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1. Introduction

Since its introduction in the seventeen's, nonparametric estimation has taken
a large place in the work of mathematical or signal processing communities.
Often a signal has too many components, or stands in a special space, and
classical estimation studies cannot be carry out. Therefore new estimation
procedures, based on approximation of functions have been introduced. But
which kind of estimator is the most appropriate in these cases?

This question raised a lot of de�nitions and discussions in the statisti-
cal community. How can two estimators be compared when they point out
in�nite dimensional objects and what kind of optimal behaviour can be ex-
pected. One of the most common way to test the performance of a procedure
is to compare its convergence rate with an optimal one given by minimax
theory. Nonetheless, this technique comes from a particular de�nition which
can be subject to controversy. The main drawback is the pessimist point of
view of this theory, which looks for the worst rate of estimation obtained in a
given space. Indeed, in the minimax theory we are looking to the estimation
procedure which yields the minimum of a maximum risk, in a sense to be
de�ned, over a function space. But the worst case could be a misleading one
and a method can be rejected although it is a good one for a lot of functions.
The purpose of this paper is to introduce a new test of the risk, obtained
thanks to genericity results. Thanks to this new kind of test we show that in
fact minimax risk corresponds to a generic one.

Let us �rst introduce what is meant by almost every function. In a �nite
dimensional space, we say that a property holds almost everywhere if the
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set of points where it is not true is of vanishing Lebesgue measure. The
Lebesgue measure has here a preponderant role, as it is the only σ-�nite
and translation invariant measure. Unfortunately, no measure share those
properties in in�nite dimensional Banach spaces. A way to recover a natural
"almost every" notion in in�nite vector spaces is thus de�ned as follows by
J. Christensen in 1972 see [2, 4, 12].

De�nition 1 Let V be a complete metric vector space. A Borel set A ⊂ V is
Haar-null (or shy) if there exists a compactly supported probability measure
µ such that

∀x ∈ V, µ(x+ A) = 0. (1)

If this property holds, the measure µ is said to be transverse to A.
A subset of V is called Haar-null if it is contained in a Haar-null Borel

set. The complement of a Haar-null set is called a prevalent set.

As it can be seen in the de�nition of prevalence, the main issue in proofs
is to construct transverse measures to a Borel Haar-null set. We remind here
two classical ways to construct such a measure.

Remark 1 1. A �nite dimensional subspace of V , P , is called a probe for
a prevalent set T ⊂ V if the Lebesgue measure on P is transverse to
the complement of T .
This measure is not a compactly supported probability measure. How-
ever one immediately checks that this notion can be de�ned the same
way but stated with the Lebesgue measure de�ned on the unit ball of
P . Note that in this case, the support of the measure is included in the
unit ball of a �nite dimensional subspace. The compactness assumption
is therefore ful�lled.

2. If V is a function space, a probability measure on V can be de�ned by
a random process Xt whose sample paths are almost surely in V . The
condition µ(f+A) = 0 means that the event Xt−f ∈ A has probability
zero. Therefore, a way to check that a property P holds only on a Haar-
null set is to exhibit a random process Xt whose sample paths are in V
and is such that

∀f ∈ V, a.s. Xt + f does not satisfy P .

The fact that a set is Haar-null is independent of the chosen transverse
measure, as soon as the translation invariance condition is satis�ed. However
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this property cannot provide the exact characterization of null sets.

The following results enumerate important properties of prevalence and
show that these notions supply a natural generalization of �zero measure�
and �almost every� in �nite-dimensional spaces, see [2, 4, 12].

Proposition 1 • If S is Haar-null, then ∀x ∈ V , x+ S is Haar-null.
• If dim(V ) <∞, S is Haar-null if and only if meas(S) = 0 (where meas
denotes the Lebesgue measure).

• Prevalent sets are dense.
• The intersection of a countable collection of prevalent sets is prevalent.
• If dim(V ) = ∞, compact subsets of V are Haar-null.

