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Generic validity of the multifractal formalism

The multifractal formalism is a conjecture which gives the spectrum of singularities of a signal using numerically computable quantities. We prove its generic validity by showing that almost every function in a given function space is multifractal and satises the multifractal formalism.

Introduction

One motivation of multifractal analysis was the study of fully developed turbulent ows. Indeed, some experimental results obtained in wind-tunnels showed that the regularity of the velocity of a turbulent uid changes wildly from point to point. This quantity is therefore hardly computable. Hence, rather than measure the exponent at some point one rather estimates the fractal dimension of sets where it takes a given value H.

The spectrum of singularities d(H) is the function which gives the Hausdor dimension of those sets. From its denition, it is also almost impossible to obtain numerically the spectrum of singularities.

In [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF], two physicists U. Frisch and G. Parisi proposed an algorithm in order to derive the spectrum of singularities from quantities that are eectively computable on a signal. They proposed to use the L p modulus of continuity of the velocity, used in the theory * Laboratoire d'analyse et de mathématiques appliquées, Université Paris XII, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, FRANCE. Email: fraysse@univ-paris12.fr 1 of turbulent ows since Kolmogorov, [START_REF] Kolmogoro | The local structure of turbulence in incompressible viscous uid for every large Reynold's numbers[END_REF]. This average quantity is called the scaling function, or scaling exponent and is denoted ξ f . It is dened by |f (x + l) -f (x)| p dx ∼ |l| ξ f (p) , where ∼ means that |f (x + l) -f (x)| p dx is of the order of magnitude of |l| ξ f (p) when l tends to 0 (assuming that the limit exists). Numerical estimations and further results about the scaling function and its wavelet decomposition can be found in [START_REF] Abry | Ondelettes et turbulences. Multirésolutions, algorithmes de décomposition, invariance d'échelle et signaux de pression[END_REF][START_REF] Arnéodo | The thermodynamics of fractals revisited with wavelets[END_REF].

Frisch and Parisi proposed that the spectrum of singularities of a function can be obtained as follows:

d(H) = inf p∈R (pH -ξ f (p) + d), (1) 
see [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF] for the derivation of this formula. First, we state the mathematical framework of multifractal analysis. The main notion we need to dene is the Hölder exponent. Denition 1. Let α ≥ 0; a function f : R d → R is C α (x 0 ) if for all

x ∈ R d such that |x -x 0 | ≤ 1 there exists a polynomial P of degree less than [α] and a constant C such that,

|f (x) -P (x -x 0 )| ≤ C|x -x 0 | α .
(

The Hölder exponent of f at x 0 is

h f (x 0 ) = sup{α : f ∈ C α (x 0 )}.
It is proved in [START_REF] Jaard | Multifractal formalism for functions[END_REF] that for p ≥ 1, the scaling function ξ f (p) is closely related with Sobolev or Besov smoothness. It is thus natural for us to replace the scaling function as follows.

If p > 0 η f (p) = sup{s : f ∈ B s/p,∞ p }.

(

So (1) applied to η f can at most give the increasing part of the spectrum. Dening, as in [START_REF]On the Frisch-Parisi conjecture[END_REF], an auxiliary function s(1/p) = η(p)/p, the Besov domain of a function f is the set of (q, t) such that f ∈ B t,1/q 1/q . The boundary of the Besov domain of f is then given by the graph of s. And by Sobolev embeddings, the Besov domain of a function is a convex set. Thus, functions η satisfying (3) are increasing and concave functions. Furthermore the auxiliary function s is such that 0 ≤ s (q) ≤ d. Those conditions lead us to the following denition. Denition 2. A function η is admissible if s(q) = qη(1/q) is concave and satises 0 ≤ s (q) ≤ d. It is strongly admissible if furthermore s(0) > 0.

The following important result from [START_REF]On the Frisch-Parisi conjecture[END_REF] allows us to dene a metric space using admissible functions. Proposition 1. Any concave function s satisfying 0 ≤ s (q) ≤ d denes the Besov domain of a distribution f . Thanks to Proposition 1, to each admissible function η, a metric space V can be associated by taking

V = ε>0,0<p<∞ B (η(p)-ε)/p,p p,loc .
To be as complete as possible, we also recall the denition of Legendre transform. Denition 3. Let f be a lower semi-continuous function dened in a normed vector space E. Then the Legendre transform of f is

f * (x) = sup y∈E (f (y) -xy). ( 4 
)
This function is convex and lower semi-continuous.

