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ABSTRACT 
We propose a new multi-resolution indexing and retrieval method 
of the similarity search problem in time series databases. The 
proposed method is based on a fast-and-dirty filtering scheme that 
iteratively reduces the search space using several resolution 
levels. For each resolution level the time series are approximated 
by an appropriate function. The distance between the time series 
and the approximating function is computed and stored at 
indexing-time. At query-time, assigned filters use these pre-
computed distances to exclude wide regions of the search space, 
which do not contain answers to the query, using the least number 
of query-time distance computations. The resolution level is 
progressively increased to converge towards higher resolution 
levels where the exclusion power rises, but the cost of query-time 
distance computations also increases. The proposed method uses 
lower bounding distances, so there are no false dismissals, and the 
search process returns all the possible answers to the query. A 
post-processing scanning on the candidate response set is 
performed to filter out any false alarms and return the final 
response set. We present experimentations that compare our 
method with sequential scanning on different datasets, using 
different threshold values and different approximating functions. 
The experiments show that our new method is faster than 
sequential scanning by an order of magnitude.   

Categories and Subject Descriptors 
H.3.3 [Information Systems]: Information Search and Retrieval 
–  Search process, Retrieval models.  

Keywords 
Time Series Information Retrieval, Multi-resolution, Sequential 
Scanning, Metric Spaces, MIR. 

1. INTRODUCTION 
Time series similarity search is a fundamental problem in 
computer science. This problem has many medical, financial, and 
scientific applications. Similarity between two time series can be 

depicted using a similarity distance. Time series similarity search 
can be viewed as retrieving all the time series in the database that 
are “near” a given query according to a given similarity distance.  
 
Time series data have high complexity. This high complexity can 
be reduced by time series representation methods which aim at 
reducing the high complexity by transforming the time series into 
a lower dimensional space and performing the similarity search 
process at these lower dimensional spaces.  
 
There have been different suggestions to represent time series in 
lower dimensional spaces, to mention a few: Discrete Fourier 
Transform (DFT) [1,2]  , Discrete Wavelet Transform (DWT) [4], 
Singular Value Decomposition (SVD) [7], Adaptive Piecewise 
Constant Approximation (APCA) [6], Piecewise Aggregate 
Approximation (PAA) [5,11], Piecewise Linear Approximation 
(PLA) [9], Chebyshev Polynomials (CP) [3]. 
                              
Time series representation methods are based on predefined 
schemes, in that the parameters which control their performance 
have been decided at indexing-time, and the search process 
depends highly on these parameters which may prove to be 
inappropriate at query-time. 
 
In this work we present a new scheme that offers more control on 
these indexing-time parameters. This control enables the search 
algorithm to make the necessary computations only, starting with 
less costly computations, whose exclusion power is lower, and 
moving to more expensive computations, with more exclusion 
power, only when the less costly computations fail to exclude the 
time series.   
 
This paper is organized as follows: the related background is 
presented in section 2. In section 3 we present the new algorithm. 
The experiments we conducted are presented in section 4. In 
section 5 we discuss some of the results of the experiments, and 
we conclude the paper with section 6  

2. RELATED WORK 
2.1 Metric Spaces 
Let D  be a set of objects. A function { }0: U+ℜ→×DDd  is called 
a distance metric if the following holds;   
 
i-  0),( ≥yxd                                               (non-negativity)                         

ii- ),(),( xydyxd =                                              (symmetry)         
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iii- 0),( =⇔= yxdyx                                                  (identity)                                                                                                                                            

iv- ),(),(),( zydyxdzxd +≤                   (triangular inequality) 
 

Dzyx ∈∀ ,, . We call ),( dD a metric space 

2.2 Range Queries 
Given a query Q and a radius r , which represents a threshold, a 
tolerance, or a selectivity. The range query problem can be 
specified as retrieving all the data objects that are within a 
distance r from that query. This can be represented as:  
 

{ }rSQdOSrQRQ ≤∈= ),(;),(                       (1) 

 
where O is the set of objects in the database 

2.3 Sequential Scanning 
In many applications distance computations can be a time 
consuming task that other tasks such as CPU time or even I/O 
time can be neglected. For this reason search algorithms try to 
avoid distance computations as much as possible. In fact, in many 
cases the performance of an algorithm is measured by the number 
of distance computations it requires. Different distances also take 
different computing times. For instance, the dynamic time 
warping (DTW), which is a similarity measure that is widely used 
in time series databases, gives better results in time series data 
mining tasks than the Euclidean distance, but it is more costly to 
compute. 
 
