
HAL Id: hal-00689889
https://hal.science/hal-00689889

Submitted on 20 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for subnetwork mining in heterogeneous
networks

Guillaume Fertin, Hafedh Mohamed-Babou, Irena Rusu

To cite this version:
Guillaume Fertin, Hafedh Mohamed-Babou, Irena Rusu. Algorithms for subnetwork mining in hetero-
geneous networks. 11th Symposium on Experimental Algorithms (SEA 2012), Jun 2012, Bordeaux,
France. pp.184-194. �hal-00689889�

https://hal.science/hal-00689889
https://hal.archives-ouvertes.fr

Algorithms for subnetwork mining in

heterogeneous networks

Guillaume Fertin, Hafedh Mohamed-Babou and Irena Rusu

LINA, UMR 6241, Université de Nantes, France
{Guillaume.Fertin, Hafedh.Mohamed-Babou, Irena.Rusu}@univ-nantes.fr

Abstract. Subnetwork mining is an essential issue in network analysis,
with specific applications e.g. in biological networks, social networks, in-
formation networks and communication networks. Recent applications
require the extraction of subnetworks (or patterns) involving several re-
lations between the objects of interest, each such relation being given as
a network. The complexity of a particular mining problem increases with
the different nature of the networks, their number, their size, the topol-
ogy of the requested pattern, the criteria to optimize. In this emerging
field, our paper deals with two networks respectively represented as a
directed acyclic graph and an undirected graph, on the same vertex set.
The sought pattern is a longest path in the directed graph whose vertex
set induces a connected subgraph in the undirected graph. This problem
has immediate applications in biological networks, and predictable ap-
plications in social, information and communication networks. We study
the complexity of the problem, thus identifying polynomial, NP-complete
and APX-hard cases. In order to solve the difficult cases, we propose a
heuristic and a branch-and-bound algorithm. We further perform exper-
imental evaluation on both simulated and real data.

1 Introduction

The use of communication, social and telecommunication networks has
dramatically increased recently, resulting in new prominent applications
of network analysis. In addition to these real-world applications, net-
work representations of new types of data - and particularly biological
data - highlight the drastic need for a new, multi-dimensional, type of
(sub)network mining in which several networks, representing several re-
lations between the same objects, are simultaneously investigated for the
extraction of a multi-dimensional pattern [5,13,15].

The study of multi-dimensional mining started several years ago, but
it mainly concerns homogeneous representations of data: directed graph
alignment [4], undirected graph alignment [6], relational data mining
[8], social networks mining [13] are several examples. Recently, such ap-
proaches found applications in computational biology [12,14,16], but also

showed their limits, due to the multiple types of biological networks that
are used to describe different views of the same biological process. In such
applications, a process is often represented as a path in a directed network
(e.g., a metabolic network), and as a connected graph in an undirected
network (e.g., a protein-protein interaction network); the link between the
two networks is then ensured by the components involved in the process,
that are represented as vertices in each network. Identifying a particular
biological process then requires to identify parts of the two networks (di-
rected and undirected) that have the suited topological patterns and the
same vertex set. The need for such applications to replace either manual
or case-by-case studies is nowadays fundamental [3,7,15,17].

In this paper, we approach multi-dimensional mining within two het-
erogeneous networks, driven by the previously cited applications in bi-
ological networks. The paper is organized as follows. Section 2 presents
the problem. In Section 3, we show that the problem is APX-hard in the
general case, NP-complete even in restricted cases, and exhibit classes of
instances for which the problem is polynomial. In Section 4, we propose a
heuristic and a branch-and-bound algorithm, that we evaluate in Section
5 both on simulated and real (biological) data. Section 6 is the conclu-
sion. Note that due to space constraints, some proofs and illustrations are
omitted.

2 The problem

All along the paper, D will denote a directed graph and G an undirected
graph, built on the same set of vertices V . In general, given a graph H,
V (H) is its vertex set. If H is undirected (resp. directed) then its edge set
(resp. its arc set) is denoted E(H) (resp. A(H)). Given a set S ⊆ V (H),
we denote H[S] the subgraph of H induced by S.

A (D,G)-consistent path is a (directed) path P inD such thatG[V (P)]
is connected. The Skew SubGraph Mining problem (abbreviated Skew-

GraM) is formulated as follows:

SkewGraM

Instance : A DAG D and an undirected graph G.
Requires : Find a longest (D,G)-consistent path.

