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Abstract: Fast retrieval of time series that are similar to a given pattern in large 
databases is a problem which has received a lot of attention in the last decade. 
The high dimensionality and large size of time series databases make sequential 
scanning inefficient to handle the similarity search problem. Several 
dimensionality reduction techniques have been proposed to reduce the 
complexity of the similarity search. Multi-resolution techniques are methods 
that speed-up the similarity search problem by economizing distance 
computations. In this paper we revisit two of previously proposed methods and 
present an improved algorithm that combine the advantages of these two 
methods. We conduct extensive experiments that show the show the superior 
performance of the improved algorithm over the previously proposed 
techniques.  

Keywords: Time Series Databases, Similarity Search, Dimensionality 
Reduction Techniques, Sequential Scanning, MIR, MIR_X, Tight-MIR.  

1   Introduction 

Time series similarity search is a problem that has many applications in computer 
science. Similarity between two time series can be depicted using a similarity 
distance, which is usually costly compared with other tasks such as CPU time or even 
I/O time.  

Formally, range query can be defined as follows: given a time series database U of 
size n and a query ),( rq , where r represents a threshold. The range query problem 
can be specified as retrieving all the time series Uu ∈ which satisfy: ruqd ≤),( . 

The trivial answer to this problem that sequential scanning offers, which is based on 
scanning U and returning the time series that satisfy the above condition, is slow 
because it requires n distance computations, which can be computationally very 
expensive in large databases with costly distances. 

Time series dimensionality reduction techniques aim at reducing this high 
complexity by transforming the time series into a lower dimensional space, thus 
decreasing query-time distance evaluations, and processing the similarity search in 
this reduced space.   



There have been different suggestions to represent time series in lower dimensional 
spaces, to mention a few: Discrete Fourier Transform (DFT) [1,2]  , Discrete Wavelet 
Transform (DWT) [4], Singular Value Decomposition (SVD) [10], Adaptive 
Piecewise Constant Approximation (APCA) [9], Piecewise Aggregate Approximation 
(PAA) [8,18], Piecewise Linear Approximation (PLA) [11], Chebyshev Polynomials 
(CP) [3] 

    Time series dimensionality reduction techniques are based on predefined 
schemes, in that the parameters which control their performance, and which have been 
chosen at indexing-time, may prove to be inappropriate at query-time. Multi-
resolution techniques offer more control on the parameters that determine the 
effectiveness and efficiency of dimensionality reduction methods.  In [12] and [13] 
two such multi-resolution techniques have been proposed. In this paper we propose an 
improved algorithm which the advantages of the two previously proposed techniques 
in terms of performance and autonomy.     

The work presented in this paper is organized as follows: in section 2 we present 
related work and background. In section 3 of this paper we introduce the improved 
algorithm and we evaluate its performance in section 4. In section 5 we give 
concluding remarks  

2   Related Work and Background 

2.1   Similarity Distances 

Let D be a set of objects. A function { }0: U+ℜ→×DDd , is called a distance metric 
if the following holds:   

(p1) 0),( ≥yxd                                                                          (non-negativity)                                                  

(p2) ),(),( xydyxd =                              (symmetry)                                                   

(p3) 0),( =⇔= yxdyx                                                                                (identity)                                                  
(p4) ),(),(),( zydyxdzxd +≤                                              (triangular inequality) 

Dzyx ∈∀ ,, . We call ),( dD a metric space 

2.2   Dimensionality Reduction Techniques 

There are several dimensionality techniques in the literature, we present in the 
following two of them  
 
Piecewise Aggregate Approximation (PAA): This method was proposed in [8] and 
[18], independently. Its basis is simple and straightforward, yet this method has been 
successfully used as a competitive method.  



PAA reduces the dimensionality of a time series from n in the original space to N in 
the reduced space by segmenting the time series into equal-sized frames and 
representing each segment by the mean of the data points that lie within that frame.  

The similarity distance used in the reduced space is: 
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Where n is the length of the time series, N is the number of frames, which should be a 
factor of n . The compression ratio m is Nn / .  

It is proven in [8] and [18] that the above similarity distance is lower bounding of 
the Euclidean distance applied in the original space of time series.  