A trivial solution to the similarity search problem is sequential 
scanning, also known as linear scanning, where the query is 
compared against all the data objects in the data base. So in order 
to perform a range query ),( rQ , the distance between the 
query Q  and all the data objects in the data base is computed, and 

all the data objects that satisfy rSQd ≤),( constitute the 
response set. 
 
It is easy to notice that in the case where the size of the data base 
is very large, which is the case with most databases in use today, 
sequential scanning is not the best scenario to answer similarity 
queries because it requires too many distance evaluations.  
 
Different techniques can be used to avoid the high cost of 
sequential scanning. One of them is using indexing structures, 
which are offline procedures based on storing some distance 
calculations. Later, at query-time, these calculations can be used 
to exclude the time series which, according to these pre-computed 
distances, can not be answers to the query. This is what we call a 
fast-and-dirty filtering of data. What remains of the time series is 
scanned sequentially against the query to get the final answers to 
the query.  A fast-and-dirty filter was presented in [8] 
 
However, even these structures can fail in handling high-
dimensional databases that their performance can deteriorate to 
become similar to that of sequential scanning, or even worse. This 
is what we call the dimensionality curse. 

2.4 Representation Methods 
Managing high-dimensional time series is not a trivial problem. 
Time series are highly correlated data, so representation methods 
use a scheme that aims at reducing the dimensionality of the time 
series by projecting the original data onto lower dimensional 
spaces and processing the query in those reduced spaces. This 
scheme is widely used in time series data mining community.  
 
When embedding the original space into a lower dimensional 
space and performing the similarity query in the transformed 
space, two main side-effects may be encountered; false alarms, 
and false dismissals. False alarms are time series that belong to 
the response set in the transformed space, but do not belong to the 
response set in the original space. False dismissals are time series 
that the search algorithm excluded in the transformed space, 
although they are answers to the query in the original space. 
Generally, false alarms are more tolerated than false dismissals, 
because a post-processing scan is usually performed on the results 
of the query in the transformed space to filter out these time series 
that are not valid answers to the query in the original space. 
However, false alarms can slow down the search time if the 
algorithm returns too many of them. False alarms and false 
dismissals are dependent on the transformation used in the 
embedding.   
 
If f is a transformation from the original space ),( origorig dO into 

another space ),( transtrans dO then in order to guarantee no false 
dismissals this transformation should satisfy: 
 
    ),())(),(( 2121 uudufufd origtrans ≤ ,   origOuu ∈∀ 21,  (2) 

    
The above condition is known as the lower-bounding lemma . 

3. THE PROPOSED METHOD 
3.1 Motivation 
Time series representation methods have the following scheme: 
choose a lower dimensional space, represent the time series in the 
reduced space, define a lower bounding similarity distance on this 
reduced space , process the similarity search in the reduced space 
, exclude the time series which are farther than r  from the query. 
At the end, we get a candidate answer set, scan this candidate 
answer set using the original time series and the original 
similarity distance  to obtain the final answer set.  
 
The problem with this approach is that it uses a one-phase 
scheme. The dimension of the reduced space is decided at 
indexing-time and the performance at query-time depends 
completely on the choice made at indexing-time. But in practice, 
we do not know a priori the optimal dimension of the reduced 
space.  
 
In this work, we try to address this problem differently by 
establishing a model that involves a multi-resolution 
representation of time series; we use several reduced spaces, or as 
we call them resolution levels. The indexing system stores 
different numbers of pre-computed distances, related to the 
number of resolution levels. Lower resolution levels have lower 
dimensions, so distance computations at these levels are less   