As we can see from the properties of prevalent sets, this theory provides a
natural generalization of the �nite dimensional notion of almost every. Since
its de�nition, it has been mainly used in the context of di�erential geome-
try [12] and regularity type properties [11]. A classical example is given in
[11], where it is proved that the set of nowhere di�erentiable functions is
prevalent in the space of continuous functions.Surprisingly even in the �nite
dimensional case, this approach has no longer been implemented. The only
actual result involving genericity results in statistics is due to Doob, see [25]
in the context of Bayesian estimation in parametric statistics.

Using this theory, a natural way to exhibit a test of performance for an
estimating procedure is to look at the risk reached on almost every function
of a function space, in the sense of prevalence.

As the minimax theory has been widely studied, a large class of results ex-
ist in di�erent function spaces and with di�erent risk functions. Historically,
the �rst one is the result of Pinsker [21] which shows that suitable linear
estimators reach the optimal L2 risk rate on L2 Sobolev classes. If the risk
function is given by an Lp norm, [13, 3] show that, under certain conditions,
kernel estimators are optimal in the sense of minimax theory in the same
function spaces. More recent results, such as those of [20], stated that linear
estimators cannot reach the optimal bound in nonlinear regression, as soon
as we take the Lp risk and Sobolev classes.

In this paper we focus on Besov spaces and take the general Lp norm as
a risk function. The interest of studying Besov spaces is motivated by its
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practical use in approximation theory and its theoretical simplicity in terms
of wavelet expansions. Furthermore, in the theoretical point of view, they
also generalize some classical function space, such as Hölder and L2 Sobolev
spaces.

In those Besov spaces we study performances in terms of generic approx-
imation of two classical estimation procedures in both white noise model
and density estimation problem. With these two techniques, we will see that
minimax and generic results coincide.

2. Models and estimation procedures

In the following, we consider two classical estimation problems. The �rst one
is given by the Gaussian white noise model. Following the de�nition of [13],
we suppose that we observe Yt such that

dYt = f(t)dt+
1√
n
dWt, t ∈ (0, 1)d, (2)

where dWt stands for the d-dimensional Wiener measure, n is known and
f is the unknown function to be estimated.

The second theoretical framework treated in this paper is the problem of
density estimation. Assume that we have access to a sequence X1, . . . , Xn of
independent and identically distributed random variables of unknown density
f on R. The problem here is to estimate f thanks to the observed sequence.

The estimation procedures that we deal with are de�ned thanks to a base
decomposition of the function to be estimated. To de�ne them, we �rst intro-
duce the wavelet bases. In our framework, those bases allow both to de�ne
function spaces and estimation procedures. It provide thus a key tool to in-
troduce our results. The wavelet transform is a powerful approximation tool
widely used in statistics and signal processing, thanks to its properties of
localization in time and frequency domains. Indeed, this property allows to
reconstruct a signal with few coe�cients. Its use in statistical communities
and the development of wavelet based estimators are thus natural, as intro-
duced in [18].
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To de�ne wavelets, we refer to [6] where it is proved that for r large enough
there exists 2d−1 functions ψ(i) with compact support and which are r regu-
lar. Furthermore each ψ(i) has r vanishing moments and the set of functions
{ψ(i)

j,k(x) = 2dj/2ψ(i)(2jx − k), j ∈ Z, k ∈ Zd, i ∈ {1, ..., 2d − 1}} forms

an orthonormal basis of L2(Rd). It is also noticed in [19] that wavelets pro-
vide unconditional bases of Lp(Rd) as far as 1 < p < ∞. Taking periodized
wavelets allow to restraint our studies to [0, 1]d.

Thus any function f ∈ Lp can be written as

f(x) =
∑
i,j,k

c
(i)
j,kψ

(i)
j,k(x)

where

c
(i)
j,k = 2jd/2

∫
f(x)ψ(i)(2jx− k)dx.