Since Nd is lower bounding of the Euclidean distance in the original space then, 
according to the GEMINI algorithm, which is a generic approach of indexing and 
retrieving time series [6], any time series u  that satisfies: 

 

                                                  ruqd N >),(                                                           (2) 
         
can not be answer to the query and should be excluded. 
 
The Symbolic Aggregate Approximation (SAX): Symbolic representation of time 
series has attracted much attention recently, because by using this method we can not 
only reduce the dimensionality of time series, but also benefit from the numerous 
algorithms used in bioinformatics and text data mining. Of all the symbolic 
representation methods, the symbolic aggregate approximation method (SAX) [7] is 
one of the most powerful ones in time series data mining.  

SAX is based on the fact that normalized time series have highly Gaussian 
distribution [7], so by determining the breakpoints that correspond to the chosen 
alphabet size, one can obtain equal sized areas under the Gaussian curve.   

SAX is applied in the following steps: in the first step all the time series in the 
database are normalized. In the second step, the dimensionality of the time series is 
reduced by using PAA. In the third step, the PAA representation of the time series is 
discretized. This is achieved by determining the number and the locations of the 
breakpoints. This number is related to the chosen alphabet size (it is chosen by the 
user), i.e. alphabet_size=number(breakpoints)+1 . The locations of the breakpoints 
are determined by statistical lookup tables so that these breakpoints produce equal-
sized areas under the Gaussian curve. The interval between two successive 
breakpoints is assigned to a symbol of the alphabet, and each segment of the PAA that 
lies within that interval is discretized by that symbol.  

The last step of SAX is using the following similarity distance: 
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Where n is the length of the original time series, N is the number of the frames, 
S~ andT~ are the symbolic representations of the two time series S  andT , 
respectively, and where the function ( )dist is implemented by using the appropriate 
lookup table.  

3   The Proposed Algorithm   

A Multi-resolution Indexing and Retrieval scheme (MIR) has been proposed in [12]. 
This scheme is based on using several reduced spaces that correspond to different 
resolution levels. The principal of the algorithm is as follows: letU be the original, n -
dimensional space where the time series are embedded. R is a m2 -dimensional 
space, where nm ≤2 . Each time series Uu∈ is divided into m  segments. Each 
segment is approximated by a function of low dimension. The functions used are 
polynomials of degree 1, 3, or 5, and where the approximation error, according to a 
given distance, between this segment and the approximating function is minimal, so 
this function is the best approximation of that segment.  A function of the same type 
and the same degree is used to approximate all the segments of all the time series in 
the database. The image vector u is, by definition, an n -dimensional vector whose 
components are the images of all the points of all the segments of a time series on that 
approximating function. The images of the two end points of that segment on the 
approximating function are called the main image of that segment. So for a time series 
of m  segments we have m2  main images. Those m2  main images are, by definition, 

the projection vector Ru of the time series on R . Two distances are defined on the 
database: the first is denoted by d , and is defined on a n -dimensional space, so it is 
the distance between two time series in the original space , i.e. ),( ji uud , or the 

distance between the original time series and its image vector, i.e. ),( ii uud . The 

second distance is denoted by Rd , and is defined on a m2 -dimensional space, so it is 
the distance between two projection vectors, i.e.   ),( R

j
R
i

R uud .It is shown in [12] 

that Rd  is a lower bounding of d  when the Minkowski distance is used. The 
resolution level k is an integer related to the dimensionality of the reduced space R . 
So the above definitions of the projection vector and the image vector can be extended 
to further segmentation of the time series using different values kmm≤ , The image 

vector and the projection vector at level k  are denoted by 
)(ku and )(kRu , 

respectively.  
Given a query ),( rq , let u , q  be the projection vectors of u , q , respectively, on 

their approximating functions, where u is a time series in the database. By applying 
the triangular inequality we get: 



                      
rqqduud >− ),(),(                                                  (4) 

 
This relation represents a pruning condition which is called the first filter.  

