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Introduction

Since its introduction in the seventeen's, nonparametric estimation has taken a large place in the work of mathematical or signal processing communities. Often a signal has too many components, or stands in a special space, and classical estimation studies cannot be carry out. Therefore new estimation procedures, based on approximation of functions have been introduced. But which kind of estimator is the most appropriate in these cases?

This question raised a lot of denitions and discussions in the statistical community. How can two estimators be compared when they point out innite dimensional objects and what kind of optimal behaviour can be expected. One of the most common way to test the performance of a procedure is to compare its convergence rate with an optimal one given by minimax theory. Nonetheless, this technique comes from a particular denition which can be subject to controversy. The main drawback is the pessimist point of view of this theory, which looks for the worst rate of estimation obtained in a given space. Indeed, in the minimax theory we are looking to the estimation procedure which yields the minimum of a maximum risk, in a sense to be dened, over a function space. But the worst case could be a misleading one and a method can be rejected although it is a good one for a lot of functions. The purpose of this paper is to introduce a new test of the risk, obtained thanks to genericity results. Thanks to this new kind of test we show that in fact minimax risk corresponds to a generic one.

Let us rst introduce what is meant by almost every function. In a nite dimensional space, we say that a property holds almost everywhere if the 1 imsart-generic ver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010 set of points where it is not true is of vanishing Lebesgue measure. The Lebesgue measure has here a preponderant role, as it is the only σ-nite and translation invariant measure. Unfortunately, no measure share those properties in innite dimensional Banach spaces. A way to recover a natural "almost every" notion in innite vector spaces is thus dened as follows by J. Christensen in 1972 see [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF][START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF]. Denition 1 Let V be a complete metric vector space. A Borel set A ⊂ V is Haar-null (or shy) if there exists a compactly supported probability measure µ such that ∀x ∈ V, µ(x + A) = 0.

(

) 1 
If this property holds, the measure µ is said to be transverse to A.

A subset of V is called Haar-null if it is contained in a Haar-null Borel set. The complement of a Haar-null set is called a prevalent set.

As it can be seen in the denition of prevalence, the main issue in proofs is to construct transverse measures to a Borel Haar-null set. We remind here two classical ways to construct such a measure. Remark 1 1. A nite dimensional subspace of V , P , is called a probe for a prevalent set T ⊂ V if the Lebesgue measure on P is transverse to the complement of T . This measure is not a compactly supported probability measure. However one immediately checks that this notion can be dened the same way but stated with the Lebesgue measure dened on the unit ball of P . Note that in this case, the support of the measure is included in the unit ball of a nite dimensional subspace. The compactness assumption is therefore fullled.

If

V is a function space, a probability measure on V can be dened by a random process X t whose sample paths are almost surely in V . The condition µ(f + A) = 0 means that the event X t -f ∈ A has probability zero. Therefore, a way to check that a property P holds only on a Haarnull set is to exhibit a random process X t whose sample paths are in V and is such that ∀f ∈ V, a.s. X t + f does not satisfy P.

The fact that a set is Haar-null is independent of the chosen transverse measure, as soon as the translation invariance condition is satised. However imsart-generic ver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010 this property cannot provide the exact characterization of null sets.

The following results enumerate important properties of prevalence and show that these notions supply a natural generalization of zero measure and almost every in nite-dimensional spaces, see [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF][START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF]. Proposition 1

• If S is Haar-null, then ∀x ∈ V , x + S is Haar-null. • If dim(V ) < ∞, S
is Haar-null if and only if meas(S) = 0 (where meas denotes the Lebesgue measure). • Prevalent sets are dense.

• The intersection of a countable collection of prevalent sets is prevalent.

• If dim(V ) = ∞, compact subsets of V are Haar-null.
As we can see from the properties of prevalent sets, this theory provides a natural generalization of the nite dimensional notion of almost every. Since its denition, it has been mainly used in the context of dierential geometry [START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF] and regularity type properties [START_REF] Hunt | The prevalence of continuous nowhere dierentiable function[END_REF]. A classical example is given in [START_REF] Hunt | The prevalence of continuous nowhere dierentiable function[END_REF], where it is proved that the set of nowhere dierentiable functions is prevalent in the space of continuous functions.Surprisingly even in the nite dimensional case, this approach has no longer been implemented. The only actual result involving genericity results in statistics is due to Doob, see [START_REF] Van Der | Asymptotic statistics[END_REF] in the context of Bayesian estimation in parametric statistics.