costly than higher resolution levels where dimensions are higher, 
so distance evaluations are more expensive. But the computation 
complexity at any level is always less expensive than the 
computation complexity of sequential scanning, because even at 
the highest level, the dimension is still lower than that of the 
original space, which is used in sequential scanning. In our 
method, the search algorithm starts with the lowest resolution 
level, and tries to exclude the time series, which are not answers 
to the query, at that level where the distances are not costly to 
calculate, and the algorithm does not access a higher level until all 
the pre-computed distances of the lower level have been 
exploited. We call our method the Multi-resolution Indexing and 
Retrieval scheme (MIR). 
3.2 Concepts and Terminology 
Let O  be the original n -dimensional space where the time series 
are embedded, R is a m2 -dimensional space, where nm≤2 . 
Each time series OS ∈ is divided into msegments, each of 
which is approximated by a function of low dimension: a 
polynomial of degree (1:5), for instance, where the degree of this 
approximating function is lower than the length of the segments, 
and where the approximation error, according to a given distance, 
between this segment and the approximating function is minimal, 
so this function is the optimal approximation of that segment.  A 
polynomial of the same degree is used to approximate all the 
segments of all the time series in the database. 
 
We associate every segment with two related concepts; the first is 
the image of all the points of that segment on the approximating 
function.  The image vector S~ is, by definition, an n -
dimensional vector whose components are the images of all the 
points of all the segments of that times series. The second concept 
is the images of the two end points of that segment on the 
approximating function, which we call the main image of that 
segment. So for a time series of m  segments we have m2  main 
images. Those m2  main images are, by definition, the projection 

vector RS of the time series on R . Figure 1 illustrates the 
different definitions we presented in this section: The segment 
[0:3] is approximated by a first-degree polynomial. The image of 
this segment is the points [a, b, c, d]. The main image of this 
segment is the points [a, d].  
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Figure 1: The different concepts of the proposed method 

We define two distances on the database, the first is denoted by 
d , and is defined on an n -dimensional space, so it is the 
distance between two time series in the original space , i.e. 

),( ji SSd , or the distance between the original time series and its 

image vector, i.e. )~,( ii SSd . We choose d to be Euclidean (or 

Minkowski distance, in general), thus d is metric.The second 
distance is denoted by Rd , and is defined on a m2 -dimensional 
space, so it is the distance between two projection vectors, i.e.   

),( R
j

R
i

R SSd . 
 
Notice that since the main image of each segment is a partial set 
of the image of that segment, this implies that the components of 
the projection vector form a partial set of the components of the 
image vector. Consequently, the distance Rd  is a partial distance 
of d . The direct result of this is that when we use the Euclidean 

distance (or any Minkowski distance), for both d  and Rd  we 
get:  

               )~,~(),( 2121 SSdSSd RRR ≤                            (3) 

Relation (3) means that Rd  is lower bounding of d .  
 
The resolution level k is an integer related to the dimensionality 
of the reduced space R . So the above definitions of the projection 
vector and the image vector can be extended to a further 
segmentation of the time series, with different values kmm≤ , The 

image vector and the projection vector at level k  are denoted by 
)(~ kS and )(kRS , respectively. Figure 2 shows an example of the 

relationships between the previous concepts. 
 
                    

 

 

        

 

   

 

Figure 2: The original space (O, d) embeds the original time 
series 21, SS  (top), the images of the approximated time series 

21
~,~ SS  (middle). The reduced space R embeds the main 

images of the approximated time series RR SS 21 ,  (bottom). 

 

3.3 The Algorithm Description  
Given a query ),( rQ , let )(~ kS , )(~ kQ  be the projection vectors 
of S , Q , respectively, on their approximating functions, where 

 1S

S
k~ )(

1 S~
)k(

2

2S
    d  

)k(RS2
)k(RS1

    d  

   

  
Rd  



S is a time series in the database. By applying the triangular 
inequality we get: 
 

   OSQQdSQdSQd kk ∈∀+≤ )~,(),(),~( )()(             (4) 
 

Since we assumed that )(~ kS  is the best approximation of S at 

level k , then for any OS ∈ we have: )~,(),~( )()( kk SSdSQd ≥ . 
 
This means that all the time series that satisfy: 
 

    )~,()~,( )()( kk QQdrSSd +>                          (5) 
 

Should be excluded. 
 
