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We analyze the Coulomb cohesion of wet granular materials and its relationship
with the distribution of capillary bonds between the particles. We show that, within
a harmonic representation of the bond and force states, the shear strength can be
expressed as a state equation in terms of internal anisotropy parameters. This for-
mulation involves a dependence of the shear strength on loading direction and leads
to the fragile behavior of granular materials. The contact dynamics simulations of a
wet material, in which a capillary force law is prescribed, are in excellent agreement
with the predictions of this model. We find that the fragile character decreases as
the local adhesion is increased or the mean stress is decreased.

Keywords: granular matter, capillary bond, shear strength, Coulomb
cohesion, jamming, fragile behavior

1. Introduction

Wet granular materials in the pendular state are characterized by a network of liq-
uid bonds inducing capillary attractive forces between neighboring particles. This
network is equilibrated by repulsive contact forces and it endows the material with
an overall capillary cohesion [8]. The capillary cohesion has been widely investi-
gated for its crucial role in flow and mixing properties of granular materials. Wet
processing is common in powder technology for operations such as granulation, ex-
trusion and compaction [2, 7]. In the same way, the cohesion of unsaturated soils is
a fundamental parameter for construction environments such as embankments and
excavations [19, 15, 14].

The capillary force between two particles results from (1) the surface tension at
the contact line between the liquid and the particles, and (2) the suction pressure
difference due to the curvature of the liquid bridge. The pendular state represents
both the simplest topology of the liquid phase and the highest level of capillary
cohesion. The cohesion is absent at very low liquid content, and rises to an almost
constant value as a function of liquid content for the liquid volume fraction in the
range 1− 3% [12]. This plateau cohesion has been evidenced for various materials
and liquids [24, 37, 32, 21]. At larger liquid contents, liquid clusters are formed in
the packing with increasingly lower liquid-gas interfacial energy and hence lower
overall cohesion [8].

An interesting issue is how the capillary cohesion depends on the bond force
and granular microstructure. Assuming the Mohr-Coulomb model, the cohesion is
given by the product of the tensile strength and the internal friction coefficient.
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2 F. Radjai and V. Richefeu

The most widely cited expression of tensile strength was formulated by Rumpf
[36]. This expression has often been found to be plausible in view of experimental
measurements and numerical simulations [24, 10, 15]. It correctly predicts that the
tensile strength varies in inverse proportion to the particle size and in proportion
to the solid fraction and bond coordination number, which are the only structural
parameters involved in this model. An expression of the Coulomb cohesion based
on a variant of Rumpf’s expression taking into account the polydispersity was also
found in good agreement with numerical and experimental data [32]. However, the
distribution of capillary bridge volumes and coordination numbers, involved in those
expressions, have only recently been investigated by rigorous experimental methods
as a function of liquid content [16, 8].

In this paper, we introduce a somewhat different picture of the cohesion of
granular materials. The point is that the Coulomb cohesion is part of the plastic
yield state of a granular material, and in this sense it is a function of the inter-
nal parameters pertaining to the granular microstructure [35]. In other words, the
cohesion is a state-dependent property and a material should be characterized by
its state of cohesion. In particular, it depends not only on the connectivity of the
bond network, as a scalar parameter, but also on its anisotropy, which depends
on the preparation process and evolves during shear. The internal angle of friction
and cohesion are often attributed either to the stress peak state or to the critical
state reached at large shear strains. Even at these particular states, the anisotropy
of the bond network implies that the cohesion and internal friction angle are not
isotropic properties but dependent on space direction [27]. For example, the cohe-
sion changes as the shear strain is reversed, a property that is akin to the fragile
behavior, defined as the resistance of a material only to a set of compatible stresses,
basically those applied during its past deformations [5].

In the following, we first present a model of the capillary bond force in §2 and
briefly discuss its properties. Since we are interested in the relationship between
the Coulomb capillary cohesion and granular microstructure, we introduce in §3
a state equation for the cohesion of a granular material within the harmonic rep-
resentation of the fabric and force states. In §4 we show that the predictions of
this equation are in good agreement with contact dynamics simulations both for
cohesive and cohesionless materials. This equation implies a fragile behavior that
will be investigated as a function of the bond force. In §5 we derive an expression
of the critical-state Coulomb cohesion as a function of the extra force and fabric
anisotropies due to cohesion, and we show that it nicely fits the numerical data.
We conclude with a summary and possible extensions of this work.