Using this theory, a natural way to exhibit a test of performance for an estimating procedure is to look at the risk reached on almost every function of a function space, in the sense of prevalence.

As the minimax theory has been widely studied, a large class of results exist in dierent function spaces and with dierent risk functions. Historically, the rst one is the result of Pinsker [START_REF] Pinsker | Optimal ltration of square-integrable signals in Gaussian noise[END_REF] which shows that suitable linear estimators reach the optimal L 2 risk rate on L 2 Sobolev classes. If the risk function is given by an L p norm, [START_REF] Ibragimov | Has'minski , Statistical estimation[END_REF][START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF] show that, under certain conditions, kernel estimators are optimal in the sense of minimax theory in the same function spaces. More recent results, such as those of [START_REF] Nemirovski | The rate of convergence of nonparametric estimates of maximum likelihood type[END_REF], stated that linear estimators cannot reach the optimal bound in nonlinear regression, as soon as we take the L p risk and Sobolev classes.

In this paper we focus on Besov spaces and take the general L p norm as a risk function. The interest of studying Besov spaces is motivated by its practical use in approximation theory and its theoretical simplicity in terms of wavelet expansions. Furthermore, in the theoretical point of view, they also generalize some classical function space, such as Hölder and L 2 Sobolev spaces.

In those Besov spaces we study performances in terms of generic approximation of two classical estimation procedures in both white noise model and density estimation problem. With these two techniques, we will see that minimax and generic results coincide.

Models and estimation procedures

In the following, we consider two classical estimation problems. The rst one is given by the Gaussian white noise model. Following the denition of [START_REF] Ibragimov | Has'minski , Statistical estimation[END_REF], we suppose that we observe Y t such that

dY t = f (t)dt + 1 √ n dW t , t ∈ (0, 1) d , (2) 
where dW t stands for the d-dimensional Wiener measure, n is known and f is the unknown function to be estimated.

The second theoretical framework treated in this paper is the problem of density estimation. Assume that we have access to a sequence X 1 , . . . , X n of independent and identically distributed random variables of unknown density f on R. The problem here is to estimate f thanks to the observed sequence.

The estimation procedures that we deal with are dened thanks to a base decomposition of the function to be estimated. To dene them, we rst introduce the wavelet bases. In our framework, those bases allow both to dene function spaces and estimation procedures. It provide thus a key tool to introduce our results. The wavelet transform is a powerful approximation tool widely used in statistics and signal processing, thanks to its properties of localization in time and frequency domains. Indeed, this property allows to reconstruct a signal with few coecients. Its use in statistical communities and the development of wavelet based estimators are thus natural, as introduced in [START_REF] Mallat | A wavelet tour of signal processing[END_REF]. To dene wavelets, we refer to [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF] where it is proved that for r large enough there exists 2 d -1 functions ψ (i) with compact support and which are r regular. Furthermore each ψ (i) has r vanishing moments and the set of functions {ψ

(i) j,k (x) = 2 dj/2 ψ (i) (2 j x -k), j ∈ Z, k ∈ Z d , i ∈ {1, ..., 2 d -1}} forms an orthonormal basis of L 2 (R d ).
It is also noticed in [START_REF] Meyer | Ondelettes et opérateurs[END_REF] that wavelets provide unconditional bases of L p (R d ) as far as 1 < p < ∞. Taking periodized wavelets allow to restraint our studies to [0, 1] d .

Thus any function f ∈ L p can be written as

f (x) = i,j,k c (i) j,k ψ (i) j,k (x)
where

c (i) j,k = 2 jd/2 f (x)ψ (i) (2 j x -k)dx.
In the following we stand in isotropic cases. Thus the direction of the wavelets is not involved and for the sake of simplicity we omit the directional index i.

As the collection of {2 dj/2 ψ(2 j x -k), j ∈ N, k ∈ {0, . . . , 2 j -1} d } form an orthonormal basis of L 2 ([0, 1] d ), observing the whole trajectory of Y t in (2) is equivalent to treat the following problem, in which is observed (y j,k ) j∈N,k∈{0,...,2 j -1} d ∈ 2 (N d+1 ) such that ∀j, k, y j,k = θ j,k + 1 √ n v j,k , (3) 
where y j,k = ψ j,k dY (x), v i are i.i.d. Gaussian random variables and (θ j,k ) j,k is the sequence to be estimated.