In a similar way, by applying the triangular inequality, and taking 
into consideration that )(~ kQ  is the best approximation of Q at 

level k , we can safely exclude all the time series that satisfy:  
 

)~,()~,( )()( kk SSdrQQd +>                         (6) 
 
(5) and (6) can be written in one relation:  
 

rSSdQQd kk >− )~,()~,( )()(                       (7) 

 
Inequality (7) defines the first exclusion condition, which we call 
the first filter 
 
On the other hand, we have: 
 

                    )~,(),~()~,~( )()()()( kkkk SSdSQdQSd +≤           (8) 

 
Using the triangular inequality again and taking (3) into 
consideration we get:  
 

)~,()~,(),( )()()()( kkkRkRR SSdQQdrQSd ++>      (9)          

 
We call the above exclusion condition the second filter               □ 
 
The Indexing-time: The application of our method starts by 
choosing the length of segments for each resolution level. There is 
no optimal choice of lengths, so we choose lengths which are of 
power of 2. The shortest length corresponds to the lowest level, 
and the longest corresponds to the highest level. Then we choose 
the approximating function to be used with all the time series and 
for all resolution levels. This means that if we choose to use a 
polynomial of the first degree, then all the segments of all the 
times series in the database, and for all resolution levels, should 
be approximated using a polynomial of the first degree. Our 
method works with any polynomial, or even any other 
approximating function. However, in this paper we use 
polynomials for their simplicity. 

We compute and store all the distances OSSSd k ∈∀)~,( )(   
 
The Query-time: The query is divided into segments with the 
same lengths as those of the time series and for each resolution 
level. These segments are approximated using an approximating 
function of the same type that was used to approximate the time 

series. The distances )~,( )(kQQd are computed. Notice that 

)~,( )(kQQd  are computed only once for all the time series in the 
database. 
 
At each resolution level, the first filter is less costly to apply than 
the second filter, because it does not include any distance 
evaluation, since the two distances it uses have already been 
computed at indexing-time. The second filter contains two 
distances that have been computed at indexing-time 

( ))~,(),~,( )()( kk SSdQQd ), so the only distance that is to be 

computed at query-time is ),( )()( kRkRR QSd . Since lower 
resolution levels have lower dimensions, the second filter is less 
costly to compute at those levels than at higher levels, where the 
dimensionality increases. But at any level, the cost of applying 
the second filter is never as costly as the distance computations at 
the original space, because we assumed that nm≤2 . 
 
We start with the lowest level and try to exclude the first time 
series using (7). If this time series is excluded, we move to the 
next time series, if not, we try to exclude this time series using 
relation (9). If all the time series in the database have been 
excluded the algorithm terminates, if not, the algorithm moves to 
a higher level. Finally, after all levels have been exploited, we get 
a candidate answer set, which is sequentially scanned to filter out 
any false alarms and obtain the final answer set. 
 
So the proposed algorithm does not compute a more expensive 
distance calculation unless it has tried to exclude the time series 
using a less expensive distance at a lower resolution level.  

4. EXPERIMENTS 
We conducted extensive experiments on different datasets 
available at UCR [12]. To make sure that our experiments are 
statistically significant we excluded the datasets that are too small 
(less than 100 instances). So the datasets we tested have sizes that 
vary between 100 and 6164 instances. The length of the time 
series varies between (60) and (463). The approximating 
functions we used in our experiments were polynomials of the 
first, third, and fifth degree. The distance we used for both d  and 

Rd  was the Euclidian distance. We compared our method with 
sequential scanning (also with the Euclidean distance) since this is 
the baseline method. The values of r  varied between r  that 
returns 1% of the time series of that dataset (in sequential 
scanning) and r  that returns 10% of the time series. For each 
dataset and for each value of r  we launched the query 100 times 
and took the average of these 100 runs. The queries in all cases 
were time series from the dataset chosen at random, then noise 
was added to them  
 