2. Capillary cohesion

(a) Capillary bond force

The capillary force f cn between two spherical particles of radii Ri and Rj acts
along the axis joining the particle centers. It is a function of the liquid surface
tension γ, the gap δn, the liquid bond volume Vb and the particle-liquid-gas contact
angle θ; see figure 1(a). The capillary force can be obtained by integrating the
Laplace-Young equation [17, 20, 37]. Three examples are shown in figure 1(b) for
different values of the bond volume Vb and size ratio r=max{Ri/Rj ;Rj/Ri}. These
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Figure 1. (a) Geometry of a capillary bridge; (b) Capillary force fcn as a function of the
gap δn between two particles for different values of the liquid volume Vb and size ratio r
(solid lines), and from direct integration of the Laplace-Young equation (open circles); (c)
Scaled plot of the capillary force as a function of gap from the direct data shown in (b).

data are nicely fit to an exponential form [31]:

f cn = −κ R e−δn/λ (2.1)

where R =
√
RiRj is the geometrical mean of particle radii, and λ is a length scale

characterizing the exponential fall-off (see below).
The parameter κ in equation (2.1) is given by [39, 3]

κ = 2πγ cos θ, (2.2)

and δmaxn is the debonding distance given by [18]

δmaxn =

(
1 +

θ

2

)
V

1/3
b (2.3)

The capillary bridge is stable for δn < δmaxn . The prefactor κR characterizes the
highest value of the capillary force, occurring at contact (δn = 0).
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The length λ is expected to depend on the liquid volume Vb, a reduced radius
R′ and the ratio r. A dimensionally simple choice is

λ = α h(r)

(
Vb
R′

)1/2

(2.4)

where α is a constant prefactor, h is a function of the ratio r, and R′ is the harmonic
mean (R′ = 2RiRj/(Ri+Rj)). When introduced in equation (2.1), this form yields
a nice fit to the capillary force obtained from direct integration of the Laplace-Young
equation by setting h(r) = r−1/2 and α ' 0.9; see figure 1(b). Figure 1(c) shows
the same plots for forces normalized by κR and the lengths by λ. We see that all
the data collapse on the same plot, indicating that the force κR and the expression
of λ in equation (2.4) describe correctly the capillary bond force. We checked that
the geometric mean R =

√
RiRj introduced in equation (2.1) provides a better fit

than the harmonic mean 2RiRj/(Ri +Rj) proposed by Derjaguin for polydisperse
particles in the limit of small gaps [11].

The force law (2.1) was implemented in a molecular dynamics software and
used to investigate the shear behavior and force distributions in 3D packings of
spherical particles [32, 31]. By homogeneously distributing the liquid among all
eligible pairs of neighboring particles (within the debonding distance and including
interparticle contacts) in a weakly polydisperse packing, it was found that 85% of
capillary bonds occur at the true contact points, the other bonds being stretched
and mostly carrying small tensile forces. This means that, the capillary bond force
can be plausibly approximated by an adhesion force

fa = 2πγ
√
RiRj cos θ (2.5)

acting exclusively at the contact points between particles. It is also remarkable
that fa does not depend on the bridge liquid volume so that increasing the liquid
content in the pendular state affects mainly the proportion of liquid bonds in the
bulk up to a maximum that slightly depends on the solid fraction. The fact that the
distribution of liquid bonds is strongly coupled with the contact network explains
the presence of a plateau state.