In terms of density estimation, one can also notice that the density function to be estimated f can be represented in terms of wavelet decomposition f = β j,k ψ j,k . In this case, the purpose is to nd a sequence ( βj,k ) j,k approximating (β j,k ) j,k . Furthermore wavelets are useful as they provide a simple characterization of Besov spaces.

Homogeneous Besov spaces are characterized, for p, q > 0 and s ∈ R, by

f ∈ B s,q p ([0, 1] d ) ⇐⇒ ∃C > 0 f B s,q p := j≥0   k∈{0,...,2 j -1} d |c j,k | p 2 (sp-d+ pd 2 )j   q/p ≤ C.
(4) This characterization is independent from the chosen wavelet as soon as ψ has r vanishing moments, with r ≥ s.

We also denote by B s,q p,c (R d ), the closed ball in B s,q p (R d ) of radius c > 0.

In our framework, the minimax paradigm induces that one supposes a function f belongs to B s,q p (R d ). Then one denes a risk or loss function thanks to a pseudo-distance on B s,q p (R d ), denoted R(., .). Given a radius c > 0 and an estimator f n of f which is a measurable function of the observations. In this case, the maximal risk of fn on B s,q p,c (R d ) is dened by: R n ( fn ) = sup

f ∈B s,q p,c (R d ) E(R( fn , f )). ( 5 
)
If T n denotes the set of all measurable estimation procedures dened thanks to a given model the minimax risk on B s,q p,c (R d ) is then given by :

R n (B s,q p,c (R d )) = inf fn∈Tn sup f ∈Θ C E(R( fn , f )).
This minimax risk gives an optimal bound over the function class B s,q p,c (R d ). It is thus natural for estimation procedures to attempt to reach this risk, at least asymptotically when n tends to innity.

In terms of wavelets approximation, or in any base, the most natural and classical way to dene estimators is given by linear estimation.

Denition 2 Suppose that we stand in the model [START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF]. Linear estimators f L n are constructed by

f L n (x) = j≥0 k∈{0,...,2 j -1} d θ(n) j,k ψ j,k (x), (6) 
where

θ(n) j,k = λ (n) j,k y j,k .
Parameters (λ (n) j,k ) j,k can be seen as smoothing weights lying in [0, 1]. Those weights can be of dierent natures. Classical ones are: imsart-generic ver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010

• Projection weights: λ (n) j,k = 1 {j<Tn} . • Pinsker weights: λ (n) j,k = (1 -( j Tn ) α ) + ,
where (T n ) n is an increasing sequence depending on n. Denition 3 Suppose that we stand in the model of density estimation. In this case, a linear estimator of the density f is constructed by taking

∀j ≥ 0 ∀k ∈ {0, . . . , 2 j -1} d βj,k = 1 n n i=1 ψ j,k (X i ). (7) 
And

f L n (x) = j≥0 k∈{0,...,2 j -1} d λ (n) j,k βj,k ψ j,k (x).
Where (λ

(n) j,k ) j,k also are smoothing weights in [0, 1]
. The localization property of wavelet expansions is such that a given signal may have a sparse representation in those bases. Thus a natural estimation procedure in the white noise model, dened in [START_REF] Donoho | Minimax risk over l p -balls for l q -error[END_REF] and ever since widely used in the signal community is to take away small wavelet coecients. This is the principle of wavelet thresholding.

Denition 4 Suppose that we stand in the case of white noise model [START_REF] Birgé | Approximation dans les espaces métriques et théorie de l'estimation[END_REF]. The wavelet thresholding procedure is then dened by

f T n (x) = j(n) j=0 k∈{0,...,2 j -1} d β T j,k ψ j,k (x). (8) 
Here the weights are given by:

β T j,k = y j,k 1 {|y j,k |≥κtn} , (9) 
in the case of hard thresholding, or

β T j,k = sign(y j,k )(|y j,k | -κt n ) + , ( 10 
)
for the soft thresholding. Furthermore,

t n = log n n ,
imsart-generic ver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010 stands for the universal threshold and j(n) is such that

2 -j(n) ≤ log n n < 2 -j(n)+1 ,
κ being a constant large enough.

Once again, in the model of density estimation wavelet thresholding is obtained thanks to a slight modication of the previous denition.

