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We analyze stress transmission in granular media involving an interstitial cementing matrix
of variable volume fraction. We rely on a lattice-type discretization of both the particles and
cemented matrix. This Lattice Element Method gives access to elastic deformations and stress
fields inside the particles and matrix, as well as at their interface. The signature of granular
structure appears clearly on the probability density functions (pdf) of node stresses. We show
that the stress chains are mainly guided by the particles in compression and by the matrix in
tension. In tension, the stress component pdf’s are increasingly broader for a decreasing matrix
volume fraction whereas in compression they depend only on the particle stiffness. The pdf’s are
found to be gaussian inside the particles and exponential at their contact points. We compare in
detail the contact force network computed from stresses localized at the matrix bridges between
particles with that obtained from molecular dynamics simulations of the same system by using

rigid particles with cohesive interactions. As far as contact forces are concerned the lattice
element method yields the same force patterns and distributions as in molecular dynamics.

The granular microstructure is the common denomina-
tor of a broad class of solid materials including sedimen-
tary rocks (sandstones, conglomerates and breccia)[3],
some biomaterials such as wheat endosperm (starch gran-
ules forming a compact structure bound together by a
protein matrix) [4-6], and many geomaterials like mor-
tars, concrete and asphalt (aggregates of various sizes
glued to each other by a cement paste) [1]. The presence
of a particulate backbone endows these materials with
similar failure properties.

Force distributions in dense granular media is at the
focus of interests for granular mechanics, both from
the viewpoint of mechanical processing and fonda-
mental mechanisms at the microscopic scale. Severals
experimental and numerical studies on dry granular
media have shown that interparticles forces form a
inhomogeneous contact network with an exponential
pdf of the strong forces (REF?7?). However, most of
it concerns only non cohesive granular materials, and
cohesive binding between particles has been rarely taken
into account (REF ?777).

In this Letter, we are interested in stress transmis-
sion and force distribution in cemented granular mate-
rials (CGMs). CGMs form a wide class of materials with
a similar microstructure consisting of densely packed par-
ticles and a solid matrix filling the interstitial space and
sticking to the particles. Some examples are mortars,
concrete and asphalt (aggregates of various sizes glued to
each other by a cement paste) [1], solid propellants and
high explosives (large volume of energetic particles in a
polymeric binding matrix) [2], sedimentary rocks (sand-
stones, conglomerates and breccia)[3], and some biomate-
rials such as the wheat endosperm (starch granules form-

ing a compact structure bound together by a protein ma-
trix) [4-6].

In the major numerical methods used to simulate gran-
ular materials (Contact Dynamics (CD), Discrete Ele-
ment Method (DEM)), the particles are treated as solid
objects that interact only at their contact points. The
effect of the matrix can be represented as a cohesion law
between particles, but volum effects due to the partial
filling of interstitial spaces by the matrix cannot be con-
sidered easily. We rely here on a Lattice Element Method
(LEM) based on the discretization of both the particles
and cementing matrix. In this letter we analyse stress
transmission in CGMs for the first time with a subparti-
cle and interstial matrix resolution.

LEM has been extensively used for the statistical me-
chanics of fracture in disordered media [7], and applied to
study the fracture properties of concrete [8], ceramics [9]
and biomaterials like wheat endosperm [5, 6]. The space
is discretized as a grid of points (nodes) interconnected by
one-dimensional elements (bonds). Each bond can trans-
fer normal force, shear force and bending moment up to
a threshold in force or energy. When several phases are
present as in a cemented granular medium, each phase
and its boundaries are materialized by lattice elements
sharing the same properties and belonging to the same
portion of space. For a cemented granular material, there
are three bulk phases; the particles, the matrix and the
voids, denoted respectively here ‘p’, ‘m’; and ‘v’, and two
kinds of interface phases; particle-particle interface, de-
noted ‘pp’, and particle-matrix interface, denoted ‘pm’.

We use linear elastic-brittle elements, each element
characterized by a Hooke constant and a breaking force
threshold. The bonds transmit only normal forces be-
tween the lattice nodes and thus the strength of the lat-



tice in shear and distortion is ensured only by the high
connectivity of the nodes. A sample is defined by its
contour and the configuration of the phases in space.
The samples are deformed by imposing displacements or
forces to nodes belonging to the contour. The initial
state is the reference (unstressed) configuration. The to-
tal elastic energy of the system is a convex function of
node displacements and thus finding the unique equilib-
rium configuration of the nodes amounts to a minimiza-
tion problem. Performing this minimization for stepwise
loading corresponds to subjecting the system to a qua-
sistatic deformation process. The method used here can
be found in more detail in reference see [10].

The cauchy stress tensor o makes sense only for a suffi-
ciently large number of material points inside a control
volume such that the surface density of forces is well de-
fined. Following a general framework, first introduced by
Moreau, we can attribute a stress tensor ¢* to each node
i of the lattice network [10, 11]. The physical content of
this tensor remains the same whether applied to a node
1 or to a portion of space including several nodes, and
it tends to the Cauchy stress tensor at large scales. In
order to analyze the stress distributions in our numerical
samples, we use these "node stresses” whose components
are represented by a proportional grey level over the el-
ementary hexagonal cell centered on each node.
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We first focus on the vertical stresses for a simple uni-
axial compression test. We use a large dense packing
of rigid disk-like particles compressed isotropically by
means of discrete element method. A rectangular por-
tion of this two-dimensional packing containing about
500 particles is then discretized on a triangular lattice.
The matrix volume fraction p™ =~ 0 here, corresponding
to dry cohesive granular media.