In the following we stand in isotropic cases. Thus the direction of the wavelets
is not involved and for the sake of simplicity we omit the directional index i.

As the collection of {2dj/2ψ(2jx − k), j ∈ N, k ∈ {0, . . . , 2j − 1}d}
form an orthonormal basis of L2([0, 1]d), observing the whole trajectory of
Yt in (2) is equivalent to treat the following problem, in which is observed
(yj,k)j∈N,k∈{0,...,2j−1}d ∈ `2(Nd+1) such that ∀j, k,

yj,k = θj,k +
1√
n
vj,k, (3)

where yj,k =
∫
ψj,kdY (x), vi are i.i.d. Gaussian random variables and

(θj,k)j,k is the sequence to be estimated.

In terms of density estimation, one can also notice that the density func-
tion to be estimated f can be represented in terms of wavelet decomposition
f =

∑
βj,kψj,k. In this case, the purpose is to �nd a sequence (β̂j,k)j,k ap-

proximating (βj,k)j,k.

Furthermore wavelets are useful as they provide a simple characterization
of Besov spaces.
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Homogeneous Besov spaces are characterized, for p, q > 0 and s ∈ R, by

f ∈ Bs,q
p ([0, 1]d) ⇐⇒ ∃C > 0 ‖f‖Bs,q

p
:=
∑
j≥0

 ∑
k∈{0,...,2j−1}d

|cj,k|p2(sp−d+ pd
2
)j

q/p

≤ C.

(4)
This characterization is independent from the chosen wavelet as soon as ψ

has r vanishing moments, with r ≥ s.
We also denote by Bs,q

p,c(Rd), the closed ball in Bs,q
p (Rd) of radius c > 0.

In our framework, the minimax paradigm induces that one supposes a
function f belongs to Bs,q

p (Rd). Then one de�nes a risk or loss function thanks
to a pseudo-distance on Bs,q

p (Rd), denoted R(., .). Given a radius c > 0 and

an estimator f̂n of f which is a measurable function of the observations. In
this case, the maximal risk of f̂n on Bs,q

p,c(Rd) is de�ned by:

Rn(f̂n) = sup
f∈Bs,q

p,c(Rd)

E(R(f̂n, f)). (5)

If Tn denotes the set of all measurable estimation procedures de�ned thanks
to a given model the minimax risk on Bs,q

p,c(Rd) is then given by :

Rn(Bs,q
p,c(Rd)) = inf

f̂n∈Tn
sup
f∈ΘC

E(R(f̂n, f)).

This minimax risk gives an optimal bound over the function class Bs,q
p,c(Rd).

It is thus natural for estimation procedures to attempt to reach this risk, at
least asymptotically when n tends to in�nity.

In terms of wavelets approximation, or in any base, the most natural and
classical way to de�ne estimators is given by linear estimation.

De�nition 2 Suppose that we stand in the model (3). Linear estimators f̂L
n

are constructed by

f̂L
n (x) =

∑
j≥0

∑
k∈{0,...,2j−1}d

θ̂
(n)
j,k ψj,k(x), (6)

where
θ̂
(n)
j,k = λ

(n)
j,k yj,k.

Parameters (λ
(n)
j,k )j,k can be seen as smoothing weights lying in [0, 1]. Those

weights can be of di�erent natures. Classical ones are:
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• Projection weights: λ
(n)
j,k = 1{j<Tn}.

• Pinsker weights: λ
(n)
j,k = (1− ( j

Tn
)α)+,

where (Tn)n is an increasing sequence depending on n.

De�nition 3 Suppose that we stand in the model of density estimation. In
this case, a linear estimator of the density f is constructed by taking

∀j ≥ 0 ∀k ∈ {0, . . . , 2j − 1}d β̂j,k =
1

n

n∑
i=1

ψj,k(Xi). (7)

And
f̂L
n (x) =

∑
j≥0

∑
k∈{0,...,2j−1}d

λ
(n)
j,k β̂j,kψj,k(x).