Denition 5 Suppose that we stand in the problem of density estimation, and let βj,k be the coecients dened in [START_REF] Donoho | Minimax risk over l p -balls for l q -error[END_REF]. Thus the density estimator by wavelet thresholding is given by

f T n (x) = j(n) j=0 k βj,k 1 {| βj,k |>κtn} ψ j,k (x).
Where

t n = log n n ,
is the universal threshold, κ is a constant large enough and j(n) is such that

2 -j(n) ≤ log n n < 2 -j(n)+1 .

Statement of the main result

Let us recall minimax results in Besov spaces. Taking the L p norm, where 1 ≤ p < ∞, as loss function, we know from [START_REF] Donoho | Universal near minimaxity of wavelet shrinkage[END_REF], for our two estimation problems, that the minimax lower bound in closed balls in Besov spaces in given by the following proposition.

Proposition 2 Let 1 ≤ r ≤ ∞, 1 ≤ p < ∞ and s > d r . Then, there exists

C > 0 such that R n (B s,∞ r,c ) = inf Tn sup f ∈B s,∞ r,c E T n -f p L p ≥ Cr n (s, r, p)
where

r n (s, r, p) =      n -ps 2s+d if r > dp 2s+d , n log n - p(s-d r + d p ) 2(s-d r )+d
else.
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Let us now check what is known concerning estimation procedures that we deal with. Although it is proved in [START_REF] Donoho | Universal near minimaxity of wavelet shrinkage[END_REF] that thresholding procedures reach asymptotically the optimal rate up to a logarithmic correction, it is not always the case for linear procedures. As it can be seen in [START_REF]Minimax estimation via wavelet shrinkage[END_REF], with L 2 risk, linear estimators do not attain the minimax rate when studied functions have a sparse representation in a given base. This result is generalized by the following proposition from [START_REF]Minimax estimation via wavelet shrinkage[END_REF] which gives the optimal rate that can be reached in this case. We see in the following theorem that Proposition 3 remains true if we replace the risk maximum by the risk reached on almost every function. We also prove that in the same context Proposition 2 is satised by thresholding algorithms up to a logarithmic term. We say in the following that a n ≈ b n if log an log bn → 1.

Proposition 3 Let 1 ≤ r ≤ ∞, 1 ≤ p < ∞ and s > d r . There exist C > 0 such that R n lin (B s,∞ r,c ) = inf Tnlinear sup f ∈B s,∞ r,c E Tn -f p L p ≥ C rn (s,
Theorem 1 Let 1 ≤ r ≤ ∞, 1 ≤ p < ∞ and s > d r .
Then, in the context of [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF] or for the problem of density estimation:

• For almost every function

f in B s,∞ r ([0, 1] d ), inf f L n linear E f L n -f p L p ≈ n -αp , (11) 
where

α =    s 2s+d if r ≥ p, s-d r + d p 2(s-d r + d p )+d else. ( 12 
)
• For almost every function in B s,∞ r ([0, 1] d ), and for thresholding estima- [START_REF] Ibragimov | Has'minski , Statistical estimation[END_REF] imsart-generic ver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010 where

tor f T n E f T n -f p L p ≈ n log n -αp
α =    s 2s+d if r > pd 2s+d (s-d r + d p ) 2(s-d r )+d else. ( 14 
)
As mentionned earlier, this generic result, such as Doob's theorem does not provide the exact behaviour of a given function. However, it introduces a new vision of a generic behavior in Besov spaces and of the minimax theory as in these particular cases, generic and minimax results coincide.

As we will see in the following section, the proofs of these results are quite simple. They are mainly based on the maxisets theory. Once known the maxiset associated to an estimation procedure, one study the genericity of such a set in the involved function space. The advantage is that our theorem can be easily extended to another kind of estimation procedures, thanks for instance to the results of [START_REF] Autin | Point de vue maxiset en estimation non paramétrique[END_REF][START_REF]Nonlinear estimation over weak Besov spaces and minimax Bayes method[END_REF] or to other spaces, such as Sobolev spaces.

Proof of Theorem 1

For the sake of completeness, let us recall some basic facts upon the maxisets theory.