In the present paper, we propose to study the validity of (1) for η f (p). An equivalent form of this heuristic formula is satised by a large class of invariant measures, see [START_REF] Barral | Multifractal products of cylindrical pulses[END_REF][START_REF] Brown | On the multifractal analysis of measures[END_REF][START_REF] Olsen | A multifractal formalism[END_REF]. In the context of signal analysis, this conjecture is often satised if we add particular assumptions on f , such as self-similarity. On the other hand, there exist counterexamples to the general validity of this formula. If it does not hold for every function, what is its range of validity? Our purpose here is to show that the validity of formula (1) is not an exceptional phenomenon but it is satised for a large class of functions, without any additional assumption. More precisely, we study the validity of this formula for "almost every" functions, i.e. in a measure-theoretic sense.

In a nite dimensional space, the notion of "almost every" means "for the Lebesgue measure". The particular role played by this measure is justied by the fact that this is the only one which is σ-nite and invariant under translation. In a metric innite dimensional space no measure enjoys this properties. The following denition, see [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF][START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF] can thus replace the notion of vanishing Haar measure. Denition 4. Let V be a complete metric vector space. A Borel set B in V is called Haar null if there exists a probability measure µ with compact support such that

µ(B + v) = 0 ∀v ∈ V. ( 5 
)
In this case the measure µ is said transverse to B.

A subset of V is called Haar null if it is contained in a Borel Haar null set.

The complement of a Haar null set is called a prevalent set.

With a slight abuse of language we will say that a property is satised almost everywhere when it holds on a prevalent set.

Let us recall some properties of Haar null sets, see [START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF].

Proposition 2. Several kinds of measures can be used as transverse measures of a Borel set. Here, we will only use the following notion. Denition 5. A nite dimensional space P is called a probe for the set T ⊂ V if the Lebesgue measure on P is transverse to the complement of T .

Those measures are not compactly supported probability measures. However one immediately checks that Denition 5 is equivalent to the same one stated with the Lebesgue measure dened on the unit ball of P . Note that in this case, the support of the measure is included in the unit ball of a nite dimensional subspace. The compactness assumption is therefore fullled.

The study of generic regularity for a "large" set of functions goes back to S. Banach [START_REF] Banach | Über die Baire'sche Kategorie gewisser Funktionenmengen[END_REF], who gave dierentiability properties of continuous functions, for quasi-all functions in the Baire's categories sense. Later B. Hunt [START_REF] Hunt | The prevalence of continuous nowhere dierentiable function[END_REF] proved the same result in the measure-theoretic sense of prevalence.

In [START_REF]On the Frisch-Parisi conjecture[END_REF], S. Jaard studied properties of generic functions, in the Baire's categories sense, in Sobolev spaces. He also proved that in the sense of Baire's categories quasi-all functions in V satisfy:

d(H) = inf p≥p c (pH -η(p) + d) (6)
where p c is the only critical point such that η(p) = d.

In this paper we will study the validity of the Frisch-Parisi conjecture for almost every function in the prevalence setting. The aim of this paper is to prove the following theorem.

Theorem 1. Let η be a strongly admissible function and let V be the space dened by

V = ε>0,0<p<∞ B (η(p)-ε)/p,p p,loc ; (7) 
then, in the sense of prevalence, almost every function f in V satises the following two conditions:

1. For all p > 0,

η f (p) = η(p)
2. The spectrum of singularities is dened on the interval s(0),

d p c
where it is given by:

d f (H) = inf p≥p c (pH -η f (p) + d) (8)
where p c is the only critical point such that η(p c ) = d.

Remark. We have to impose that η is strongly admissible else, according to [START_REF] Fraysse | How smooth is almost every function in a Sobolev space?[END_REF], almost every function in V is nowhere locally bounded.

In section 2 we will solve a simpler problem. We will prove that almost every function in a given intersection of a Sobolev or a Besov space and an Hölder space satises a slight modication of the Frisch and Parisi conjecture. We will rst establish their spectrum of singularities.

Theorem 2. If γ > 0 and s -d p < 0 the spectrum of singularities of almost every function in B s,q p C γ or in L p,s C γ is given by:

d(H) = d+(γ-s)p γ H if H ∈ γ, dγ d+(γ-s)p -∞ otherwise.
Remarks. 1. Using the Sobolev embeddings B s,1 p → L p,s → B s,∞ p , the same result holds in Sobolev and in Besov spaces. As Besov spaces have a very simple wavelet expansion, we will only prove the result in those spaces. To obtain the Sobolev case, we only need to pick q = ∞ in the following.

2. In Theorem 2 we only state the spectrum of singularities of functions in the case B s,q p ∩C γ where s-d p < 0. Other cases are proved in [START_REF]How smooth is almost every function in a Sobolev space?[END_REF]. To be complete, we recall the following result from [START_REF]How smooth is almost every function in a Sobolev space?[END_REF].