Several more general variants of the problem (e.g. whenD has circuits,
or when D and G have different, but related, vertex sets) may be useful
in practice, but they should be reduced to this simpler variant, for which
we provide effective solutions. See [2] for details.

2

3 The complexity of SkewGraM

We study the complexity of SkewGraM considering different topological
constraints on graphs D and G. In Table 1, D∗ is the underlying graph
of D, obtained by removing the arc orientations. A star (resp. bi-star)
is a tree whose number of vertices with degree 2 or more is exactly one
(resp. two), whereas an outerplanar graph is a graph admitting a planar
embedding with all vertices on a circle, all edges inside the circle and such
that edges do not cross each other. Recall that the diameter of a graph is
the maximum length of a shortest path between any two of its vertices.

❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤
❤

❤
❤❤

G

D∗

Tree Outerplanar General graph

Chordless path or cycle, (bi-)star P [Lem. 1]

Tree with diameter 4 P [Lem. 1] NPC [Thm. 1] NPC [Thm. 1]

General graph P [Lem. 1] NPC [Thm. 1] NPC [Thm. 1]
APX-hard [Thm. 2]

Table 1. Complexity of the SkewGraM problem.

According to Table 1, SkewGraM is polynomially solvable as soon
as D∗ is a tree, but it becomes NP-complete even for relatively simple
graph structures, e.g. when G is a tree with diameter 4 and D∗ is an
outerplanar graph. In the most difficult cases, the problem is APX-hard.

The following lemma gathers together the polynomial-time solvable
cases we identified:

Lemma 1. SkewGraM is polynomial-time solvable when at least one
of the following conditions holds: a) D∗ is a tree. b) G is a chordless path
or cycle. c) G is a (bi-)star.

The theorem below shows the NP-completeness of the problem in a par-
ticular configuration.

Theorem 1. SkewGraM (in its decision version) is NP-complete, even
when D∗ is an outerplanar graph and G is a tree with diameter 4.

Proof. The problem is clearly in NP. We propose a reduction from MAX

2Sat[11]. Let C = {C1, . . . , Cp} be a collection of p clauses with two
literals each, over the variable set Xn = {x1, . . . xn}. Let D be built on
2p+2n+2 levels, called optional (marked with a star) or compulsory (not
marked):

• level 0 : a vertex s;

3

• level∗ 2i− 1, 1 ≤ i ≤ p: two vertices vi,1 and vi,2 corresponding to the
literals of clause Ci;

• level 2i, 1 ≤ i ≤ p: a vertex ci corresponding to the clause Ci;
• level 2p+1: two vertices vp+1,1 and vp+1,2 corresponding, respectively,

to variables xn and xn;
• level 2p+ 2: a vertex cp+1;
• level 2p+ 2 + 2i− 1, 1 ≤ i ≤ n: two vertices ai and bi;
• level 2p+ 2 + 2i, 1 ≤ i < n: a vertex Ai.

Then add (a) all possible arcs between any two consecutive levels,
(b) the arc sc1 and (c) the arcs cici+1, 1 ≤ i < p. It is clear that D is
a DAG. To see that D∗ is an outerplanar graph, it is sufficient to draw
the vertices on a circle according to the order s, v1,1, c1, v2,1, c2, . . . , vp+1,1,
cp+1, a1, A1, . . . , an−1, An−1, an, bn, . . . , b1, vp+1,2, . . . , v1,2.

Graph G is a tree with root s. There is an edge between s and each
vertex in {ai, bi : 1 ≤ i ≤ n} ∪ {Ai : 1 ≤ i < n} ∪ {ci : 1 ≤ i ≤ p + 1}.
There is an edge between each vertex ai (resp. bi) and any vertex vl,m
with 1 ≤ l ≤ p + 1, 1 ≤ m ≤ 2, such that vl,m corresponds to the literal
xi (resp. xi). Obviously, G has diameter 4. We claim that there is an
assignment for the variables in Xn that satisfies at least k clauses if and
only if there is a (D,G)-consistent path with length at least p+k+1+2n.
This assertion is based on the following remarks:

1. Each consistent path of length at least 1 contains s. Indeed, the con-
nected components of G− {s} do not allow to compute paths in D.

2. No consistent path P contains two vertices associated with literals
xi, xi, for some i. Indeed, at most one of the vertices ai, bi belongs to
P (by construction of D), and thus in G only vertices corresponding
to xi or to xi may be connected to s (via ai or, respectively, bi).