Where (λ
(n)
j,k )j,k also are smoothing weights in [0, 1].

The localization property of wavelet expansions is such that a given signal
may have a sparse representation in those bases. Thus a natural estimation
procedure in the white noise model, de�ned in [7] and ever since widely used
in the signal community is to take away small wavelet coe�cients. This is
the principle of wavelet thresholding.

De�nition 4 Suppose that we stand in the case of white noise model (3).
The wavelet thresholding procedure is then de�ned by

f̂T
n (x) =

j(n)∑
j=0

∑
k∈{0,...,2j−1}d

βT
j,kψj,k(x). (8)

Here the weights are given by:

βT
j,k = yj,k1{|yj,k|≥κtn}, (9)

in the case of hard thresholding, or

βT
j,k = sign(yj,k)(|yj,k| − κtn)+, (10)

for the soft thresholding. Furthermore,

tn =

√
log n

n
,
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stands for the universal threshold and j(n) is such that

2−j(n) ≤ log n

n
< 2−j(n)+1,

κ being a constant large enough.

Once again, in the model of density estimation wavelet thresholding is
obtained thanks to a slight modi�cation of the previous de�nition.

De�nition 5 Suppose that we stand in the problem of density estimation,
and let β̂j,k be the coe�cients de�ned in (7). Thus the density estimator by
wavelet thresholding is given by

f̂T
n (x) =

j(n)∑
j=0

∑
k

β̂j,k1{|β̂j,k|>κtn}ψj,k(x).

Where

tn =

√
log n

n
,

is the universal threshold, κ is a constant large enough and j(n) is such that

2−j(n) ≤ log n

n
< 2−j(n)+1.

3. Statement of the main result

Let us recall minimax results in Besov spaces. Taking the Lp norm, where
1 ≤ p < ∞, as loss function, we know from [9], for our two estimation
problems, that the minimax lower bound in closed balls in Besov spaces in
given by the following proposition.

Proposition 2 Let 1 ≤ r ≤ ∞, 1 ≤ p < ∞ and s > d
r
. Then, there exists

C > 0 such that

Rn(Bs,∞
r,c ) = inf

Tn

sup
f∈Bs,∞

r,c

E‖Tn − f‖pLp ≥ Crn(s, r, p)

where

rn(s, r, p) =


n− ps

2s+d if r > dp
2s+d

,(
n

logn

)− p(s− d
r+ d

p )

2(s− d
r )+d else.
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Let us now check what is known concerning estimation procedures that
we deal with. Although it is proved in [9] that thresholding procedures reach
asymptotically the optimal rate up to a logarithmic correction, it is not al-
ways the case for linear procedures. As it can be seen in [8], with L2 risk,
linear estimators do not attain the minimax rate when studied functions have
a sparse representation in a given base. This result is generalized by the fol-
lowing proposition from [8] which gives the optimal rate that can be reached
in this case.

Proposition 3 Let 1 ≤ r ≤ ∞, 1 ≤ p < ∞ and s > d
r
. There exist C > 0

such that

Rn
lin(B

s,∞
r,c ) = inf

T̃nlinear
sup

f∈Bs,∞
r,c

E‖T̃n − f‖pLp ≥ Cr̃n(s, r, p)

where

r̃n(s, r, p) =

n
− ps

2s+d if r > p(
n

logn

)− ps′
2s′+d

else,

and s′ = s− d
r
+ d

p
.

We see in the following theorem that Proposition 3 remains true if we
replace the risk maximum by the risk reached on almost every function. We
also prove that in the same context Proposition 2 is satis�ed by thresholding
algorithms up to a logarithmic term. We say in the following that an ≈ bn if
log an
log bn

→ 1.