Proposition 3. • If s -d/p ≤ 0, then almost every function in L p,s or in B s,q
p is nowhere locally bounded, and therefore its spectrum of singularities is not dened.

• If s -d/p > 0, then the Hölder exponent of almost every function f of L p,s , or of B s,q p takes values in [s -d/p, s] and ∀H ∈ [s -d/p, s] , d f (H) = Hp -sp + d; (9) 
furthermore, for almost every x, h f (x) = s.

Our purpose here is to expand the result of [START_REF]How smooth is almost every function in a Sobolev space?[END_REF] in two directions.

On one hand, we will work with an intersection of Besov spaces.

On the other hand, we will see in the last part another stronger generic result, in the topological sense mentioned above.

The main tool that we will use in the following is the wavelet expansion of functions. First, it yields a simple characterization of functional spaces and it oer a simple condition for pointwise regularity. Let us recall some properties of wavelet expansion.

There exist 2 d -1 oscillating functions (ψ (i) ) i∈{1,...,2 d -1} in the Schwartz class such that the functions

2 dj ψ (i) (2 j x -k), j ∈ Z, k ∈ Z d form an orthonormal basis of L 2 (R d ), see [19]. Wavelets are indexed by dyadic cubes λ = [ k 2 j ; k+1 2 j [ d . Thus, any function f ∈ L 2 can be written: f (x) = c (i) j,k ψ (i) (2 j x -k)
where

c (i) j,k = 2 dj f (x)ψ (i) (2 j x -k)dx.
(Note that we use an L ∞ normalization instead of an L 2 one, which simplies the formulas). If p > 1 and s > 0, Sobolev space have thus the following characterization, see [START_REF] Meyer | Ondelettes et opérateurs[END_REF]:

f ∈ L p,s ⇔ λ∈Λ |c λ | 2 (1 + 4 js )χ λ (x) 1/2 ∈ L p (R d ), (10) 
where χ λ (x) denotes the characteristic function of the cube λ and Λ is the set of all dyadics cubes. Homogeneous Besov spaces, which will also be considered, are characterized (for p, q > 0 and s ∈ R) by

f ∈ B s,q p ⇐⇒ j   λ∈Λ j |c λ | p 2 (sp-d)j   q/p ≤ C ( 11 
)
where Λ j denotes the set of dyadics cubes at scale j, see [START_REF] Meyer | Ondelettes et opérateurs[END_REF]. Note that, if p ∈]0, 1[, Besov spaces are not Banach spaces since they are not locally convex but nonetheless are separable complete metric vector spaces.

Pointwise regularity can also be expressed in terms of a condition on wavelet coecients, see [START_REF] Jaard | Multifractal formalism for functions[END_REF]. Proposition 4. Let x be in R d . If f is in C α (x) then there exists c > 0 such that for all λ:

|c λ | ≤ c2 -αj (1 + |2 j x -k|) α . ( 12 
)
2 Multifractal formalism in a given Besov space

The Frisch-Parisi conjecture gives the spectrum of singularities as the Legendre transform of the scaling function. We will determine the validity of this formula for measure theoretic generic functions in a given Besov space, in two steps. First we will prove Theorem 2, which one gives the spectrum of singularities of almost every function. Afterwards, we will give the prevalent scaling function. This allows us to merge the spectrum obtained with formula (1) applied to the scaling function.

Proof of Theorem 2

Proposition 3 states that if s -d p < 0, almost every function in B s,q p is nowhere locally bounded and the spectrum of singularities is not dened for any H. To dene this spectrum, we need to assume a minimum uniform regularity. That is why, in the following, we choose s -d p < 0 and 0 < γ < s and we study almost every function in B s,q p ∩ C γ .

Theorem 2.1 from [START_REF] Jaard | Wavelet methods for pointwise regularity and local oscillations of functions[END_REF], yields an upper bound of the spectrum of singularities.

Lemma 1. Let s -d p < 0. For all functions f ∈ B s,q p C γ , the Haus-

dor dimension of the set {x : f / ∈ C α (x)} is bounded by d+(γ-s)p γ α.
We need also the following denition.

Denition 6. Let α ∈ [1, d d+(γ-s)p ]. A point x 0 belongs to J α if there exists an innite sequence (j, k) ∈ N × {0, ..., 2 j -1} d , k = (k 1 , ..., k d )
such that for each i = 1, ..., d k i can be written l i 2 j-L and:

1 2 j + x 0 - k 2 j < 1 2 αL ( 13 
)
where L := (d+(γ-s)p)j d . We dene the exponent of approximation of x as α (x) = sup{α : x ∈ J α }.

In [START_REF]Old friends revisited: The multifractal nature of some classical functions[END_REF], it is proved that the Hausdor dimension of J α is d α .