3. Every consistent path P of length at least p + 1 necessarily contains
one vertex from each compulsory level. Indeed, such a path contains
s (as before) and, because of its length, at least one vertex vi,j , 1 ≤
i ≤ p + 1 and 1 ≤ j ≤ 2. The connectivity in G implies that ai or bi
belongs to P and consequently, in D, we deduce that vp+1,1 or vp+1,2

(that correspond respectively to xn and xn) belongs to P . Then, the
connectivity in G implies that an or bn belongs to P and the claim
follows.

⇒: Given an assignment A of the variable set Xn that satisfies k′ clauses
of C, s.t. k′ ≥ k, assume w.l.o.g. that variables vi1,1, . . . , vik′ ,1, vp+1,1

correspond to true literals. Let B(i) = ai if xi is true, and B(i) = bi
otherwise. Then the path P with vertices s, vi1,1, . . . , vik′ ,1, vp+1,1, c1, . . .,

4

cp+1, B(1), A1,B(2), A2, . . . ,B(n−1), An−1,B(n) is (D,G)-consistent and
has length p+ k′ +1+2n. Indeed, in G the vertices vi1,1, . . . , vik′ ,1, vp+1,1

are connected to s using the corresponding vertex B(lij) (s. t. vij ,1 is xlij
or xlij), 1 ≤ j ≤ k′, and B(n) respectively. All the other vertices are

adjacent to s.
⇐: Let P be a (D,G)-consistent path P s.t. |V (P)| ≥ p+k+2+2n. Let k′

be the number of vertices in P that belong to optional levels. According
to Remark 2, assigning the value true to the literals associated to these
vertices yields a correct assignment, that satisfies k′ clauses. Moreover, by
Remarks 1 and 3, P contains p+2+2n vertices on the compulsory levels,
and thus |V (P)| = p+ 2 + k′ + 2n vertices. We deduce that k′ ≥ k. ⊓⊔

Moreover, we can also show (proof omitted here) using a reduction
from Maximum Independent Set on cubic graphs that:

Theorem 2. SkewGraM is APX-hard.

4 Two algorithms for SkewGraM

We propose two algorithms for SkewGraM: a heuristic called AlgoH,
and an exact exponential-time algorithm called AlgoBB using the branch
and bound method. Both algorithms look for a longest (D,G)-consistent
path going through a given arc xy of D. Then, to solve SkewGraM, an
execution is needed for every arc xy of D.

Let i D j denote a path in D from vertex i to vertex j (becomes
i →D j when reduced to an edge). Given two undirected graphs G1(U,E1)
and G2(U,E2), a common connected component of G1 and G2 is any
maximal setX ⊆ U such thatG1[X] andG2[X] are connected. We note by
CCC(D∗, G, i D j) the common connected component ofD∗ andG that
contains all the vertices of the path i D j, if such a common connected
component exists (equal to ∅ otherwise). The notation S+

i stands for the
set of vertices that are reachable by a path from vertex i in D, whereas S−

i

stands for the set of vertices ofD reaching vertex i by a path inD. Finally,
vertex r ∈ V is called a bridge of i D j with respect to G if there is no
common connected component of D∗[V −{r}] and G[V −{r}] containing
all the vertices of i D j (i.e. CCC(D∗[V −{r}], G[V −{r}], i D j) = ∅).

The heuristic AlgoH. We construct the (D,G)-consistent path progres-
sively by starting with the given arc xy and extending it. AlgoH first
computes the cover set of a path, which is used to reduce the graph by
removing vertices not compatible with the bridges.

5

Algorithm 1 GetCoverSet(D,G, i D j)

Require: A DAG D = (V,A(D)), an undirected graph G(V,E(G)), a path i D j.
Ensure: Computes the cover set of i D j.
1: S := S−

i ∪ S+
j ∪ V (i D j)

2: S := CCC(D∗[S], G[S], i D[S] j); STOP := false;
3: while ((STOP = false) and (S 6= ∅)) do

4: Stmp := S; /* note that i D[S] j is identical to i D j */
5: for each bridge r of i D j in G do

6: Stmp := Stmp ∩ ({r} ∪ S−
r ∪ S+

r)
7: end for

8: if (S = Stmp) then

9: STOP := true

10: else

11: S := Stmp; S := CCC(D∗[S], G[S], i D[S] j);
12: end if

13: end while

14: return S

Definition 1. The cover set of a path i D j, denoted CoverSet(D,G,
i D j), is the set X satisfying:

1. V (i D j) ⊆ X ⊆ S−
i ∪ S+

j ∪ V (i D j).