The capillary attraction forces induce a network of self-stresses with a bipolar
structure that was evidenced by numerical simulations in the absence of external
stresses [31]. When external (boundary or bulk) forces are applied, the mechanical
effect of cohesive bonds depends on the relative importance of internal (tensile)
and external (compressive) stresses [26, 9]. In other words, the mechanical behavior
is expected to depend only on the ratio of fa to the reference compressive force
p dD−1 simply defined from the mean compressive stress p, the mean particle size d
and space dimension D. Thus, the relevant local parameter for a cohesive granular
material, irrespective of the origin of the threshold adhesion force fa, is

η =
fa

p dD−1
(2.6)

We will refer below to this parameter as adhesion index. For millimeter-size grains
at the free surface of a humid beach sand, the typical compressive force is the grain
weight mg and we have η ' 5. This is a large adhesion index that underlies the
stability of sand castles.
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Cohesion of wet granular materials 5

(b) Coulomb cohesion

The macroscopic cohesion c is defined by the Mohr-Coulomb criterion, which is
a linear relation between the normal stress σn and the shear stress σt; see figure 2.
The slope is the internal friction coefficient µ = tanϕ and the Coulomb cohesion c
is the shear stress at zero normal force. Plastic deformation occurs when in a plane
across the material the condition |σt| = µ|σn| + c is fulfilled. This condition can
be formulated in terms of the stress invariants. Let σ be the stress tensor, and σ1

and σ2 = σ3 the principal stresses under axial symmetry for simplicity. We have
p = (σ1 + 2σ2)/3 and we set q = (σ1 − σ2)/3 as the single nonzero stress deviator
due to axial symmetry. Then, it can easily be shown from the Mohr-Coulomb yield
criterion that the relative stress deviator q/p at yield is given by

q

p
=

2

3− sinϕ

(
sinϕ+

c

p
cosϕ

)
in 3D (2.7)

In 2D, we have q = (σ1 − σ2)/2 and p = (σ1 + σ2)/2, and we get

q

p
= sinϕ+

c

p
cosϕ in 2D (2.8)

As for the local adhesion, the state of cohesion in a granular material is not
characterized by only the macroscopic cohesion c, but rather by the ratio c/p which
appears at the same level as sinϕ is the expressions (2.7) and (2.8), and which is
linked with the internal state parameters, as we shall see below. We will also see
that the critical-state value of c/p is a nonlinear function of η.

3. Force and fabric states

(a) Stress tensor and state parameters

In order to describe the state of cohesion, we need a representation of the in-
ternal states pertaining to the microstructure and force transmission in a granular
material. The classical expression of the stress tensor σ contains the necessary in-
formation. Let ~fα be the contact force at the contact α between two particles and
~̀α the branch vector joining the particle centers. The stress tensor is given by
[34, 4, 23]

σij = nb 〈`αi fαj 〉α (3.1)

where nb is the number density of the bonds and 〈. . .〉α designs averaging over all
bonds inside a control volume. This expression shows clearly that the stress tensor
is a function of state for a granular material when the internal state is represented
by the set {~fα, ~̀α}.

In practice, however, we need a statistical description due to granular disorder.
In a statistical approach, the internal state is represented by the joint probability
density function P`f (~̀, ~f) of bond forces and branch vectors, and the stress tensor
can be expressed by an integral

σij = nb

∫
A`

∫
Af

`ifj P`f (~̀, ~f) d~̀ d~f (3.2)

where A` and Af are the integration domains of ~̀ and ~f , respectively.
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At this stage, it is convenient to consider the force components fn and ft in the
local reference frame (~n,~t), where ~n is the unit vector along the branch vector such

that ~̀= `~n, and ~t is an orthogonal unit vector. We have ~f = fn ~n+ ft ~t. We also
define the functions P (~n), 〈fn〉(~n), 〈ft〉(~n) and 〈`〉(~n) by the following relations:

P (~n) =
∫∞
`=0

∫
Af

P`f (~̀, ~f) d` d~f

〈`〉(~n)P (~n) =
∫
Af

` P`f (~̀, ~f) d~f

〈fn〉(~n)P (~n) =
∫∞
`=0

∫
Af

fnP`f (~̀, ~f) d` d~f

〈ft〉(~n)P (~n) =
∫∞
`=0

∫
Af

ftP`f (~̀, ~f) d` d~f

(3.3)

The function P (~n) is the probability density function of the branch vector orien-
tations (coinciding with the contact normals in the case of spherical particles or
disks). Integrating (3.2) with respect to the force and considering the definitions
(3.3), we get

σij = nb

∫
Ω

〈`〉(~n)P (~n){〈fn〉(~n) ni(~n) + 〈ft〉(~n) tj(~n)}d~n (3.4)

where Ω is the angular domain of integration.