Let α ∈ 1, d d+(γ-s)p , ε > 0 and n ∈ N such that N = 2 dn > d εα +1 be xed. We denote H(α) = dγ α(d+(γ-s)p) and β(α) = H(α) + ε. Each dyadic cube of size 2 -dj can be split into 2 dn subcubes i(λ) with side 2 -(j+n) . We dene the probe P spanned by N functions g r with the following wavelet coecients d r λ :

d r λ = j -2/q 2 -γj if each k i is a multiple of 2 j-L and r = i(λ) 0 elsewhere ( 14 
)
where for each j we denote L = (d+(γ-s)p)j d .

One can check that these functions g r belong to B s,q p ∩C γ , see [START_REF]On the Frisch-Parisi conjecture[END_REF].

Let J α (i, l) = l 2 i + -1 2 αL 1 2 αL d .
Let us rst check that the set of points S c (α) dened by

S c (α) = {f = c λ ψ λ ∈ B s,q p ∩C γ : ∃x ∈ J α ∀j, k |c λ | ≤ c2 -β(α)j (1+|2 j x-k|) β(α) }.
is a Haar null Borel set. Indeed this set can be included in the lim sup on i of the countable union over l of sets:

S c (α) i,l = {f = c λ ψ λ ∈ B s,q p ∩C γ : ∃x ∈ J α (i, l) ∀j, k |c λ | ≤ c2 -β(α)j (1+|2 j x-k|) β(α) }.
which are closed sets.

We pick a sequence of functions f n in S c (α) i,l and such that f n converges to f in B s,q p ∩ C γ . For each n, there exists x n in J α (i, l) such that f n satises condition (12) at x n . But J α (i, l) is a compact set, so there exists x ∈ J α (i, l) and a subsequence (x n(i) ) i∈N such that x n(i) converges to x. As the mapping which gives wavelet coecients of a function is continuous, f satises also [START_REF] Hunt | The prevalence of continuous nowhere dierentiable function[END_REF] 

at x. Let f ∈ B s,q p ∩ C γ be xed. Consider the ane subset M = {δ ∈ R N ; f + δ i g i ∈ S c (α)}.
Let δ 1 and δ 2 be in M . There exists x 1 ∈ J α and x 2 ∈ J α such that for l = 1, 2:

|c λ + δ i l d i λ | ≤ c2 -β(α)j (1 + |2 j x -k|) β(α) ≤ c2 -αβ(α)L . ( 15 
)
Furthermore H(α) > γ and, if λ is such that each k is a multiple of 2 j-L .

|d i λ | > 1 j 2/q 2 -H(α)L . ( 16 
)
So, taking [START_REF]Old friends revisited: The multifractal nature of some classical functions[END_REF] and ( 16) we obtain:

δ 1 -δ 2 R N ≤ 2c2 -αβ(α)L 2 H(α)L j 2/q = 2cj 2/q 2 -αεL .
When j tends to innity, the Lebesgue measure of S c (α) tends to zero. Now, we take the countable union over c and ε n → 0. As Haar null set are stable under inclusion, we obtain:

∀α ∈ [1, d d + (γ -s)p ] a.e. in B s,q p ∩ C γ ∀x ∈ J α h f (x) ≤ H(α). Let (α n ) be a dense sequence in [1, d d+(γ-s)p ].
As a countable union of Haar null sets is still a Haar null set, for almost every function in

B s,q p ∩ C γ , h f (x) ≤ H(α n ) ∀n ∀x ∈ J αn . ( 17 
)
Let f be a function satisfying [START_REF] Jaard | Wavelet methods for pointwise regularity and local oscillations of functions[END_REF]. Let α be xed, there exists a nondecreasing subsequence (α ϕn ) which converges to α and the intersection of the subsets J α ϕn (:= Jα ) contains J α . Furthermore there exist a measure such that any set of dimension less than d/α is of measure zero. And the measure of J α is positive. If G H = {x : h f (x) ≤ H}, with Lemma 1 we have that the Hausdor dimension of G H is d+(γ-s)p γ H. And the d α Hausdor measure of the set {x : h f (x) < H} equals zero. This way for almost every function in B s,q p ∩ C γ ,

d(H) = d + (γ -s)p γ H for H ∈ γ, dγ d + (γ -s)p

The scaling function

Let us now determine the scaling function of almost every function in a given Besov space. We will now show the following result. Proposition 5. Let s 0 and p 0 be xed such that s 0 -d p 0 > 0. Outside a Haar null set in B s 0 ,∞ p 0 , we have:

η f (p) = ps 0 p ≤ p 0 d + p(s 0 -d p 0 ) p ≥ p 0 . ( 18 
)
Let 0 < γ < s be xed. If s 0 -d p 0 < 0, then outside a countable union of compact set in B s 0 ,p 0 p 0 C γ :

η f (p) = ps 0 p ≤ p 0 γp + p 0 (s 0 -γ) p ≥ p 0 . ( 19 
)
Proof : In each case, we can nd in [START_REF] Stein | Singular integrals and dierentiability properties of functions[END_REF] the lower bound. Indeed, this bound is given by the Sobolev embedding.