Theorem 1 Let 1 ≤ r ≤ ∞, 1 ≤ p <∞ and s > d
r
. Then, in the context of

(2) or for the problem of density estimation:

• For almost every function f in Bs,∞
r ([0, 1]d),

inf
f̂L
n linear

E‖f̂L
n − f‖pLp ≈ n−αp, (11)

where

α =


s

2s+d
if r ≥ p,

s− d
r
+ d

p

2(s− d
r
+ d

p
)+d

else.
(12)

• For almost every function in Bs,∞
r ([0, 1]d), and for thresholding estima-

tor f̂T
n

E‖f̂T
n − f‖pLp ≈

(
n

log n

)−αp

(13)
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where

α =


s

2s+d
if r > pd

2s+d
(s− d

r
+ d

p
)

2(s− d
r
)+d

else.
(14)

As mentionned earlier, this generic result, such as Doob's theorem does
not provide the exact behaviour of a given function. However, it introduces a
new vision of a generic behavior in Besov spaces and of the minimax theory
as in these particular cases, generic and minimax results coincide.

As we will see in the following section, the proofs of these results are quite
simple. They are mainly based on the maxisets theory. Once known the
maxiset associated to an estimation procedure, one study the genericity of
such a set in the involved function space. The advantage is that our theorem
can be easily extended to another kind of estimation procedures, thanks for
instance to the results of [1, 23] or to other spaces, such as Sobolev spaces.

4. Proof of Theorem 1

For the sake of completeness, let us recall some basic facts upon the maxisets
theory.

4.1. Maxiset theory

The maxiset theory introduced recently in [5, 16, 17] is an alternative way
to compare di�erent estimation procedures. In our case, it provides a crucial
key to prove Theorem 1. The main idea is to look for the maximal space on
which an estimator will reach a given rate instead of searching an optimal
rate for a given space.

De�nition 6 Let ρ be a risk function and (vn)n∈N a sequence such that vn →
0. For f̂n an estimator, the maximal space associated to ρ, vn and a constant
T is given by

MS(f̂n, ρ, vn, T ) =

{
f ; sup

n
v−1
n E(ρ(f̂n, f)) < T

}
.

Several improvements were made in nonparametric theory thanks to this
idea. For instance, it is shown in [5] that, for the density estimation model
the thresholding procedure is more e�cient than the linear procedure, whose
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maxiset is given in [15]. And in the heteroscedastic white noise model, [22, 23]
shown that thresholding procedures are better than linear estimators and as
good as Bayesian procedures. In the case of white noise model, we recall the
following result which is a particular case of [22], see [5] for the equivalent
result in terms of density estimation.

Proposition 4 Let 1 ≤ p < ∞, 1 ≤ r < ∞, s > d
r
and α ∈ (0, 1). Let f̂L

n

be the linear estimator given in De�nition 2. For any m > 0 suppose we are
given (λ

(n)
j,k (m))j,k weights in [0, 1] such that

• There exists c < 1 such that for all mn > 0 and j ≥ m, λ
(n)
j,k (m) ≤ c.

• There exists cs ∈ R such that for any m > 1∑
1≤j≤mn

∑
k∈{0,...,2j−1}d

(λ
(n)
j−1,k(m)−λ(n)j,k (m))(1−λ(n)j,k (m))p−1

(
j

m

)−ps

≤ cs.

Then for any n > 0, we suppose that we are given mn > 0 such that

• There exists n such that mn ≤ 1,
• n 7→ mn is continuous,
• mn → ∞ as n→ ∞
We suppose that there exists a positive constant T1 such that for any n ∈ N,

mps
n

np/2

∑
j,k

∫
|ψj,k|p ≤ T1. (15)

Then for every f , there exists a positive constant C such that for any n ∈ N,

E‖f̂L
n − f‖pp ≤ cm−sp

n

if and only if f ∈ Bs,∞
p ([0, 1]d).

Before stating the result associated to thresholding algorithms, we de�ne
new function spaces closely related to approximation theory. Those spaces,
weak Besov spaces, de�ned in [5] are subsets of Lorentz spaces, and constitute
a larger class than Besov spaces.