Maxiset theory

The maxiset theory introduced recently in [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF][START_REF]Thresholding algorithms, maxisets and well-concentrated bases[END_REF][START_REF]Minimax or maxisets?[END_REF] is an alternative way to compare dierent estimation procedures. In our case, it provides a crucial key to prove Theorem 1. The main idea is to look for the maximal space on which an estimator will reach a given rate instead of searching an optimal rate for a given space. Denition 6 Let ρ be a risk function and (v n ) n∈N a sequence such that v n → 0. For fn an estimator, the maximal space associated to ρ, v n and a constant T is given by

M S( fn , ρ, v n , T ) = f ; sup n v -1 n E(ρ( fn , f )) < T .
Several improvements were made in nonparametric theory thanks to this idea. For instance, it is shown in [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF] that, for the density estimation model the thresholding procedure is more ecient than the linear procedure, whose imsart-generic ver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010 maxiset is given in [START_REF] Kerkyacharian | Density estimation by kernel and wavelets methods: optimality of Besov spaces[END_REF]. And in the heteroscedastic white noise model, [START_REF] Rivoirard | Maxisets for linear procedures[END_REF][START_REF]Nonlinear estimation over weak Besov spaces and minimax Bayes method[END_REF] shown that thresholding procedures are better than linear estimators and as good as Bayesian procedures. In the case of white noise model, we recall the following result which is a particular case of [START_REF] Rivoirard | Maxisets for linear procedures[END_REF], see [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF] for the equivalent result in terms of density estimation.

Proposition 4 Let

1 ≤ p < ∞, 1 ≤ r < ∞, s > d
r and α ∈ (0, 1). Let f L n be the linear estimator given in Denition 2. For any m > 0 suppose we are given (λ

(n) j,k (m)) j,k weights in [0, 1] such that • There exists c < 1 such that for all m n > 0 and j ≥ m, λ (n) j,k (m) ≤ c.
• There exists c s ∈ R such that for any m > 1

1≤j≤mn k∈{0,...,2 j -1} d (λ (n) j-1,k (m) -λ (n) j,k (m))(1 -λ (n) j,k (m)) p-1 j m -ps ≤ c s .
Then for any n > 0, we suppose that we are given m n > 0 such that

• There exists n such that m n ≤ 1, • n → m n is continuous, • m n → ∞ as n → ∞
We suppose that there exists a positive constant T 1 such that for any n ∈ N,

m ps n n p/2 j,k |ψ j,k | p ≤ T 1 . ( 15 
)
Then for every f , there exists a positive constant C such that for any n ∈ N,

E f L n -f p p ≤ cm -sp n if and only if f ∈ B s,∞ p ([0, 1] d ).
Before stating the result associated to thresholding algorithms, we dene new function spaces closely related to approximation theory. Those spaces, weak Besov spaces, dened in [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF] are subsets of Lorentz spaces, and constitute a larger class than Besov spaces. Denition 7 Let 0 < r < p < ∞. We say that a function f = j,k c j,k ψ j,k belongs to W (r, p) if and only if

sup λ>0 λ r 2 j( dp 2 -d) k 1 {|c j,k |>λ} < ∞. ( 16 
)
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A fast calculation shows that the space W (r, p) contains the homogeneous Besov spaces B β,∞ r as soon as β ≥ d 2 ( p r -1).

The maxiset associated with the thresholding estimation procedure is given by a weak Besov space as proved in [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF], and developed further in the heteroscedastic regression case in [START_REF]Thresholding algorithms, maxisets and well-concentrated bases[END_REF].

Proposition 5 Let 1 ≤ p < ∞, 1 ≤ r < ∞, s > d
r and α ∈ (0, 1).Let f T n be the estimator dened by ( 4) and [START_REF] Fraysse | Generic validity of the multifractal formalism[END_REF]. Then for every f we have the following equivalence:

∃K > 0 such that ∀n > 0, E f T n -f p p ≤ K n log(n) -1 -αp (17) 
if and only

if f ∈ B α/2,∞ p ∩ W ((1 -α)p, p).
Furthermore, another important key result involving Besov spaces is the following proposition from [START_REF] Fraysse | Generic validity of the multifractal formalism[END_REF].

Proposition 6 Let us dene the scaling function of a distribution f by

∀p > 0 s f (p) = sup{s : f ∈ B s,∞ p }. (18) 
Let s 0 and p 0 be xed such that s 0 -d p 0 > 0. Outside a Haar-null set in