To prove the upper bound, we will rst consider the case s 0 -d p 0 > 0. Let ε > 0 be xed and denote

s(p) = ps 0 + ε p ≤ p 0 d + p(s 0 -d p 0 ) + ε p ≥ p 0 .
. Let 0 < p < ∞ be xed. We want to show that the set of functions belonging to B s(p),∞ p for all 0 < p < ∞ is Haar null. This set is clearly closed and Borel. Let j ≥ 1 and k ∈ {0, ..., 2 j -1} d . We dene J ≤ j and

K ∈ Z d such that K 2 J = k 2 j
is an irreducible fraction. Let a > 3 p 0 . We dene a probe spanned by the function F with the following wavelet coecients:

d λ = j -a 2 ( d p 0 -s 0 )j 2 -d p 0 J .
This function belongs to B s 0 ,p 0 p 0 . Let f be in B s 0 ,p 0 p 0 and consider the ane subset

M = {α ∈ R; f + αF ∈ B s(p),∞ p }.
Suppose that there exist α 1 and α 2 in M . We have then three cases, following position of p.

• If p = p 0 , then s(p) = p 0 + ε and f + α 1 F -(f + α 2 F ) B s(p),∞ p = sup j k∈{0,...,2 j -1} d | α 1 -α 2 j a 2 (s-d p 0
)j 2

( d p 0 -s 0 )j 2 -d p 0 J | p 0 = sup j | α 1 -α 2 j a |2 p 0 εj j J=0 K∈{0,...,2 J -1} d 2 -dJ = sup j |α 1 -α 2 | j a 2 p 0 εj .
But if α 1 and α 2 belong to M , this implies that

f + α 1 F -(f + α 2 F ) belong to B s(p),∞ p . This is possible only if α 1 = α 2 . • If p > p 0 , then s(p) = d + p(s 0 -d p 0 ) + ε. In this case, f + α 1 F -(f + α 2 F ) ∈ B s(p),∞
p implies that there exist c > 0 such that:

f +α 1 F -(f +α 2 F ) B s(p),∞ p ≤ f +α 1 F B s(p),∞ p + f +α 2 F B s(p),∞ p ≤ c.
We have then the following inequalities:

∀j > 0 k∈{0,...,2 j -1} d | α 1 -α 2 j a 2 (s-d p )j 2 ( d p 0 -s 0 )j 2 -d p 0 J | p ≤ c ∀j > 0 | α 1 -α 2 j a | p 2 (s-d p )pj 2 ( d p 0 -s 0 )pj j J=0 K∈{0,...,2 J -1} d 2 -dp p 0 J ≤ c
By denition of J. And

∀j > 0 α 1 -α 2 j a p j J=0 2 (d-dp p 0 )J ≤ c2 (-s+ d p -d p 0 +s 0 )pj ∀j > 0 α 1 -α 2 j a ≤ c2 (-s+ d p -d p 0 +s 0 )j 1 1 -2 j(d-d p p 0 ) 1 p ( 20 
)
As p > p 0 , 1 -2

j(d-d p p 0
) is equivalent to 1 for large j and (2.2)

implies |α 1 -α 2 | ≤ cj a 2 -εj
which tends to zero when j tends to innity.

• If p < p 0 , then s(p) = s 0 + ε and 1 -2 j(d-d p p 0
) is equivalent to

2 j(d-d p p 0
) when j tends to innity. Thus in (2.2), we obtain again

|α 1 -α 2 | ≤ cj a 2 -εj .
In each case we have obtained that M is of Lebesgue measure zero. Taking countable union over ε → 0, and over p, we obtain the desired scaling exponent.

The second case, for s 0 -d p 0 < 0 can be treated the same way for p ≤ p 0 . The case p > p 0 is obtained taking the function which coecients are given by ( 14) instead of F .

2

From Theorem 2 and Proposition 5, we obtain the following Legendre transform of the scaling function of almost every function in a given Besov space. Proposition 6. Let s 0 > 0 and 0 ≤ p 0 < ∞.