2. D∗[X] and G[X] are connected.

3. If r is a bridge of i D[X] j w.r.t. G[X] then X ⊆ S−
r ∪ S+

r ∪ {r}.
4. X is maximal (with respect to the inclusion order).

If, for a path i D j, no vertex set X satisfies conditions 1., 2. and 3.,
then by convention CoverSet(D,G, i D j)= ∅.

The cover set of a path is unique, and easily computable (see Algo-
rithm 1 which uses Algorithm GenPartRefinement described in [10] to
compute the common connected components):

Lemma 2. The cover set of a given path i D j is well-defined.

Lemma 3. Algorithm GetCoverSet correctly computes the cover set of
a given path in O(n2 log n+ nm log2 n).

Now, to compute a (D,G)-consistent path going through xy, we use
Algorithm AlgoH (see Algorithm 2) to successively increase the current
path cp (which is initially the arc x →D y) as follows. Once Algorithm
GetCoverSet is applied to reduce D and G when possible (line 7), either
V (D) = ∅ (and there is no (D,G)-consistent path containing xy), or D

is Hamiltonian (and the algorithm returns the best current solution), or
cp must be extended. The possible extensions p (by adding one vertex
at the beginning or at the end of the path, using function Extend) are
computed (lines 12-16) as well as the resulting reduced graphs (line 17).

6

Algorithm 2 AlgoH(D, G, xy)
Require: A DAG D = (V,A(D)), an undirected graph G(V,E(G)), an arc xy ∈ A(D).
Ensure: S ⊆ V : D[S] is a (D,G)-consistent path containing the arc xy or S = ∅.
1: /* bcs: best current solution; cp: current path */
2: /* Lext: the list of all paths in D extending the current path by one vertex */
3: /* DCS: the subgraphs of D induced by the cover sets of paths in Lext */
4: /* HCS: the Hamiltonian subgraphs induced by the cover sets of paths in Lext */
5: bcs := ∅; cp := x →D y; f := x; l := y; STOP := false;
6: while (STOP = false) do

7: S := GetCoverSet(D,G, cp); D := D[S]; G := G[S];
8: if (S = ∅ or D is Hamiltonian) then

9: STOP := true;
10: if |bcs| > |S| then S := bcs end if

11: else

12: Lext := ∅; /* compute the extensions of cp = f D l */
13: for each v that is a predecessor of f or a successor of l do

14: p = Extend(cp, v); /* extends cp with v */
15: Lext := Lext ∪ {p};
16: end for

17: DCS = {D[CoverSet(D,G, p)] : p ∈ Lext};
18: HCS := {d ∈ DCS : d is Hamiltonian};
19: Let hmax ∈ HCS s.t. |V (hmax)| = max{|V (h)| : h ∈ HCS}
20: if |bcs| < |V (hmax)| then bcs := V (hmax) end if

21: Let pmax = fmax
D lmax s.t. value(pmax) = max{value(p) : p ∈ Lext};

22: if |bcs| ≥ value(pmax) then

23: /* No (D,G)-consistent path through xy and longer than |bcs| exists */
24: S := bcs; STOP := true;
25: else

26: cp := pmax; /* continue with the most promising extension */
27: f := fmax; l := lmax

28: end if

29: end if

30: end while

31: return S

The Hamiltonian graphs among them are considered for improving the
best current value (lines 18-20). Then, the most promising extension is
computed using the evaluation value(p), equal to the length of the longest
path in D[CoverSet(D,G, p)] (line 21). If this extension allows to hope
an improvement of bcs, then it is kept (lines 22-28). An experimental
evaluation of AlgoH is given in the next section.

Complexity of Algorithm AlgoH: let ∆ be the maximum total de-
gree of a vertex in D, and L be the length of the optimal solution of
SkewGraM. Then, the while loop in line 6 is executed at most L times.
The most time consuming internal instruction is the one in line 17, which
makes 2∆ calls to Algorithm GetCoverSet. Recall that the longest path
is easily computed in a DAG. Then the complexity of Algorithm AlgoH

is in O(∆L(n2 log n+ nm log2 n)).