(b) Harmonic approximation

The information contained in the functions P (~n), 〈fn〉(~n), 〈ft〉(~n) and 〈`〉(~n) is
still too rich to be tractable experimentally or theoretically. In general, however,
as a result of granular disorder, steric exclusions and mechanical equilibrium, these
functions can not take arbitrary form. It is usually observed that they can be
approximated by low-order terms of spherical harmonics in 3D and Fourier series
in 2D [34, 4]. To avoid unnecessary complication, we consider here a 2D packing
of disks and expand these functions in Fourier series truncated beyond the second
order as a function of the orientation θ of ~n:

P (θ) ' 1
2π{1 + ab cos 2(θ − θb)}

〈`〉(θ) ' `m{1 + a` cos 2(θ − θb)}
〈fn〉(θ) ' fm{1 + an cos 2(θ − θf )}
〈ft〉(θ) ' fm at sin 2(θ − θf )

(3.5)

In this approximation, the state is characterized by the average branch vector length
`m, the fabric or bond anisotropies ab and a`, the bond privileged direction θb,
the average force fm, the force anisotropies an and at, and the force privileged
direction θf . We must add the coordination number z or the bond number density
nb which appears in the prefactor to (3.4). The sine function for the expansion of
the orthoradial component 〈ft〉(θ) is imposed by the requirement that the mean
orthoradial force is zero, satisfying the balance of force moments on the particles
(
∫
P (θ)〈ft〉(θ)dθ = 0). We will refer to the above expansions and the corresponding

state parameters as a harmonic approximation of the granular state.
It should be remarked that part of the information involved in the angular force

distributions is redundant since for a mean stress state σ the contact forces can be
partially determined for the specified contact network by means of the force and
moment balance conditions up to some degree of indeterminacy resulting from the
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assumption of perfect particle rigidity and Coulomb friction law [40]. However, the
contact forces reflect subtle features of the granular microstructure that are more
evident to observe through the force network. The surprising inhomogeneity of the
force chains could hardly be guessed just from the appearance of the contact net-
work. The inclusion of the forces in the state is therefore a genuine choice in view
of taking advantage of the well-known properties of the force network. Owing to
their connection with the microstructure, the forces represent the state of the mi-
crostructure and, in the last analysis, they can be considered as fabric parameters
for a given material. On the other hand, a proper sampling of the forces in regu-
lar and irregular grain configurations suggests that the behavior of the statistical
distribution of forces in the range of weak forces is correlated with shear-induced
force anisotropy [40].

(c) State equations and fragile behavior

Inserting the Fourier expansions (3.5) in equation (3.4), and integrating with
respect to θ, we arrive at the following relations for the stress state:

p ' 1

2
nb`mfm (3.6)

q

p
cos 2θσ ' 1

2
{(ab + a`) cos 2θb + (an + at) cos 2θf} (3.7)

where θσ is the major principal stress direction and the cross products among the
anisotropies have been neglected. The same relations hold also in 3D under axial
symmetry with the factor 1/2 replaced by 2/5 [1]. The two relations (3.6) and
(3.7) are state functions of a granular assembly in the thermodynamic sense in the
framework of harmonic approximation.

Equation (3.7) reveals an important property of granular plasticity: The shear
strength q/p reflects the ability of a granular system to develop force and bond
anisotropies. This aspect was first demonstrated many years ago by Rothenburg
and Bathurst [34]. Except in transients, the fabric and force states are co-axial with
the stress state so that θb = θf = θσ. As a result, we have q/p ' 0.5(ab+a`+an+at)
during a monotonic deformation. The anisotropy a` of the branch vector lengths
can be small but takes non-negligible values for polydisperse systems and non-
spherical particles [1, 38]. The relative values of the other anisotropies depend on
the composition (shape and particle sizes). It is also important to remark that
q/p does not directly depend on the coordination number z, which reflects the
compactness of the material.