• If s 0 -d p 0 > 0, then for almost every function in B s,q p :

∀H ∈ s 0 - d p 0 , s 0 inf p>0 (d -η(p) + Hp) = d -p 0 s 0 + Hp 0 .
(21) • If s 0 -d p 0 < 0, then for almost every function in B s,q p C γ we have:

∀H ∈ [γ, s 0 ] inf p>0 (d -η(p) + Hp) = d -p 0 s 0 + Hp 0 . ( 22 
)
This proposition shows that for s 0 -d p 0 > 0, the increasing part of the spectrum given by Frisch-Parisi conjecture is valid for almost every function. But for s 0 -d p 0 < 0, this Legendre transform does not correspond to the spectrum of singularities given by Theorem 2.

3 The Frisch-Parisi conjecture

We will now prove Theorem 1. Instead of B s 0 ,q 0 p 0 we will now work with:

V = ε>0,0<p<∞ B (η(p)-ε)/p,p p,loc .
This set V can also be written as a countable intersection over

B (η(p n )-ε n )/p n ,p n p n ,loc
Note that V is a topological vector space. For p < 1 Besov spaces are only quasi-Banach spaces, as the triangle inequality is only satised up to a constant, V is not a Banach space but a complete metric space. Indeed, if p ≥ 1 we take for distance between two functions f and g in B s,q p :

d(f, g) = j≥0   k∈{0,...,2 j -1} d (c j,k -d j,k )2 (s-d p )j p   q p
where c j,k are the wavelet coecients of f and d j,k are those of g. If p < 1 Besov spaces are not Banach spaces, but complete metric space with the following distance:

d(f, g) =    j≥0   k∈{0,...,2 j -1} d |(c j,k -d j,k )2 (s-d p )j | p   q p    min(p,q) q .
Thus, we obtain a distance in V taking:

∀f, g ∈ V d(f, g) = n 2 -n d n (f, g) 1 + d n (f, g)
where

d n denotes the distance in B (η(p n )-ε n )/p n ,p n p n ,loc
. With this distance V is clearly a complete space. Note that the measure used is the Lebesgue measure in the unit ball of a probe, so this is a probability measure with compact support.

In the following subsection we prove that the spectrum of singularities of almost every function in V satises:

d(H) = inf p≥pc (pH -η(p) + d).

Proof of Theorem 1

Let us now study the spectrum of singularities on a prevalent set of functions in V . Proposition 7. For almost every function f ∈ V , the spectrum of singularities satises:

∀H ∈ [s(0), d p c ] d(H) = inf p≥pc (Hp -η(p) + d). ( 23 
)
Proof :

We will rst construct the probe. Denote:

a(j, k) = inf p d(j -J) -η(p)j p
and dene g via its wavelet coecients:

d λ = 1 j a 2 a(j,k) (24)
where we denote a = a j = log j and J ≤ j is such that there exists K ∈ Z d and k 2 j = K 2 J is an irreducible form. First, we check that g belongs to V . Let p > 0 be xed. Thus we have to show that g ∈ B

η(p)/p,∞ p . Let s = η(p) p . Since a(j, k) ≤ d(j-J) p -sj, pa(j, k) + (η(p) -p)j = -Jd and g ∈ B η(p)/p,∞ p
. For further details upon this function g, we refer to [START_REF]On the Frisch-Parisi conjecture[END_REF]. Denition 7. Let α be xed. We denote

F α = x : ∃ a sequence ((k n , j n )) n∈N x - k n 2 j n ≤ 1 2 αj n . ( 25 
)
The dyadic exponent of x is dened by α(x 0 ) = sup{α : x 0 is αapproximable by dyadics}

As it is stated in [START_REF]On the Frisch-Parisi conjecture[END_REF], the Hausdor dimension of the set F α is at least d α .

First, let α ∈ (1, ∞) be xed and let F α be the set given by Denition 7. Let ε > 0 be xed, and let

H(α) = 1 α sup ω≥α ω sup q>0 (s(q) -d(1 - 1 ω )q)
and γ = γ(α) = H(α) + ε.

Let n ∈ N be such that N = 2 dn > d ε + 1 be xed. The probe P is spanned by N functions g i which are deduced from g by taking its wavelets coecients only over some sub-cubes i(λ) with size 2 -d (j+n) . The aim of this part is to prove that the set of functions f such that there exist a point in F α where f is C γ is a Haar null set. This set is included in the countable union of:

S c (α) = {f = c λ ψ λ : ∃x ∈ F α ∀j, k |c λ | ≤ c2 -γ(α)j (1+|2 j x-k|) γ(α) }.
We can nd a subsequence (j, k) such that J ≤ αj and:

H(α) = 1 α sup ω≥α ω sup q>0 (s(q) -d(1 - 1 ω )q) ≥ -a(j, k).
If x ∈ F α is xed and λ is such that |x -λ| ≤ A for A > 2N , the wavelet coecients of g i satisfy:

|d i λ | ≥ c(A) j a 2 -H(α)j . ( 26 
)
We will now prove that the set S c (α) is a Borel Haar null set. First, this set is included in the countable union over λ of:

S c (α) j,k = {f = c λ ψ λ : ∃x ∈ F j,k α ∀j, k |c λ | ≤ c2 -γ(α)j (1+|2 j x-k|) γ(α) }.
Where F j,k α = {x : x -k 2 j ≤ 1 2 αj }. This set S c (α) j,k is a closed set and S c (α) is a Borel set. Let f be in V and β 1 and β 2 be such that the functions f + β i 1 g i and f + β i 2 g i are in S c (α). There exist two points x 1 and x 2 in F α such that in the cone of inuence above x 1 and x 2 :

|c λ + β i 1 d i λ -(c λ + β i 2 d i λ )| ≤ 2c2 -γ(α)j . Or, |c λ + β i 1 d i λ -(c λ + β i 2 d i λ )| = | β i 1 d i λ -β i 2 d i λ | but, using (26), | β i 1 d i λ -β i 2 d i λ | ≥ | β i 1 -β i 2 | c(A) j a 2 -H(α)j .
Thus,

β 1 -β 2 R N ≤ cj a 2 -εj .
So the Lebesgue measure in R N of the set {β :

f + βg ∈ S c (α) j,k } is bounded by (cj a ) N 2 -N εj .
The Lebesgue measure of the set of β such that f + β i g i belongs to S c (α) vanishes. Therefore S c (α) is Haar null. Taking a countable union over c n > 0 of sets S c (α),the set of functions in V with a pointwise Hölder exponent greater than γ(α) at a point of F α is also Haar null. If ε n → 0, taking the union over ε n it follows that for all α ≥ 1 the set of functions in V with an Hölder exponent greater than H(α) at some point of F α is Haar null. Let α n be a dense sequence in (1, ∞). By countable intersection:

M = {f ∈ V : ∀n ∀x ∈ F α n h f (x) ≤ H(α)} ( 27 
)
is prevalent. Let f ∈ M and let α ≥ 1. There exist a subsequence α φ(n) which is nondecreasing and tends to α. If we denote Fα the intersection of sets F αn , it follows that Fα contains F α . Furthermore, the Hausdor dimension of Fα is greater than d α and for all x ∈ Fα , h f (x) ≤ H(α). Finally we obtain To conclude the second point of Theorem 1, we rewrite H(α) in the following form

H(α) = 1 α inf a≥α G(a)
where G(a) = sup q (a(-qd + s(q)) + qd) = a sup q (qd(-1

+ 1 a ) + s(q)) = a s * d 1 -1 a .
Here s * is the Legendre transform of s. By denition of the Legendre transform, this is a convex function. Furthermore it satises s

* (h) = +∞ if h < s (+∞) s * (h) = s(0) if h > s (0) . ( 28 
)
And if s * is twice dierentiable (we refer to [START_REF] Hiriart-Urruty | Convex analysis and minimization algorithms[END_REF] for a general case), G is also twice dierentiable and its derivative is

G (a) = s * d 1 - 1 a + d a (s * ) d 1 - 1 a and: G (a) ≥ 0.
Thus G is also convex and there exists a 0 such that G(a 0 ) = inf a≥0 G(a), a 0 being such that G (a 0 ) = 0. We also deduce from (28) that:

G(a) = +∞ si a < d d-s (+∞) G(a) = as(0) si a > d d-s (0) . ( 29 
)
By denition of s and with the hypothesis that η is an admissible function we have 0 ≤ s (q) ≤ d, for all q > 0. It follows from (29) that a 0 belongs to the interval (

d d-s (+∞) , d d-s (0) ) which is included in [0, ∞).
Another way to treat G is to write G(a) = sup q (s(q)) where s(q) = a(s(q) -qd) + qd. And if s is also twice dierentiable, s (q) = -da + as (q) + d and s (q) = as (q) < 0. Thus s is a concave function, and there exists an upper bound q 0 which satises s (q 0 ) = -da + as (q 0 ) + d = 0, and s (q 0 ) = da-d a . The value of q 0 also depends of a so we write now q 0 = q(a).