Figure 1 shows the vertical stress fields oy, at the un-
damaged state. The strong stress paths that we observe
in this map are reminiscent of force chains observed both
in cohesive and cohesionless granular media [12, 13]. On
figure 2 are represented forces between particles calcu-
lated by evaluating the total stress localized in the matrix
bridges projected on the normal direction. The strong
contact force network follows the stress chains observed
before (fig. 1). The probability density function (pdf) of
the vertical stresses is shown in Fig. 3. The stresses are
normalized by the total stress o, of the lattice. From
the shape of the pdf, we distinguish three parts : 1) Large
stresses fall off exponentially as observed for large contact
forces in dry granular media [12, 13]; 2) Weak stresses
have nonzero probability reflecting the arching effect; 3)
Intermediate stresses are centered on the mean and de-
fine a Gaussian distribution. Fig. 7?77 shows a typical
map of vertical stresses where strong, weak and interme-
diate stresses are represented respectively in red, orange
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FIG. 2: Forces between particles calculated by evaluating
the total stress localized in the matrix bridges projected
on the normal direction.

and yellow. We see that the large stresses do mostly con-
centrate at the contact zones and they form well-defined
chains that cross the particles. The intermediate stresses
are almost fully localized inside the particles. Finally,
weak stresses occurs at the surface zones or inside the
unstressed particles.

We now consider the influence of loading for the same
configuration of particles. The probablity density func-
tions (pdf) in tension is plotted on the same fig. 3 in
which is figured the pdf in compression. It is remarkable
that, for the same matrix volume fraction, the distribu-
tion of large stresses is broader in compression than in
tension.This means that stress distribution is far more in-
homogeneous in compression than in tension. The range
of large stresses corresponds to stress chains or, more
precisely, to a ”strong network” as in dry granular media
where a well-defined subset of contact forces (the strong
force network) transmits nearly the whole stress deviator
sustained by the system. The effect of the matrix content
is to redistribute more homogeneously the node stresses.
Fig. 4 (a) and (b) show the pdf’s of vertical stresses for
different values of p™ in tension and compression for a
higher particle stiffness than matrix (k? = 25k™). In ten-
sion, the pdf is increasingly wider for decreasing matrix
content so that the stresses are more and more concen-
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FIG. 3: (a) Probability distribution function of vertical
bond stresses normalized by the average stress in tension
and compression;(b) Tricolor map of vertical stresses in
compression with weak, intermediate and strong stresses
represented in yellow, orange and red respectively (color
on line).

trated in the binding bridges between the particles. On
the other hand, at the limit where the pores are filled
with the matrix, the distribution is peaked on the mean
stress. In compression, it’s interesting to see that the ma-
trix volume fraction does not change the shape of the pdf.
The effect of the particles stiffness is to concentrate more
stresses at the contact points between particles. Fig. 5
(a) and (b) show the pdf’s of vertical stresses for differ-
ent values of kP in tension and compression for a constant
matrix volume fraction (p™ = 0.12). It’s remarkable that
in tension, the particles stiffness don’t show a significa-
tive influence on the shape of the pdf. On the opposite, in
compression the pdf is increasingly wider for an increas-
ing particles stiffness. Our studies show that, due to the
presence of the granular backbone, the stress chains are
essentially guided by the cementing matrix in tension and
by the particulate backbone in compression. We compare
finally the contact force network between particles com-
puted from LEM with that computed by means of DEM
with cohesive interactions. A sample of 5000 particles is
simulated both by LEM at very low matrix volume frac-
tion p™ ~ 0 and DEM. The pdf’s of normal forces f,
from LEM and DEM are shown in Fig. 6 (a). We ob-
serve that the two pdf’s coincide over nearly the whole
range of forces. This agreement between the two meth-
ods is all the more interesting that in DEM the particles
are assumed to be rigid and the stresses inside the parti-
cles are not involved in the calculation of contact forces.
The pdf has well-known features of force distributions
in dry granular media Indeed, we note that the data for
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FIG. 4: Probability distribution functions of vertical
node stresses for three values of the matrix volume frac-
tion: (a) in tension; (b) in compression.

forces lower than the mean seem to have a nearly uniform
distribution whereas the data for forces larger than the
mean represent a nearly exponential decay. Note that the
pdf’s of normal forces contain no gaussian peak as that
observed in Fig 3 for intermediate forces. This indicates
that the this gaussian peak corresponds to the stresses
inside the particles. The two pdf’s of tangential forces
ft, plotted at Fig. 6 (b), coincide as well as in the case
of normal forces and show an exponential distribution as
in dry granular media. The pdf’s of the ratio f;/f, are
plotted on fig. 6 (c). The two pdf’s present the same
trend but don’t concide. The lower mobilization of tan-
gential forces with LEM than DEM is consistent with the
fact that relative motions at contact points are not the
only degree of freedom in LEM. Indeed, imposed strains
can be accommodate by the elastic strains of particles.
Our results suggest that lattice discretization can be
used for the simulations of dense granular materials with
or without a solid matrix. We would like to underline, by
a statistical study of stresses and forces, the influence of
the matrix volume fraction on one side, and of the parti-
cles stiffness on other side, on the macroscopic response
of cohesive granular materials. The sub-particle discreti-
sation in LEM approach allows to distinguish the part
of stresses localised inside the particles and the part lo-
calised at their contact points. In particular, the forces at
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FIG. 5: Probability distribution functions of vertical
node stresses for three values of the particle stiffness kP:
(a) in tension; (b) in compression.

the contact zones compare well with discrete element sim-
ulations. The contact force distribution from the lattice
model can be considered as a validation of that obtained
from discrete element simulations.
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