Here, we would like to underline another important property resulting from the
phase differences θσ−θb and θσ−θf in equation (3.7). Owing to the phase factors, the
shear strength q/p depends on the loading direction. For example, the shear stress
is q1/p ' 0.5(ab +a` +an +at) for θσ = θf = θb and q2/p ' 0.5(−ab−a` +an +at)
for θσ = θf = θb + π/2. This corresponds to a difference of strength of the order of
ab+a` between the two directions. As a result, it is expected that when the loading
direction θσ is reversed (i.e. for a rotation of π/2 of the applied stress directions),
the phase factor cos 2θσ changes sign as well as cos 2θf which reacts immediately
to the stress, but cos 2θb does not react instantly since the evolution of the bonds
requires particle rearrangements. Therefore, a discontinuous loss of strength occurs
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8 F. Radjai and V. Richefeu

during such transients. This property is akin to the fragile behavior [5]. Here, we
have a clear formulation of this property, which can be formulated in a weaker form
by stating that the largest strength occurs along the loading path that conducted the
system to its present state. In the following, we illustrate these developments by
means of discrete element simulations.

4. Numerical simulations

(a) Contact dynamics method

For the simulations, we used the contact dynamics (CD) method. This method is
based on implicit time integration and nonsmooth formulation of mutual exclusion
and dry friction between particles [13, 22, 25, 6, 30]. The equations of motion are
formulated as differential inclusions in which velocity jumps replace the accelera-
tions. The unilateral contact interactions and Coulomb friction law are represented
as set-valued force laws. The implementation of the time-stepping scheme requires
the geometrical description of each potential contact in terms of contact position
and its normal unit vector.

At each time step, all kinematic constraints implied by enduring contacts are
simultaneously taken into account together with the equations of motion in order to
determine all velocities and contact forces in the system. This problem is solved by
an iterative process pertaining to the non-linear Gauss-Seidel method that consists
of solving a single contact problem, with other contact forces being treated as
known, and iteratively updating the forces until a given convergence criterion is
achieved. The method is thus able to deal properly with the nonlocal character of
the momentum transfers resulting from the impenetrability of the rigid particles
and friction law.

The CD method is unconditionally stable due to its inherent implicit time inte-
gration method. The uniqueness of the solution at each time step is not guaranteed
for perfectly rigid particles. However, by initializing each step with the forces cal-
culated in the preceding step, the variability of admissible solutions shrinks to the
numerical resolution.

In the simulations presented in this paper, the bond capillary force was taken
into account only at the contact points between the particles as an attractive force
given by equation (2.5) added to each contact. The total force at each contact results
from the procedure briefly presented above in the presence of the attractive bond
forces as well as other bulk and boundary forces acting on the system. As stated
before, our 3D simulations with the full capillary law and an even distribution of
the liquid bonds within the debonding distance indicate that the effect of stretched
bonds (gap bridges) is marginal [32].

(b) Samples and material parameters

The numerical samples are composed of 5000 disks of diameters in a range
[dmin, dmax] with dmax = 2dmin. The samples are isotropically compacted with
with friction and at zero gravity inside a rectangular box in which the bottom and
left walls are immobile. We get an isotropic static sample of nearly square shape
and solid fraction ' 0.84 when the whole energy is dissipated by inelastic collisions
between the particles. In the CD method, the particles are perfectly rigid and the
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only material parameters are the normal and tangential restitution coefficients, set
to zero in all simulations, and the coefficient of friction between the particles, set
to 0.5 at the beginning of shearing.

Figure 2. A snapshot of the force network in a portion of a cohesive sample. Line thickness
is proportional to the magnitude of the normal force. The tensile and compressive forces
are in black and grey, respectively.

The samples were sheared by the downward motion of the top wall at constant
velocity vy and a constant confining pressure σxx applied on the right wall. The
vertical strain rate was ε̇yy ' 0.02 s−1 and the corresponding inertial number

I ≡ ε̇yy
√
m/(σxxd) ' 10−4. This is weak enough to consider the deformation as

quasistatic. The samples were sheared up to a total cumulative shear strain εq ≡∫
(ε̇yy− ε̇xx)dt = 0.28. Then, the simulation was stopped and a new simulation was

started by reversing the direction of motion of the top wall. This reverse shearing
was continued slightly below εq = 0.