We can nally write G(a) = a(-q(a)d + s(q(a))) + q(a)d. This function is twice dierentiable and its derivative satises:

G (a) = s(q(a)) -dq(a).
If a = a 0 is the lower bound of G, we obtain G (a 0 ) = s(q(a 0 ))dq(a 0 ) = 0 ⇒ s(q(a 0 )) = dq(a 0 ), that is q(a 0 ) = q c = 1/p c . Furthermore, G is decreasing for a ≤ a 0 and increasing for a ≥ a 0 . The following cases are now possible:

• If α ≥ d d-s (0) , then for all a ≥ α, G(a) = as(0) and H(α) = s(0). So, dim H ({x : h f (x) ≤ s(0)}) = d + s (0). • If 1 ≤ α ≤ a 0 then inf a≥α G(a) = G(a 0 ) = (a 0 (-q c d + s(q c )) + q c d) = dq c .
and the corresponding value of H is

H(α) = 1 α inf a≥α G(a) = dq c α
Thus, the spectrum of singularities is dened on the interval [ dq c a 0 , dq c ] and for almost every function, and for all H ∈ dq c a 0 , dq c dim H ({x :

h f (x) ≤ H}) = H q c .
Furthermore, we have already seen that :

s (q(a)) = da -d a
which is an increasing function. As s is decreasing, the application a → q(a) is itself decreasing. So, for α ≤ a 0 , q ≥ q c = 1 We obtain :

H(α) = sup q -qd + s(q) + qd α .

So for almost every function, for all H ∈ [s(0), dq c a 0 ],: Furthermore, see [START_REF]On the Frisch-Parisi conjecture[END_REF], the spectrum of singularities of all functions of V satises:

d(H) ≤ inf p≥p c (pH -η(p) + d). ( 30 
)
This implies that the Hausdor dimension of the set {x : h f (x) < H} is strictly less than d α . As proved in [START_REF] Jaard | Multifractal formalism for functions[END_REF], there exists a measure m α , for any f ∈ V the scaling function is greater than η(p) for all p. Let τ > 0 and p > 0 be xed. We denote τ (p) = η(p) p + τ . We rst prove that the set

M (p) = {f ∈ V ; f ∈ B τ (p),∞
p } is a Haar null set. Let g be the function dened by wavelet coecients given by (24) and P be the probe spanned by g. First, we check that g does not belong to B τ (p),∞ p

. We write β j = d(1 -j J ), where J is dened as in (24). This term β j takes discrete values, spaced by d j and between 0 and d. As the function s is a concave function and 0 ≤ s (q) ≤ d for all q, there exists, for j large enough, a β j near from s (q) such that the line given by τ (p) + β j Taking countable union over τ → 0 and p > 0, we obtain that for almost every f in V , η f (p) ≤ η(p) for all p > 0.

  dim H ({x : h f (x) ≤ H}) ≤ inf p≥p c (pH -η(p) + d) . • If a 0 ≤ α ≤ d d-s (0) , which is equivalent to inf a≥α G(a) = G(α) = α sup q -qd + s(q) + qd α .

  dim H ({x : h f (x) ≤ H}) = inf p≥pc (pH -η(p) + d) ≤ inf p≥pc (pH -η(p) + d) .

2 Proposition 8 .

 28 such that m α ({x : h f (x) ≤ H}) > 0. But by denition of the Hausdor dimension, m α ({x :h f (x) < H}) = 0. Then, m α ({x : h f (x) = H) > 0 and d(H) ≥ inf p≥pc (pH -η(p) + d).For almost every function f in V , the scaling function of f satisfy:η f (p) = η(p), ∀0 < p < ∞.Proof : As we have V = ε>0,0<p<∞ B (η(p)-ε)/p,p p,loc

1 p - 1 p

 11 is always above the graph of s. Thus∀p > 0 τ (p) + β j 1 p -1 p > s(1/p).But a(j, k) = j inf p (β j p -s(1/p)), and this inmum is attained for a p 0 ∈ (0, ∞). Therefore,a(j, k) ≥ j( β j p -τ (p)),andg B τ (p),∞ p ≥ sup j j -a j p 2 τ jp . Thus g ∈ B τ (p),∞ p .Let f be in V . Suppose that there exist α 1 and α 2 such that the functionsf 1 = f + α 1 g and f 2 = f + α 2 g belong to B τ (p),∞ p . Then f 1 -f 2 also belongs to B τ (p),∞ p . But f 1 -f 2 = (α 1 -α 2 )g.As g does not belong to B τ (p),∞ p , we have then α 1 = α 2 . Thus M (p) is Haar null.

  1. If S is Haar-null, then ∀x ∈ V , x + S is Haar-

	null.
	2. If dim(V ) < ∞, S is Haar-null if and only if meas(S) = 0
	(where meas denotes the Lebesgue measure).
	3. Prevalent sets are dense.
	4. If S is Haar null and S ⊂ S then S is Haar null.
	5. The union of a countable collection of Haar null sets is Haar
	null.
	6. If dim(V ) = ∞, compact subsets of V are Haar-null.