By applying the triangular inequality again we get : 
 

),(),(),( )()()()( kkkRkRR uudqqdrqud ++>                    (5) 
 

This relation represents the second filter. 
At indexing-time the application of the method starts by choosing the length of 

segments for each resolution level. The shortest length corresponds to the lowest 
level, and the longest corresponds to the highest level. Then the approximating 
function to be used with all the time series and for all resolution levels is chosen. The 
distances Uuuud k ∈∀),( )( are then computed and stored. The segmenting scheme 
is simple and straightforward. The segments are connected and their length is a power 
of 2. So for a time series of 152 dimensions, for instance, the segmenting scheme for 
the first resolution level is: [ ] [ ] [ ]152,128,128,64,64,1 . Notice that the three segments have 
three different lengths (63,64,14), respectively, and this difference of lengths will 
continue to appear at higher levels. Notice also that this segmentation contains the 
information of four points (1,64,128,152).  

At query-time the query is divided into segments with the same length as that of the 
time series and for each resolution level. These segments are approximated using the 
same approximating function that was used to approximate the time series. The 
distances ),( )(kqqd are then computed. The algorithm tries to exclude the time 
series at each resolution level using the first filter which is less costly to apply than 
the second filter, because it does not include any distance evaluation at query-time. 
The second filter uses two distances that have been computed at indexing-time: 

),(),,( )()( kk uudqqd , so the only distance that is to be computed at query-time 

is ),( )()( kRkRR qud . The second filter is less costly at lower levels than at higher levels.  
But at any level, the cost of applying the second filter is never as costly as the distance 
computations at the original space, because it is assumed that nm≤2 . 

MIR starts with the lowest level and tries to exclude the first time series using (4). 
If this time series is pruned, the algorithm moves to the next time series, if not, the 
algorithm tries to prune this time series using relation (5). If all the time series in the 
database have been pruned the algorithm terminates, if not, the algorithm moves to a 
higher level. Finally, after all levels have been exploited, we get a candidate answer 
set, which is sequentially scanned to filter out all the false alarms and return the true 
answer set. 

In [13] a multi-resolution scheme is presented. This scheme combines the first filter 
as described in (4) with the exclusion condition of one of the dimensionality reduction 
techniques known in the literature. This algorithm is called MIR_X, where X is the 
dimensionality reduction technique used. In MIR_X each segmented time series has 
two representations; one that is identical to that of MIR and the other is the 



representation proposed by the dimensionality reduction technique used. The 
algorithm used is similar to that of MIR. The experiments show that MIR_X improves 
the performance of dimensionality reduction techniques  

Both MIR and MIR_X have their drawbacks: The two distances 
),(),,( )()( kk uudqqd used to apply the second filter (relation (5)) lower its pruning 

power. Besides, the segmenting scheme used is not optimal and can results in 
segments of completely different lengths when the length of the time series is not a 
power of 2. The direct consequence of this segmentation is that the approximation 
error is not harmonized which, in turn, lowers the pruning power of the first filter. 
MIR has one main advantage; it is a standalone method, unlike MIR_X  

MIR_X has the same segmenting scheme as that of MIR. However, using the 
exclusion condition of a dimensionality reduction technique which , in the case of the 
dimensionality reduction techniques used in [13], uses a lower bounding condition to 
the distance in the original space makes the second filter described in (5) redundant, 
because it is overwritten by the more powerful exclusion condition of the 
dimensionality reduction technique. Hence, the performance of MIR_X is better than 
that of MIR. Nevertheless, MIR_X has a few drawbacks: it is completely dependent 
on the dimensionality reduction technique used. If the dimensionality reduction 
technique uses a lower bounding condition, MIR_X can be applied, if not, MIR_X 
can never be applied. On the other hand, the application of MIR_X requires adopting 
a different concept of resolution level for each dimensionality reduction technique, 
which is not intuitive. Besides, some dimensionality reduction techniques have certain 
requirements (the length of the time series should be a power of 2 for DWT, N  
should be a factor of n for PAA and SAX). All these factors influence the application 
of MIR_X. 

In this paper we present an improvement on the two previous versions. This 
improved algorithm, which we call Tight-MIR, has the advantages of both MIR and 
MIR_X in that it is a standalone method, yet it has the same competitive performance 
of MIR_X. 

The redundancy of the second filter in MIR_X suggests that the application of MIR 
can use two separate filters. In fact the requirement that the approximating error of the 
approximation function be minimal is not exploited when constructing the second 
filter as described in [12]. 