De�nition 7 Let 0 < r < p < ∞. We say that a function f =
∑

j,k cj,kψj,k

belongs to W (r, p) if and only if

sup
λ>0

λr
∑

2j(
dp
2
−d)
∑
k

1{|cj,k|>λ} <∞. (16)
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A fast calculation shows that the space W (r, p) contains the homogeneous
Besov spaces Bβ,∞

r as soon as β ≥ d
2
(p
r
− 1).

The maxiset associated with the thresholding estimation procedure is given
by a weak Besov space as proved in [5], and developed further in the het-
eroscedastic regression case in [16].

Proposition 5 Let 1 ≤ p < ∞, 1 ≤ r < ∞, s > d
r
and α̃ ∈ (0, 1).Let f̂T

n be
the estimator de�ned by (4) and (10). Then for every f we have the following
equivalence:
∃K > 0 such that ∀n > 0,

E‖f̂T
n − f‖pp ≤ K

(√
n log(n)−1

)−α̃p

(17)

if and only if f ∈ B
α̃/2,∞
p ∩W ((1− α̃)p, p).

Furthermore, another important key result involving Besov spaces is the
following proposition from [10].

Proposition 6 Let us de�ne the scaling function of a distribution f by

∀p > 0 sf (p) = sup{s : f ∈ Bs,∞
p }. (18)

Let s0 and p0 be �xed such that s0 − d
p0

> 0. Outside a Haar-null set in

Bs0,∞
p0

(Rd), we have:

sf (p) =

{
s0 if p ≤ p0
d
p
+ s0 − d

p0
if p ≥ p0.

(19)

One can check that a lower bound of this scaling function is given by
Besov embeddings and interpolation theory, which can be found in [24]. This
result states that one cannot have a better regularity than the one given by
those embeddings. In our case, we will exploit this result by comparing those
critical spaces with the maxiset associated to each procedure.

4.2. Generic risk for linear estimators

Let 1 ≤ p <∞, 1 ≤ r <∞ and s > d
r
be �xed. Denote

s′ = s−
(
d

r
− d

p

)
+

,
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and

α(s′) =
s′

2s′ + d
.

In this section, we prove the �rst part of Theorem 1. We de�ne the linear
estimator as in De�nitions 2 and 3. For the sake of simplicity, we assume
here that we take projections weights in these two de�nitions. Let θ > 0 be
given. As we are looking for the polynomial behavior of linear estimators, we
take Tn = mn and mn = nθ. De�ne j1(n) be such that 2j1(n) ≤ mn < 2j1(n)+1.
From [7] we know that there exists c > 0 such that for any n ∈ N, and for
any f ∈ Bs,∞

r ([0, 1]d),

E‖f̂L
n − f‖pp ≤ c

(
2−j1(n)sp +

(
2j1(n)

n

)p/2
)
. (20)

Furthermore, the in�mum in (20) is obtained when the two terms are
balanced, that is for θ0 =

1
2s′+d

. And we obtain

inf
f̂L
n linear

E‖f̂L
n − f‖pp ≤ cn−α(s′)p. (21)

Let us now check the lower bound. Choose mn = nθ, with θ > 0 given and
let f̂L,θ

n be the corresponding estimator. In a �rst time, we have to show that
for every θ > 0 and ε > 0 �xed, the set

M̃(θ, ε) :=
{
f ∈ Bs,∞

r ([0, 1]d); ∃c > 0 ∀n ∈ N, E(‖f̂L,θ
n − f‖pLp) < cn−(α(s′)+ε)p

}
is a Borel Haar null set.