7

The exact algorithm AlgoBB. This algorithm is based on the branch
and bound method. The tree TS of sub-solutions is built as follows. The
root is associated to the arc xy given as input of SkewGraM. Each vertex
s of TS is associated to a path p(s) extending the arc xy. At the end of the
construction of TS, its leaves are associated to (D,G)-consistent paths
containing xy. The solution of SkewGraM is thus a longest path i D j

such that there exists a leaf of TS associated to i D j.
Branching. We expand vertex s with p(s) = vl

D vm as follows.
For each vk that is a predecessor of vl (resp. successor of vm), we add
in TS a child of s associated to the path vk.p(s) (resp. p(s).vk). For
a vertex s ∈ TS, recall that value(p(s)) is the length of the longest
path in D[CoverSet(D,G, p(s))]. Let BBvalue(s) denote the evalua-
tion of a vertex s in TS. This function is defined as follows: (i) if s is
to be expanded, then BBvalue(s) = value(p(s)) ; (ii) if s has already
been expanded at some specific moment of the construction of TS, then
BBvalue(s) is the length of p(s) if it is (D,G)-consistent. Otherwise,
BBvalue(s) = 0. Using this evaluation function, we define the bounding
and pruning rules as follows.
Bounding (Rule 1). Among vertices {s1, s2, . . . , sk} to be expanded, we
choose the vertex s∗ such that BBvalue(s∗) = max{BBvalue(si) : 1 ≤
i ≤ k}. If there are several such vertices, we arbitrarily choose one.
Pruning (Rule 2). Let smax be a vertex of TS satisfying the two fol-
lowing conditions: (i) smax was expanded, and (ii) BBvalue(smax) ≥
BBvalue(s), for any expanded vertex s of TS. Then, delete from TS any
leaf vertex s with BBvalue(s) ≤ BBvalue(smax). This deletion is applied
recursively for vertices that become leaves after the deletion of all their
children.

Theorem 3. Algorithm AlgoBB exactly solves SkewGraM.

5 Experimental results

In order to show the reliability of our heuristic AlgoH, we first applied
it on random (Erdös-Rényi and scale-free) graphs and we compared the
obtained solutions to the optimal ones computed by our exact algorithm
AlgoBB. We also applied AlgoH on different types of biological networks.

5.1 Performances of AlgoH

Let |AlgoBB| (resp. |AlgoH|) be the number of vertices of a solution found
by AlgoBB (resp. found by AlgoH). We measured the performance of AlgoH

8

Fig. 1. Performances of heuristic AlgoH. We show the percentage of arcs whose
|AlgoH|
|AlgoBB|

× 100 belongs to an interval Ii (see Section 5.2). (a) General graphs. For

fixed n and p we generated 100 couples (D,G). (b) Scale-free graphs. Algorithms
AlgoH and AlgoBB were run on 100 couples (D,G) of order 100.

by computing the ratio ρ = |AlgoH|
|AlgoBB| for every input instance. By conven-

tion, ρ = 1 whenever the exact algorithm finds no (D,G)-consistent path
for a given arc.

a) General graphs. We chose to vary two parameters: the number n of
vertices of D and G (in the range 20, 30, 40, 50, 60), and the probability
p that an edge between any given two vertices exists (in the range 0.05,
0.1, 0.15, 0.2). Taking any combination of these two parameters thus leads
to 20 runs. We generated the undirected graphs G by using the Erdös-
Rényi [9] random graphs generation method. We adapted this method, in
order to construct random DAGs D, by randomly orienting the edges. For
fixed n and p, we generated 100 couples (D,G). For each of these couples,
we applied AlgoH and AlgoBB for 5 randomly chosen arcs, and computed
the ratio ρ for each of the 5 corresponding instances. We then computed

the number denoted N
(D,G,p,n)
i , 0 ≤ N

(D,G,p,n)
i ≤ 5, of arcs whose ρ× 100

belongs to Ii, with 1 ≤ i ≤ 10 and I1 = [0, 10[, I2 = [10, 20[, . . . , I10 =
[90, 100]. We obtained a global result by computing, for each Ii, the value

m
(n,p)
i =

∑
(D,G)N

(D,G,n,p)
i i.e., the sum of N

(D,G,n,p)
i for all 100 generated

couples (D,G), with fixed n, p .