B s 0 ,∞ p 0 (R d )
, we have:

s f (p) = s 0 if p ≤ p 0 d p + s 0 -d p 0 if p ≥ p 0 . ( 19 
)
One can check that a lower bound of this scaling function is given by Besov embeddings and interpolation theory, which can be found in [START_REF] Stein | Singular integrals and dierentiability properties of functions[END_REF]. This result states that one cannot have a better regularity than the one given by those embeddings. In our case, we will exploit this result by comparing those critical spaces with the maxiset associated to each procedure. In this section, we prove the rst part of Theorem 1. We dene the linear estimator as in Denitions 2 and 3. For the sake of simplicity, we assume here that we take projections weights in these two denitions. Let θ > 0 be given. As we are looking for the polynomial behavior of linear estimators, we take T n = m n and m n = n θ . Dene j 1 (n) be such that 2 j 1 (n) ≤ m n < 2 j 1 (n)+1 . From [START_REF] Donoho | Minimax risk over l p -balls for l q -error[END_REF] we know that there exists c > 0 such that for any n ∈ N, and for any

f ∈ B s,∞ r ([0, 1] d ), E f L n -f p p ≤ c 2 -j 1 (n)sp + 2 j 1 (n) n p/2 . ( 20 
)
Furthermore, the inmum in ( 20) is obtained when the two terms are balanced, that is for θ 0 = 1 2s +d . And we obtain

inf f L n linear E f L n -f p p ≤ cn -α(s )p . ( 21 
)
Let us now check the lower bound. Choose m n = n θ , with θ > 0 given and let f L,θ n be the corresponding estimator. In a rst time, we have to show that for every θ > 0 and ε > 0 xed, the set satised for θ ≤ 1 2s +d . We have thus two cases, if θ > 1 2s +d then

M (θ, ε) := f ∈ B s,∞ r ([0, 1] d ); ∃c > 0 ∀n ∈ N, E( f L,θ n -f p L p ) < cn
E( f L n -f p p ) = E     j≤j 1 (n) k ε j,k √ n ψ j,k (x) + j>j 1 (n) k c j,k ψ j,k   p   ≥ cE   j≤j 1 (n) k ( ε j,k √ n ) p ψ j,k (x) p + j>j 1 (n) k | p c j,k | p ψ p j,k   ≥ c j≤j 1 (n) k E(( ε j,k √ n ) p )2 dj( p 2 -1) ≥ c j≤j 1 (n) k (E(( ε j,k √ n ) 2 )) p/2 2 dj( p 2 -1)
≥ cn dpθ/2-p/2 > n -α(s ) .

Where the rst inequality comes from the superconcentration property of wavelets whereas the last one is the Hölder inequality [START_REF]Thresholding algorithms, maxisets and well-concentrated bases[END_REF]. Thus for θ > 1 2s +d and for any ε > 0, the set M (θ, ε) is an empty set.

Let us treat the case θ < 1 2s +d . From Proposition 4, M (θ, ε) is then included in B s +ε,∞ p ([0, 1] d ). And from Proposition 6, we know that this set is a Haar null Borel set of B s,∞ r ([0, 1] d ).

We thus obtain that ∀θ > 0 and ∀ε > 0, the set

f ∈ B s,∞ r ([0, 1] d ); ∃c > 0 ∀n ∈ N, E( f L,θ n -f p L p ) < cn -(α(s )+ε)p is a Haar null set.
This set can also be written,

f ∈ B s,∞ r ([0, 1] d ); lim sup n→∞ log(E( f L,θ n -f p L p )) -p log n > α(s ) + ε .
Taking the countable union of those sets over a dense sequence θ n and a decreasing sequence ε n → 0, and the complementary we obtain that for almost every function in B s,∞ r

([0, 1] d ), lim inf n→∞ log(E( f L n -f p L p )) -p log n ≤ α(s ).
Which induces the expected result. In this part, we take the estimation procedures given in Denition 4 and in Denition 5.

Let us turn out our attention to the minimax rate of convergence for this estimator. For this purpose, we write in the following

α(s) =    2s 2s+d if r > pd 2s+d 2(s-d r + d p ) 2(s-d r )+d else. ( 22 
)
The proof of the second point of Theorem 1 follows the same scheme as the previous one. In this case, the upper bound is given in [START_REF] Donoho | Universal near minimaxity of wavelet shrinkage[END_REF]. Thus we know that for every function in B s,∞ r ([0, 1] d ), and for all 1 < p < ∞,

E( f T n -f p L p ) < c n log n -α(s)p .
In order to prove the lower bound, we use Proposition 5.