We opted for a platform-independent approach to test our method 
using the latency time concept obtained from a performance study 



of floating point operations [10]. The latency time is based on the 
number of cycles the processor takes to perform different 
arithmetic operations, so we added a counter to compute the 
number of different operations (>,+ - ,*,abs, sqrt) that both 
sequential scanning and our method used in the search process. 
Then the number of each operation was multiplied by the latency 
time of that operation to get the total latency time for sequential 
scanning and for our method.  The latency time is 5 cycles for (>, 
+ -), 1 cycle for (abs), 24 cycles for (*), and 209 cycles for (sqrt). 
This approach actually puts our method at a disadvantage, 
because our method uses the square root operation, which is an 
expensive operation, more often. So the results of the experiments 
should be viewed as a worst case performance of our method. 
Figure 3, shows some the results we obtained using as an 
approximating function a first, third, and fifth degree polynomial, 
on time series of average length (between 128 and 150) 
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Figure 3: Comparison of the latency time between sequential 
scanning and MIR on datasets (Gun Point) (above), and 
(Swedish Leaf) (below). The figure shows the latency time 
using as an approximating function a polynomial of the first 
(P1), third (P3), and fifth degree (P5) 

 
The results show that MIR outperforms sequential scanning by an 
order of magnitude on average.  
 
Comparing the performance with the length of the time series 
shows that the performance of MIR improves in general as the 
time series get longer. Figure 4 shows the results we obtained 
with the two longest time series among the tested datasets. (Yoga) 
(426) and (Fish) (463).  
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Figure 4: The performance of the two datasets (Yoga) (above) 
and (Fish) (below); the longest datasets in the UCR archive.  

 
We can also see from Figure 4 that as the times series get longer, 
the degree of the polynomial has less impact on the performance 
of the algorithm. In order to examine this phenomenon more 
closely, we tested MIR on the dataset (motorCurrent) (1500). This 
dataset is also from the UCR archive (but it is not available 
online) and it is almost four times as long as the longest online 
dataset. Figure 5 shows the results we obtained from applying 
MIR to this dataset.  
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Figure 5: Comparison of the latency time between sequential 
scanning and MIR on dataset (motorCurrent) (1500). The 
figure shows the latency time using as an approximating 
function a polynomial of the first (P1), third (P3), and fifth 
degree (P5) 

These results enhance the two previously stated outcomes; the 
performance gets better in general as the time series get longer, 



and that the influence of the polynomial degree decreases in this 
case.  
 
We also designed a particular experiment to study the relationship 
between the length of the time series and the performance of 
MIR: We chose a particular dataset (also from the UCR but not 
available online) called (Tickwise). This dataset consists of one 
extremely long time series (279113). We extracted the first 
(204800) part of it to construct a dataset of 200 time series each 
has a length of (1024) (power of 2). We call this dataset (Long 
Tickwise). We constructed another dataset called (Short 
Tickwise) which consists of 200 time series each of which is the 
first (128) part of (Long Tickwise), so the two datasets have the 
same nature (the same data) and the same size. The only 
difference is the length of the time series. Figure 6 shows a 
comparison of the latency time of the two constructed datasets 
using a first degree polynomial as an approximating function. 
Since the number of operations of sequential scanning is different 
Figure 6 shows the proportion of the number of operations that 
dataset needed to perform the similarity search using MIR to the 
number of operations the sequential scanning needed to perform 
the similarity search in that dataset. Notice that the values of r  
that return 1%-10% of the time series are not the same for the two 
datasets so the values of r in Figure 6 are superposed. The results 
clearly show that the performance of MIR improves as the length 
of time series gets longer for this dataset 
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Figure 6: Comparison of the proportion of operations using 
MIR to the number of operations using sequential scanning in 
(LongTichwise) with the proportion of operations using MIR 
to the number of operations using sequential scanning in 
(ShortTichwise). The approximating function is a first degree 
polynomial.  

 
The experiments show that the exclusion process depends on the 
value of r , the resolution level, and the dataset in question. 
Figure 7 shows the exclusion process for two datasets (Adiac) and 
(ECG200) for the value of r  that returns 1% of the time series. 
The time series in (Adiac) have a length of (176), so this dataset 
uses 7 resolution levels, while time series in (ECG200) have a 
length of (96) so this dataset uses 6 resolution levels.  The 
approximating function is a first degree polynomial.   
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Figure 7: The exclusion process of datasets (Adiac) (left) and 
(ECG200)(right) for r that returns 1% of the time series. 