Taking into account that
∫
|ψj,k|p ∼ 2jd(

p
2
−1) we see that equation (15) is
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satis�ed for θ ≤ 1
2s′+d

. We have thus two cases, if θ > 1
2s′+d

then

E(‖f̂L
n − f‖pp) = E

∫  ∑
j≤j1(n)

∑
k

εj,k√
n
ψj,k(x) +

∑
j>j1(n)

∑
k

cj,kψj,k

p
≥ cE

 ∑
j≤j1(n)

∑
k

(
εj,k√
n
)p
∫
ψj,k(x)

p +
∑

j>j1(n)

∑
k

|pcj,k|p
∫
ψp
j,k


≥ c

∑
j≤j1(n)

∑
k

E((
εj,k√
n
)p)2dj(

p
2
−1)

≥ c
∑

j≤j1(n)

∑
k

(E((
εj,k√
n
)2))p/22dj(

p
2
−1)

≥ cndpθ/2−p/2 > n−α(s′).

Where the �rst inequality comes from the superconcentration property of
wavelets whereas the last one is the Hölder inequality [16]. Thus for θ > 1

2s′+d

and for any ε > 0, the set M̃(θ, ε) is an empty set.

Let us treat the case θ < 1
2s′+d

. From Proposition 4, M̃(θ, ε) is then in-

cluded in Bs′+ε,∞
p ([0, 1]d). And from Proposition 6, we know that this set is

a Haar null Borel set of Bs,∞
r ([0, 1]d).

We thus obtain that ∀θ > 0 and ∀ε > 0, the set{
f ∈ Bs,∞

r ([0, 1]d); ∃c > 0 ∀n ∈ N, E(‖f̂L,θ
n − f‖pLp) < cn−(α(s′)+ε)p

}
is a Haar null set.
This set can also be written,{

f ∈ Bs,∞
r ([0, 1]d); lim sup

n→∞

log(E(‖f̂L,θ
n − f‖pLp))

−p log n
> α(s′) + ε

}
.

Taking the countable union of those sets over a dense sequence θn and
a decreasing sequence εn → 0, and the complementary we obtain that for
almost every function in Bs,∞

r ([0, 1]d),

lim inf
n→∞

log(E(‖f̂L
n − f‖pLp))

−p log n
≤ α(s′).

Which induces the expected result.
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4.3. Thresholding algorithms

In this part, we take the estimation procedures given in De�nition 4 and in
De�nition 5.

Let us turn out our attention to the minimax rate of convergence for this
estimator. For this purpose, we write in the following

α̃(s) =


2s

2s+d
if r > pd

2s+d
2(s− d

r
+ d

p
)

2(s− d
r
)+d

else.
(22)

The proof of the second point of Theorem 1 follows the same scheme as
the previous one. In this case, the upper bound is given in [9]. Thus we know
that for every function in Bs,∞

r ([0, 1]d), and for all 1 < p <∞,

E(‖f̂T
n − f‖pLp) < c

√
n

log n

−α̃(s)p

.

In order to prove the lower bound, we use Proposition 5.

For every values of α̃, let 0 < ε < 1 − α̃ be �xed, and M(ε) be the set
de�ned by

M(ε) =

{
f ∈ Bs,∞

r ([0, 1]d); ∃c > 0 ∀n ∈ N, E(‖f̂T
n − f‖pLp) < c

√
n

log n

−(α̃(s)+ε)p
}
.

Thanks to Proposition 5, this set M(ε) is embedded in B
α̃+ε
2

,∞
p ∩W ((1−

α̃− ε)p, p).

The end of the proof is based on the following proposition.

Proposition 7 Let f be a given distribution. Let us de�ne the weak scaling
function of a distribution f by

∀p > 0 s̃f (p) = sup{α : f ∈ W ((1− α)p, p)}. (23)

Let s and r be �xed such that s− d
r
> 0. Outside a Haar-null set in Bs,∞

r (Rd),
we have:

s̃f (p) =


2s

2s+d
if r > pd

2s+d
2(s− d

r
+ d

p
)