For every values of α, let 0 < ε < 1 -α be xed, and M (ε) be the set dened by

M (ε) = f ∈ B s,∞ r ([0, 1] d ); ∃c > 0 ∀n ∈ N, E( f T n -f p L p ) < c n log n -( α(s)+ε)p . Thanks to Proposition 5, this set M (ε) is embedded in B α+ε 2 ,∞ p ∩ W ((1 - α -ε)p, p).
The end of the proof is based on the following proposition.

Proposition 7 Let f be a given distribution. Let us dene the weak scaling function of a distribution f by

∀p > 0 sf (p) = sup{α : f ∈ W ((1 -α)p, p)}. ( 23 
)
Let s and r be xed such that s -

d r > 0. Outside a Haar-null set in B s,∞ r (R d ),
we have: For this purpose, we dene our transverse measure as the probe generated by the function g dened by its wavelet coecients:

sf (p) =    2s 2s+d if r > pd 2s+d 2(s-d r + d p ) 2(s-d r )+d else. ( 24 
d j,k = 2 -(s-d r + d 2 )j 2 -d r J j a
where a = 1 + 3 r and 0 ≤ J ≤ j and K ∈ {0, . . . , 2 J -1} d are such that

K 2 J = k 2 j
is an irreducible fraction. As it can be seen in Proposition 2 of [START_REF] Jaard | On the Frisch-Parisi conjecture[END_REF], this function g belongs to B s,∞ r

([0, 1] d ). Let f ∈ B s,∞ r ([0, 1] d
) be an arbitrary function and consider the ane subset

M = {α ∈ R f + αg ∈ W ((1 -α -ε)p, p)}.
Suppose that there exist two points α 1 and α 2 in M . Thus f +α 1 g-(f +α 2 g) belongs to W ((1 -α -ε)p, p), and there exists c > 0 such that

f + α 1 g -(f + α 2 g) W ((1-α-ε)p,p) = (α 1 -α 2 )g W ((1-α-ε)p,p) ≤ c. (25)
As a fast calculation shows that ∀α > 0, αg W (r,p) = α r g W (r,p)

we just have now to determine g W (r,p) . Thanks to equation [START_REF]Thresholding algorithms, maxisets and well-concentrated bases[END_REF], this is equivalent to determine for every t > 0 the value of

2 -(1-α-ε)pt j≥0 2 j( dp 2 -d) k 1 {d j,k >2 -t }
But by denition of g, we have,

2 -(s-d r + d 2 )j 2 -d r J j a > 2 -t ⇒ (s - d r + d 2 )j + d r J ≤ t,
which implies that

J ≤ r d t -(s - d r + d 2 ) r d j.
Note that the condition J ≥ 0 implies also that j is limited by

j(s - d r + d 2 ) ≤ t.
We denote by t = Merging this result with [START_REF] Van Der | Asymptotic statistics[END_REF] together with (26), we obtain that, if there exist α 1 and α 2 in M then they satisfy that for every t ≥ 0 and 0 ≤ j ≤ t, And once again,

|α 1 -α 2 | (1-α-ε)p ≤ inf   c2 (1-α-ε)pt sup 0≤j≤ t 2 dpj 2 |1 -2 -jd | , c2 (1-α-ε)pt
∀t > 0 |α 1 -α 2 | (1-α-ε)p ≤ c2 -εpt . ( 29 
)
As 1 -α -ε > 0, it can be deduced from equations ( 28) and (29) that for t large enough, M is of vanishing Lebesgue measure and W ((1 -α -ε)p, p) is an Haar null set in B s,∞ r ([0, 1] d ).

2

Thanks to invariance under inclusion, we have obtained that for every ε > 0, the set of functions f in B The end of the proof is similar to part 4.2.
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 2 Generic risk for linear estimators Let 1 ≤ p < ∞, 1 ≤ r < ∞ and s > d r be xed. Denote s = sver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010 and α(s ) = s 2s + d .

sup t<j≤ t 2 |α 1 -α 2 | 2 td

 2122 j( dp 2 -d) |2 rt 2 -jr(s+ d (1-α-ε)p ≤ c2 -εpt . (28)• When r ≤ dp 2s+d , and as s > d r we have necessarily p > 2 and we obtain ver. 2010/09/07 file: minimax_EJS.tex date: November 9, 2010In this case,sup t<j≤ t 2 j( dp 2 -d) |2 rt 2 -jr(s+ d 2 -d r ) -1| ∼

  s,∞ r ([0, 1] d ) such that ∃c > 0 ∀n ∈ N, E( f T n -f p L p ) < c n log n -(α(s)+ε)p is a Haar null set.
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