b) Scale-free graphs. We also applied our method on randomly generated
scale-free graphs, since recent studies have shown that a large number of
real-world networks tend to be scale-free (see e.g. [1]). In this experiment,
we generated 100 couples (D,G) of 100 vertices, by using the public toolkit
NGCE (http://ngce.sourceforge.net/). We observed that consistent paths
are not abundant in scale-free graphs, thus we randomly chose, for each
graph D, 10 arcs rather than 5 arcs as in the previous experiment. We
then computed for each couple (D,G) and for each interval Ii, the number

N
(D,G,n)
i , 0 ≤ N

(D,G,n)
i ≤ 10, of arcs whose ρ× 100 belongs to Ii and the

global value mn
i =

∑
(D,G)N

(D,G,n)
i (here, n is fixed to 100).

9

We observe a very good behaviour of our heuristic AlgoH, since more
than 90% of the input instances have a ρ× 100 belonging to the interval
[90, 100] (see Figure 1). Also, it is very important to note the speed-up
obtained by our heuristic with respect to the exact algorithm AlgoBB.
For example, for the 500 instances of random graphs evaluated in the
case n = 60 and p = 0.2 (Figure 1.a), Algorithm AlgoH was 11 times
faster than AlgoBB.

5.2 Applying AlgoH on biological networks

We have also applied our heuristic AlgoH on real biological networks,
in two different contexts, in order to verify that its results corroborate
biological assumptions.

Metabolic pathway vs PPI network. A metabolic network is usually
modeled by a directed graph (called a reaction graph) whose vertices are
the reactions, and where there is an arc between two reactions if the first
uses, as substrate, a product of the second. A metabolic network is repre-
sented in the KEGG database as a collection of functional modules (small
networks) called metabolic pathways. Therefore, metabolic pathways can
be modeled by DAGs [16]. A protein-protein interaction network (PPI) is
modeled by an undirected graph whose vertices are the proteins, and there
is an edge between each pair of physically interacting proteins. We applied
our heuristic to extract automatically, in a metabolic pathway, a chain of
reactions (i.e., a path) that are catalyzed by interacting proteins (i.e., a
connected subgraph) in a PPI network. Such paths are biologically mean-
ingful [7]: indeed, the authors of [7] divided the PPI network for the species
S. cerevisiae into functional clusters and observed that proteins involved
in successive reactions are generally more likely to interact than other
protein pairs. They provided an example of a short path (of length 6) in
the metabolic pathway “Glycolysis/Gluconeogenesis” corresponding to a
functional cluster in the PPI network. In order to compare our results with
theirs, we built the PPI graph G, of the same species S. cerevisiae, from
the BioGRID database (http://thebiogrid.org/, version (v2.0.63)).We also
constructed the metabolic pathway “Glycolysis/Gluconeogenesis” (graph
D) from KEGG (pathwaysce00010.xml). We established the correspon-
dence between the two graphs using the names of the genes which encode
proteins that (a) catalyze reactions in the metabolic pathway and (b) in-
teract in the PPI network. Notice that G does not have the same vertex
set as D. In order to circumvent this difficulty, we used an additional
graph G′: the new graph G′ is an undirected graph whose vertices are

10

the reactions (V (G′) = V (D)) and there is an edge between two ver-
tices r1, r2 ∈ V (G′), iff there are two interacting proteins p1, p2 ∈ V (G)
s.t. p1 catalyzes r1 and p2 catalyzes r2 (see also [2], where the construc-
tion of such a graph is detailed). Applying our heuristic AlgoH with the
arc between vertices 1 and 23 as input, we automatically computed a
(D,G′)-consistent path of 12 vertices, inducing a connected subgraph of
20 proteins in the PPI network. Such a path includes those observed in [7].

Metabolic pathway vs Linear genome. We also applied AlgoH to au-
tomatically extract, in a metabolic pathway, a chain of reactions that are
catalyzed by the products of adjacent genes in the genome. The genome
network is modeled by an undirected graph whose vertices are the genes,
and in which there is an edge between each adjacent pair of genes. The
species under study was the bacterium E. coli. We built the linear se-
quence of genes (graph G) from the NCBI database. We constructed the
metabolic pathway (graph D) from KEGG (pathwayeco00550.xml). We
established the correspondence between the two graphs using the names
of the genes. Finally, as in the previous example, we constructed an ad-
ditional undirected graph G′ built on same vertex set of D. The longest
(D,G′)-consistent path we found by applying AlgoH for all the arcs of D
is the same as the path found by Boyer et al. [3] (see Figure 3.b in [3]).