In Tight-MIR instead of using the projection vector to construct the second filter, 
we access the raw data in the original space directly using a number of points that 
corresponds to the dimensionality of the reduced space at that resolution level. In 
other words, we use m2  raw points, instead of m2  main images, to compute Rd . 

There are several positive effects to this modification; the first is that the new Rd is 

obviously tighter than Rd as computed in [12]. The second is that when using a 

Minkowski distance Rd is lower bounding to the original distance in the original 
space. The direct consequence of this is that the two distances 

),(),,( )()( kk uudqqd become redundant, so the second filter is overwritten by the 

usual lower bounding condition rqud kRkRR >),( )()( .  



Notice that the complexity of the modified Rd is )2( mO which is the same 
complexity as described in [12]. So this modification does not require any extra cost 

Tight-MIR also utilizes an improved segmenting scheme: at each level, the 
segments are equal and disconnected, so for a time series of 152 dimensions (the one 
presented earlier this section) the segmentation used for the first level is [ ] [ ]152,77,,76,1  
, this segmentation has two advantages: the error is more harmonized . The second 
advantage is that although we are using two segments only (at the first resolution 
levels) we are representing the information of four points of four points (1,76,77,152) 
, which is the same number of points presented in the original segmenting. So the 
modified algorithm needs one more resolution level less than the original segmenting, 
which is another advantage in terms of space complexity.  

4   Performance Evaluation 

The objective of our experiments is to show that the modified algorithm Tight-MIR 
has the advantages of both MIR and MIR_X together, so we have to show that it 
outperforms MIR, and that it has the same performance as that of MIR_X. We also 
conduct other experiments to compare Tight-MIR against other dimensionality 
reduction techniques, because Tight-MIR it is a standalone method (unlike MIR_X).     

Although several papers present experiments based on wall clock time, but it is a 
poor choice and subject to bias [5,8], so we prefer to use the latency time concept 
presented in [15]. Latency time refers to the number of cycles the processor takes to 
perform different arithmetic operations (>,+ - ,*,abs, sqrt) when performing the 
similarity search. Then the number of each operation is multiplied by the latency time 
of that operation to get the total latency time of the similarity search.  The latency 
time is 5 cycles for (>, + -), 1 cycle for (abs), 24 cycles for (*), and 209 cycles for 
(sqrt). This method of testing performance is the same one that was used in both [12] 
and [13] 

We conducted extensive experiments using datasets of different sizes and 
dimensions and from different repositories [14, 16, 17, 19]. We also used different 
threshold values. We conducted experiments using approximating polynomials of 
different degrees, but because of space limitation we report here the results of 
approximating by first degree polynomials to facilitate the comparison. 

We first show a comparison between MIR and Tight-MIR. The way Rd is 
computed in Tight-MIR enables us to modify the codes used to avoid the square root, 
which is a very costly operation, of course sequential scanning was also modified to 
avoid this operation. This modification is not possible with MIR. So the comparison 
we present here is made between the speed-up of MIR and Tight-MIR compared to 
sequential scanning. In Figure 1 we present the results of four datasets. The results 
clearly show that Tight-Mir outperforms MIR for all the datasets and for all values of 
r . As in the experiments of [12] and [13], the values of r vary between those which 
return 1% and 10% of the time series in sequential scanning. 
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Fig. 1. Comparison of the speed-up of MIR and Tight-MIR on four datasets (Yoga), 
(SwedishLeaf), (GunPoint) and (Fish) over sequential scanning. 
 

In the second series of experiments we compared MIR_X, where X is 
dimensionality reduction technique, with Tight-MIR to show that the two methods 
give similar results. Figure 2 shows some of the results we obtained comparing   
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Fig. 2. Comparison between MIR_PAA and Tight-MIR on datasets (CBF), (FaceAll), (Wafer), 
and (GunPoint)  



Tight-MIR with MIR_PAA. The results presented in Figure 2 show that MIR_PAA 
and Tight-MIR have the same performance. In fact, we can even say that the 
performance of Tight-MIR is even slightly better. 
  Comparing Tight-MIR with MIR_SAX also showed that the two methods have the 
same performance.  

It is important to mention that both MIR_PAA and MIR-SAX require that N be a 
factor of n , the length of the time series (but Tight-MIR does not require that).  

