,, such that in the cone of influence above x; and
To:
2 lex+ D Bidy — (e + ) Fady)| < 2e277(7,
Or,
lex+ Y Bidi — (ex+ D Bhdi)| = | Y Bid} — Bidy)
but, using (26),

> Bidy — Brdi| = \Zﬁi—ﬁycgﬁ?‘ma”-

Thus,

161 — Ballry < Gj*27.
So the Lebesgue measure in RY of the set {3 : f + Bg € S.(a)?*} is
bounded by (¢j4)N2-NeJ,
The Lebesgue measure of the set of 3 such that f+ " 3'g® belongs to
Sc(a) vanishes. Therefore S.(«) is Haar null.
Taking a countable union over ¢, > 0 of sets S.(«),the set of functions
in V' with a pointwise Holder exponent greater than v(«) at a point
of F is also Haar null. If €, — 0, taking the union over &, it follows
that for all @ > 1 the set of functions in V' with an Hélder exponent
greater than H(«) at some point of F,, is Haar null.
Let ay, be a dense sequence in (1,00). By countable intersection:

M={feV:Vn VxekF,, hf(x)<H(a)} (27)

is prevalent. Let f € M and let a > 1. There exist a subsequence
Q¢(n) Which is nondecreasing and tends to a. If we denote F, the
intersection of sets F,, , it follows that Fa contains F,,. Furthermore,
the Hausdorff dimension of F, is greater than g and for all z € Fy,
hy(xz) < H(a). Finally we obtain

To conclude the second point of Theorem 1, we rewrite H () in

the following form

H(a) = inf G(a)

a a>a

where G(a) = sup,(a(—qd+s(q)) +qd) = asup,(gd(—1+ %) +s(q)) =
a s* (d (1 — é)) Here s* is the Legendre transform of s. By definition
of the Legendre transform, this is a convex function. Furthermore it
satisfies

{S*m) = +oo i h<(+o0) (28)

s*(h) = s(0) if h > §'(0)
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And if s* is twice differentiable (we refer to [11] for a general case),
G is also twice differentiable and its derivative is

o=+ (o1 47 (s(-3)

G"(a) > 0.

and:

Thus G is also convex and there exists ag such that G(ag) = inf,>0 G(a),
ap being such that G'(ag) = 0. We also deduce from (28) that:

(+o0) (29)

G(a) = as(0) sia> %=

{G(a):+oo sia < 7t
a=s'(0)

By definition of s and with the hypothesis that n is an admissible
function we have 0 < §'(¢q) < d, for all ¢ > 0. It follows from (29)
that ag belongs to the interval (d—s’((i-i-oo)’ d_;fl,(o)) which is included in
[0, 00).

Another way to treat G is to write G(a) = sup,(3(q)) where
5(q) = a(s(q) — qd) + gd. And if s is also twice differentiable, §'(q) =
—da + as'(q) + d and §'(q) = as’(q) < 0. Thus § is a concave
function, and there exists an upper bound gg which satisfies §(qo) =
—da+as'(qo) +d = 0, and §'(qp) = 924, The value of go also depends
of a so we write now ¢op = ¢(a).

We can finally write G(a) = a(—q(a)d + s(q(a))) + q(a)d. This
function is twice differentiable and its derivative satisfies:

G'(a) = s(q(a)) — dg(a).

If a = ag is the lower bound of G, we obtain G'(ag) = s(q(ag)) —
dg(ag) = 0 = s(q(ao)) = dq(ao), that is q(ao) = gc = 1/pe. Fur-
thermore, G is decreasing for a < agp and increasing for a > ag. The
following cases are now possible:

o Ifav> #’(0)7 then for all a > «, G(a) = as(0) and H(«) = s(0).
So,
dimy({z : hy(z) <s(0)}) =d+s(0).
o If 1 <a<agthen

inf G(a) = G(ag) = (ap(—gqed + s(qc)) + ged) = dge.

a>o

17



and the corresponding value of H is

H(a) = 1 inf G(a) = 44

aa>o (e}

Thus, the spectrum of singularities is defined on the interval

[‘i%c ,dg.] and for almost every function, and for all H € [Ciqoc , dqc]
. H
dimg({z : hy(z) < H}) = —.
qe

Furthermore, we have already seen that :

_da—d

a

s'(q(a))

which is an increasing function. As s’ is decreasing, the applica-
tion a — q(a) is itself decreasing. So, for o < ag, ¢ > q. = pic
and :

dimy({z: hy(z) < H}) < jnf (pH —n(p) + d) .

o Ifag<a< ﬁ‘l,(o), which is equivalent to

inf G(a) = G(a) = asup <—qd +s(q) + qd> .

a>o q [0

We obtain :

(@) = sup (~ad+ s(0) + 2 ).

q (6%

%] }
.

So for almost every function, for all H € [s(0), 7k

dimp ({z : hy(z) < H}) = pingc (pH —n(p) +d) < pingc (pH —n(p) +d).

Furthermore, see [16], the spectrum of singularities of all functions
of V satisfies:
d(H) < inf (pH —n(p) + d). (30)
P2pe
This implies that the Hausdorff dimension of the set {z : h¢(z) <
H} is strictly less than g. As proved in [14], there exists a measure my,
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such that mq({x : hy(x) < H}) > 0. But by definition of the Hausdorff
dimension, mq({z : hy(z) < H}) = 0. Then, mq({z : hy(z) = H) >0
and

d(H) = inf (pH —n(p) + d).

P>Pe

a

Proposition 8. For almost every function f in 'V, the scaling func-
tion of f satisfy:

ns(p) =n(p), Y0 <p< oo.

Proof: As we have V =124 0<pcoo B}()Zg;)_g)/p’p, for any f € V the
scaling function is greater than n(p) for all p. Let 7 > 0 and p > 0 be

fixed. We denote 7(p) = @ + 7. We first prove that the set

M(p) ={feV; feBjr=}

is a Haar null set. Let g be the function defined by wavelet coefficients
given by (24) and P be the probe spanned by g. First, we check that
g does not belong to B;(p)’oo. We write 8; = d(1 — %), where J is
defined as in (24). This term f; takes discrete values, spaced by %l
and between 0 and d. As the function s is a concave function and
0 < §'(q) < d for all ¢, there exists, for j large enough, a ; near from
s'(q) such that the line given by 7(p) + 5; ( 1

% — p) is always above the
graph of s. Thus

Vp >0 7(p)+p5; (]15 — ;) > s(1/p).

But a(j, k) = jinfp(% — s(1/p)), and this infimum is attained for a
po € (0,00). Therefore,

a(j ) > j(fj ),

and

HgHBg(P)oo 2 Supj_ajp27jp.
J

Thus g ¢ B;(p)’oo.
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Let f be in V. Suppose that there exist a; and ag such that the
functions f1 = f 4+ a1g9 and fo = f 4 asg belong to B;(p)’oo. Then
f1 — fo also belongs to B;(p)’oo. But

fi— fo= (a1 —az)g.

As g does not belong to B;(p),oo

is Haar null.

, we have then o = agp. Thus M (p)

Taking countable union over 7 — 0 and p > 0, we obtain that for
almost every f in V, ng(p) < n(p) for all p > 0.
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