 
It is important to mention that Figure 7 does not show the 
exclusion power of each resolution level or each filter but only 
how these participate in the exclusion process, since at each 
resolution level the algorithm starts by applying filter one and it 
applies filter two only on the time series that could not be 
excluded by filter one. This in fact means that filter two has a 
higher exclusion power than filter one. Likewise, the algorithm 
does not move to a resolution level k unless it has failed to 
exclude the time series at resolution level k-1, but the exclusion 
power of level k is higher than that of level k-1 since each level 
contains all the data in the previous level in addition to new data.  

As we can see from Figure 7, the exclusion effect for small values 
of r results mainly from filter one. We can also see that, in 
general, the exclusion power of filter one decreases as the 
resolution level gets higher. The exclusion power of filter one also 
decreases when r  gets larger as we can see from Figure 8 which 
shows the exclusion process of the same datasets presented in 
Figure 7 but for values of r that return 10% of the time series  
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Figure 8: The exclusion process of datasets (Adiac) (left) and 
(ECG200)(right) for r that returns 10% of the time series. 

5. DISCUSSION   
The experiments show that the performance of the two filters 
seems to be complementary, since most of the time series at lower 
resolution levels are excluded by filter one, while most of the time 
series at higher resolution levels are excluded by filter two . This 
phenomenon can be explained by examining relations (7) and (9): 
at lower resolution levels the segments are longer, so the 
approximation error is higher. As a consequence, the absolute 
difference in filter one is a difference between relatively large 
numbers: )~,( )(kQQd , )~,( )(kSSd  ,so this difference has a better 
chance of exceeding r  and excluding the time series than at 
higher levels, where the approximation is better, so these numbers 
become smaller and their difference has less chance of exceeding 
r    
 



The performance of filter two is different; at lower levels 
),( )()( kRkRR QSd is small while )~,()~,( )()( kk SSdQQd +  is relatively 

large (see the beginning of this section), so the chance for this 
filter to exclude time series is low. As the resolution level gets 
higher ),( )()( kRkRR QSd  gets bigger, while )~,()~,( )()( kk SSdQQd +  
gets smaller, so this filter has a better chance of excluding time 
series at higher levels 
 
An interesting phenomenon we noticed is that in some datasets, 
for very small r , the performance of MIR drops as we use a 
higher degree approximating function. We think the reason for 
this is that the algorithm pays an overhead cost when using a 
higher degree approximation.  
 
We also notice that as the degree of the approximating function 
gets higher, the performance of the first filter deteriorates. 
 
In general, the exclusion process of the proposed method is 
complex since at each step the number of time series that can be 
excluded depends on what has been excluded so far. As we 
mentioned in section 4, this depends on the dataset, the resolution 
level and the value of r  

6. CONCLUSION AND FUTURE WORK   
In this paper we presented a new method that uses a different 
paradigm to tackle the similarity search problem. The conducted 
experiments using the proposed method give promising results. In 
all the experiments, the performance was much better than that of 
sequential scanning for small values of r , and was better than 
sequential scanning, even for large values of  r  . 
 
In this paper we presented the results obtained by using the 
Euclidean distance, but our method can support a variety of 
distances. We conducted several preliminary experiments using 
other distances and they gave similar results. 
 
While working on this method and conducting the experiments 
we realized that there are many heuristics that can be used to 
improve it. The first direction of improvement is to optimize the 
filtering process by sorting the distances before filtering. The 
preliminary experiments that we conducted using some 
optimising heuristics showed that sorting improved the 
performance of our method. Other directions of optimizing, like 
recycling some calculations from lower levels, gave good results 
too, yet we need to find the best recycling scheme.  
 
The approximating functions we used in this paper were 
polynomials, but we think that other types of functions, which are 
particularly designed to approximate time series, may even give 
better results.  
 
The fact that the exclusion power depends on several factors can 
be exploited by training the algorithm to find the best resolution 
levels to be used for a certain dataset and for a particular value 
of r . This can improve the performance of our method. 
  
Another, and more important, direction of future work is to use 
one of the dimensionality reduction methods, which are well-
known in the literature, as an approximating function. The 

principle here is that dimensionality reduction methods aim at 
finding the best representation of the original space at a lower 
space, so this can be viewed as an approximation of the time 
series. 
 
When we started developing our method, our aim was also to use 
it on multidimensional time series, so this is still a main direction 
of future work. 
 
The final direction of future work is to apply our method to other 
data types where the idea of resolution level is pertinent.  
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