We also conducted other experiments to compare Tight-MIR with PAA, using 
different datasets and different values of r . We report in Figure 3 some of the results 
we obtained. The results show that Tight-MIR outperforms PAA for all the datasets  
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Fig. 3. Comparison between PAA and Tight-MIR on datasets (Yoga), (motorCurrent), (CBF), 
and (Foetal ecg)  
 
We also conducted experiments comparing Tight-MIR with SAX, which is a very 
competitive and fast method. SAX appeared in two versions; in the first one the 
alphabet size varied in the interval (3:10), and in the second one the alphabet size 
varied in the interval (3:20).   

We conducted experiments on different datasets, and for different values of the 
alphabet size. The codes we used in the experiments were optimized versions of the 
original codes of SAX, since the original codes written by the authors of SAX were 
not optimized for speed, so we optimized them to make a fair comparison.  

We report in Figure 4 the results of several datasets and for different values of r . 
The results shown here are for alphabet size 3 (the smallest alphabet size possible for 
SAX), 10 (the largest alphabet size in the first version of SAX), and 20 (the largest 
alphabet size in the second version of SAX). 



We have to mention that the datasets used in these last experiments were normalized 
because SAX can only be applied to normalized time series.   

The results obtained show that Tight-MIR clearly outperforms SAX for the 
different values of r  and for the different values of the alphabet size.  
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Fig. 4. Comparison of the latency time between Tight-MIR and SAX for alphabet size=3, 10, 
and 20 on datasets ( FaceAll), (CBF),(motoCurrent), and (Yoga) 
 

It is important to mention that the results of SAX as show in the above Figure may 
give the fake impression that with some datasets the number of operations seems to be 
stable after a certain value of r . This phenomenon does not indicate stability of 
performance. It only indicates that the SAX exploited all the indexed time series using 
the lower bounding condition without being able to exclude any time series, so the 
search process moved to sequential scanning. So this phenomenon is the worst 
scenario possible because the number of operations exceeds even that of sequential 
scanning and reaches the maximum number possible of operations, i.e. the maximum 
number of distance evaluations.  

In all the experiments we presented so far comparison was made based on speed as 
measured by the latency time, but comparisons between representation methods can 
also be made according to their pruning power. In Table 1 we present the pruning 
power of MIR-Tight and SAX with alphabet size=20 (which is the most effective 
version of SAX) on the datasets presented in Figure 4. The results show that the 
pruning power of Tight-MIR is much more stable than that of SAX20 as r gets larger.  
 



Table 1.  Comparison of the pruning power between Tight-MIR and SAX20 (alphabet size=20) 
for the smallest and largest values of r that were used in the experiments presented in Figure 4.   
 

  SAX20   Tight-MIR  

   r min r max   r min r max  

CBF  99.89 % 14.88 %   99.89 % 98.69 %  

FaceAll   99.94 %   7.51 %   99.94 % 98.89 %  

motoCurrent  98.40 % 33.15 %   99.87 % 88.13 %  

Yoga  99.53 % 37.61 %   99.63 % 85.84 %  

 
In the final set of experiments we wanted to test if the performance of Tight-MIR is 

stable with different dimensions of time series. We conducted experiments using 
datasets of different dimensions and the results showed high stability of performance. 
We present in Figure 5 the results of applying Tight-MIR on dataset (Wind) whose 
dimension is 12, and dataset (motoCurrent) whose dimension is 1500, compared to 
sequential scanning which represents the baseline performance.    
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Fig. 5. Comparison of the latency time between Tight-MIR and Sequential Scanning on 
datasets (Wafer) and (motoCurrent) 

5   Conclusion  

In this work we presented an improved multi-resolution algorithm of time series 
retrieval. This new algorithm combines the advantages of two previously proposed 
algorithms. We conducted extensive experiments comparing the new algorithm with 
the previously proposed algorithms. The results of the experiments show the 
superiority of the improved algorithm over the two previous ones.  

We also conducted other experiments which compare the performance of the new 
algorithm with other dimensionality reduction techniques. The results also show that 
the improved algorithm outperforms those tested dimensionality reduction techniques 
both in terms of speed and pruning power.  
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