The samples differed only in the value of the adhesion index η. We present below
the simulation results for six samples with η varying in the range [0, 4].

(c) Numerical results

Figure 2 shows a snapshot of the bond forces in a portion of a sheared cohesive
sample with η ' 1.4. Only normal bond forces are represented by line thickness
and two grey levels differentiating the tensile and compressive forces. We observe
both compressive and tensile force chains although the compressive forces prevail
as the sample supports compressive stresses in both space directions.

The normalized stress deviator (q/p) cos 2θσ is displayed as a function of the
cumulative shear strain εq in figure 3 for a cohesionless and a cohesive sample,
together with the corresponding fits by the state equation (3.7). The agreement
is excellent all along the shear path including the transient after the shear strain

Article submitted to Royal Society



10 F. Radjai and V. Richefeu

0.0 0.1 0.2 0.3
ε

q

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

(q/p) cos2θ
σ

(1/2){(a
b 

+ a
l 
) cos2θ

b
 + (a

n
 + a

t
) cos2θ

f
}    

η=0

η=1.4
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Figure 4. Evolution of the total fabric anisotropy ab + a` and the total force anisotropy
an + at in the case of the cohesive packing of figure 3 (for η = 1.4).

reversal. Starting with an initially isotropic system, the stress deviator increases
almost monotonically (ignoring small scale fluctuations) with shear strain. In the
case of perfectly rigid particles, which is the case of our simulations, this increase
in shear resistance is a purely hardening effect. In other words, the initial elastic
regime generally observed in simulations with elastic contacts (by means of other
distinct element methods of “molecular dynamics” type) is totally absent from our
results. Since the packing is initially dense, the stress ratio reaches a peak before
declining to its critical state value (shear softening). Instead, in our system the stress
deviator undergoes a huge jump over the first time step. This is the reminiscence
of a rigid-plastic behavior. However, particle rearrangements take over afterwards
and the behavior is then governed by the evolution of the microstructure. A similar
jump occurs also at the moment of shear reversal but the particle rearrangements
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are again responsible for the long transient towards the critical state in the new
stress direction.
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Figure 5. Critical-state values of the stress deviator and anisotropy parameters as a func-
tion of the adhesion index. The data are mean values in the critical state. The error bars
represent the standard deviation of the fluctuations around the mean.

The stress-strain behavior is basically similar in both cohesive and cohesionless
packings. The stress deviator is larger in the cohesive packing due to the action of
tensile bonds. The fragile behavior is apparent at shear reversal where the stress de-
viator almost vanishes. As discussed previously, this is mainly due to the responsive
nature of bond forces. The evolution of the fabric and force anisotropies is shown
in figure 4 for the cohesive packing of figure 3. We observe the slow evolution of the
fabric anisotropy ab + a` both at the initial state and upon strain reversal where a
long transient occurs. In contrast, the force anisotropy an+at undergoes a jump in
both cases. This shows that the stress peak occurring in an initially dense packing
is a consequence of the spontaneous buildup of force anisotropy in response to the
applied stress. The degree of fragility is related to the stress jump at strain reversal.
If (q/p) cos 2θσ simply changes sign in response to strain reversal while keeping the
same amplitude, the packing is not fragile as it resists to shear in the new direction
with the same strength as in the initial direction. In all other cases there is some
degree of fragility.

The state equation (3.7) suggests that the fragile character should increase
as ab + a` decreases. The critical-state stress deviator q∗/p and the critical-state
anisotropies a∗b , a

∗
` , a

∗
n and a∗t are shown in figure 5 as a function of the adhesion

index η. In our system, a∗` is nearly zero and a∗b increases and saturates to a con-
stant value as a function of η. Hence, the fragile character of our packings decrease
slightly as the cohesion increases. In contrast, the force anisotropies increase signif-
icantly with η, and they are thus the main origin of the shear strength in a cohesive
granular material.
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Figure 6. Critical-state cohesion c∗ and its theoretical expression (5.3) as a function of
the adhesion index η. The error bars correspond to fluctuations around the mean in the
critical state.