6 Conclusion

The SkewGraM problem belongs to a new type of subnetwork mining
problems, arising from recent applications of biological, social or infor-
mation networks: several graphs, of various types, represent different re-
lations between objects, and a subset of objects is sought, with particular
properties in each network. Due to an important set of parameters (the
networks nature, the properties to fulfill, etc.), these problems are very
complex. Still, they need good algorithmic solutions, since the size of the
networks is often very large. In this paper, we studied the limits, in terms
of graph classes (a graph representing a network), between difficult and
easy cases, and we provided two algorithms, a reliable heuristic and an
exact algorithm. We tested them on random data, in order to show the
performances of our heuristics in terms of execution time and quality of
the results. We also tested them on real data, in order to show their effec-
tiveness on biological networks. Further studies should either investigate
the complexity of SkewGraM in terms of approximability (on specific
graph classes) and fixed parameter algorithms, or inexact variants of the

11

problem obtained, for instance by allowing small differences between the
vertex set of the path in D and the connected set in G.

References

1. A.-L. Barabási. Scale-free networks: a decade and beyond. Science, 325:412–413,
2009.

2. G. Blin, G. Fertin, H. Mohamed-Babou, I. Rusu, F. Sikora, and S. Vialette. Al-
gorithmic aspects of heterogeneous biological networks comparison. In Proc. CO-
COA, 6831:272–286, 2011.

3. F. Boyer, A. Morgat, L. Labarre, J. Pothier, and A. Viari. Syntons, metabolons
and interactons: an exact graph-theoretical approach for exploring neighbourhood
between genomic and functional data. Bioinformatics, 21(23):4209–4215, 2005.

4. H. Bunke. Graph matching: theoretical foundations, algorithms and applications.
In Proc. Vision Interface, 2000:82–88, 2000.

5. D. Cai, Z. Shao, X. He, X. Yan, and J. Han. Mining hidden community in het-
erogeneous social networks. In Proc. of the 3rd International Workshop on Link
Discovery, pages 58–65, 2005.

6. D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching
in pattern recognition. International Journal of Pattern Recognition and Artificial
Intelligence, 18:265–298, 2004.

7. P. Durek and D. Walther. The integrated analysis of metabolic and protein in-
teraction networks reveals novel molecular organizing principles. BMC Systems
Biology, 2(1), 2008.

8. S. Dzeroski and N. Lavrac. Relational data mining. Springer, 2001.
9. P. Erdös and A. Rényi. On random graphs, I. Publicationes Mathematicae (De-

brecen), 6:290–297, 1959.
10. A.-T. Gai, M. Habib, C. Paul, and M. Raffinot. Identifying common connected

components of graphs. Technical Report RR-LIRMM-03016, LIRMM, 2003.
11. M. R. Garey and D. S. Johnson. Computers and Intractability: a guide to the

theory of NP-completeness. W. H. Freeman, 1979.
12. B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R. Stockwell, and T. Ideker.

Pathblast: a tool for alignment of protein interaction networks. Nucleic Acids
Research, 32:83–88, 2004.

13. Y. Matsuo, M. Hamasaki, H. Takeda, J. Mori, D. Bollegara, Y. Nakamura,
T. Nishimura, K. Hasida, and M. Ishizuka. Spinning multiple social networks
for semantic web. In Proc. of the Twenty-First National Conference on Artificial
Intelligence, 2006.

14. R. Sharan, S. Suthram, R. M. Kelley, T. Kuhn, S. Mccuine, P. Uetz, T. Sittler,
R. M. Karp, and T. Ideker. Conserved patterns of protein interaction in multiple
species. National Academy of Sciences, 102(6):1974–1979, 2005.

15. R. Vicentini and M. Menossi. Data mining and knowledge discovery in real life
applications. In-tech, Julio Ponce and Adem Karahoca edition, 2009.

16. S. Wernicke and F. Rasche. Simple and fast alignment of metabolic pathways by
exploiting local diversity. Bioinformatics, 23:1978–1985, 2007.

17. E. Williams and D. J. Bowles. Coexpression of neighboring genes in the genome
of arabidopsis thaliana. Genome Research, 14:1060–1067, 2004.

12

	Algorithms for subnetwork mining in heterogeneous networks