5. Coulomb cohesion in the critical state

The Coulomb cohesion c of a packing can be obtained from equation (2.8) at any
stage of evolution of a granular material if the corresponding internal friction angle
ϕ is known. In particular, the critical-state cohesion c∗ of a cohesive material of
cohesion index η in 2D is given by

c∗(η)

p
=

1

cosϕ∗

(
q∗(η)

p
− sinϕ∗

)
(5.1)

But ϕ∗ does not depend on the adhesion index and it represents the shear strength
in the absence of adhesion, i.e. for η = 0. Assuming that the phase differences vanish
in the critical state (θσ = θb = θf ), we have

sinϕ∗ =
1

2
{a∗b(0) + a∗` (0) + a∗n(0) + a∗t (0)} (5.2)

where the argument refers to the value of η. In the same way, under the same
assumption, we have

q∗(η)

p
=

1

2
{a∗b(η) + a∗` (η) + a∗n(η) + a∗t (η)} (5.3)

Given the expression (5.2), cosϕ∗ is of second order with respect to the anisotropies.
But in deriving (5.2) the second order terms (cross products among the anisotropies)
were neglected. Hence, within this approximation, we set cosϕ∗ ' 1. As a result,
from (5.1), (5.2) and (5.3) we get the following expression for the critical-state
Coulomb cohesion:

c∗(η)

p
=

1

2
{∆a∗b(η) + ∆a∗` (η) + ∆a∗n(η) + ∆a∗t (η)} (5.4)

where ∆a∗b(η) = a∗b(η) − a∗b(0), ∆a∗` (η) = a∗` (η) − a∗` (0), ∆a∗n(η) = a∗n(η) − a∗n(0),
∆a∗t (η) = a∗t (η)−a∗t (0). This equation is in excellent agreement with our numerical
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simulations as displayed in figure 6. The four terms in equation (5.4) represent
the contribution of adhesion to the structural and force anisotropy. Since c∗ is
independent of p, this equation implies that these extra anisotropies tend to zero
when the mean stress p increases. From figure 5 we also see that ∆a∗n(η) ' ∆a∗t (η),
and ∆a∗b(η) is small and nearly constant beyond η ' 1.

For a better understanding of the effect of adhesion, a particle-scale interpre-
tation of the behavior of critical-state anisotropies is necessary. Schematically, the
Coulomb cohesion results equally from two different mechanisms: (1) the stabiliz-
ing effect of the tensile bonds, and (2) the enhanced friction at the compressive
contacts. The parameter ∆a∗n reflects the importance of force chains. In a dry cohe-
sionless packing, these chains are propped by the weak compressive forces [29, 28].
The tensile bonds play a similar role with respect to the force chains in the presence
of cohesion [26, 33]. On the other hand, the parameter ∆a∗t is basically an effect of
enhanced friction due to cohesion. Its increase with the cohesion index, in the same
proportion as ∆a∗n, shows clearly this correlation.

6. Conclusion

The Coulomb cohesion of wet granular materials was analysed in this paper in terms
of the force and fabric anisotropies. It was argued that these anisotropies are state
parameters upon which depend the stress tensor. An expression of the shear stress
was derived in this framework for a harmonic representation of the states. This ex-
pression was shown to be in excellent agreement with contact dynamics simulations
of biaxial compression tests both in monotonous deformation and during transients
for several values of the local adhesion. We showed that the fragile behavior, de-
fined as the space-direction dependence of strength, is a consequence of the fabric
anisotropy and its effect increases with cohesion. We also derived an expression
for the critical-state cohesion, which is nicely fitted by the numerical data. The
evolution of the fabric and force anisotropies with the adhesion between particles
suggests that the tensile bonds and enhanced friction at compressive contacts are
equally at the origin of the Coulomb cohesion. However, more extensive numerical
investigation are required at this stage in order to fully validate this approach in
extreme situations such as tensile loading at negative confining stresses.

The framework presented in this paper provides a generic methodology for the
analysis of shear strength in granular materials. The influence of various material
parameters such as particle shape and size as well as particle interactions can thus
be described by considering separately each anisotropy parameter. Each parameter
affects differently the force and fabric anisotropies and thus the shear strength.
In particular, an upper bound can be obtained for the shear strength from the
variability of each anisotropy parameter.
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