2(s− d
r
)+d

else.
(24)
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Proof : In order to prove Proposition 7, let us prove that W ((1− α̃− ε)p, p)
is a Haar null Borel set in Bs,∞

r ([0, 1]d). For this purpose, we de�ne our
transverse measure as the probe generated by the function g de�ned by its
wavelet coe�cients:

dj,k =
2−(s− d

r
+ d

2
)j2−

d
r
J

ja

where a = 1 + 3
r
and 0 ≤ J ≤ j and K ∈ {0, . . . , 2J − 1}d are such that

K

2J
=

k

2j

is an irreducible fraction. As it can be seen in Proposition 2 of [14], this
function g belongs to Bs,∞

r ([0, 1]d). Let f ∈ Bs,∞
r ([0, 1]d) be an arbitrary

function and consider the a�ne subset

M = {α ∈ R f + αg ∈ W ((1− α̃− ε)p, p)}.

Suppose that there exist two points α1 and α2 inM . Thus f+α1g−(f+α2g)
belongs to W ((1− α̃− ε)p, p), and there exists c > 0 such that

‖f + α1g − (f + α2g)‖W ((1−α̃−ε)p,p) = ‖(α1 − α2)g‖W ((1−α̃−ε)p,p) ≤ c. (25)

As a fast calculation shows that

∀α > 0, ‖αg‖W (r,p) = αr‖g‖W (r,p) (26)

we just have now to determine ‖g‖W (r,p). Thanks to equation (16), this is
equivalent to determine for every t > 0 the value of

2−(1−α̃−ε)pt
∑
j≥0

2j(
dp
2
−d)
∑
k

1{dj,k>2−t}

But by de�nition of g, we have,

2−(s− d
r
+ d

2
)j2−

d
r
J

ja
> 2−t ⇒ (s− d

r
+
d

2
)j +

d

r
J ≤ t,

which implies that

J ≤ r

d
t− (s− d

r
+
d

2
)
r

d
j.
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Note that the condition J ≥ 0 implies also that j is limited by

j(s− d

r
+
d

2
) ≤ t.

We denote by t̃ = t
s− d

r
+ d

2

and by ˜̃t = t
s+ d

2

. Thus we have, for every t > 0,

‖g‖W ((1−α̃−ε)p,p) ≥ 2−(1−α̃−ε)pt sup
0≤j≤t̃

2j(
dp
2
−d)

j∧[ r
d
t−(s− d

r
+ d

2
) r
d
j]∑

J=0

2dJ

≥ 2−(1−α̃−ε)pt sup

 sup
0≤j≤ t

s+ d
2

2j(
dp
2
−d)

j∑
J=0

2dJ , sup
t

s+ d
2

+1≤j≤t̃

2j(
dp
2
−d)

[ r
d
t−(s− d

r
+ d

2
) r
d
j]∑

J=0

2dJ


≥ 2−(1−α̃−ε)pt

2d − 1
sup

(
sup
0≤j≤˜̃t

2
dpj
2 (1− 2−jd), sup

˜̃t<j≤t̃

2j(
dp
2
−d)(2rt2−jr(s+ d

2
− d

r
) − 1)

)

Merging this result with (25) together with (26), we obtain that, if there
exist α1 and α2 in M then they satisfy that for every t ≥ 0 and 0 ≤ j ≤ t̃,

|α1−α2|(1−α̃−ε)p ≤ inf

 c2(1−α̃−ε)pt

sup
0≤j≤˜̃t

2
dpj
2 |1− 2−jd|

,
c2(1−α̃−ε)pt

sup˜̃t<j≤t̃
2j(

dp
2
−d)|2rt2−jr(s+ d

2
− d

r
) − 1|


(27)

We have thus two cases:

• If r > dp
2s+d

α̃ =
2s

2s+ d
.

But, if we take the �rst term,

sup
0≤j≤˜̃t

2
dpj
2 |1− 2−jd| ∼ 2

tdp
2s+d ,

we have
|α1 − α2|(1−α̃−ε)p ≤ c2−εpt. (28)

• When r ≤ dp
2s+d

, and as s > d
r
we have necessarily p > 2 and we obtain

α̃ =
2(s− d

r
+ d

p
)

2(s− d
r
) + d

.
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In this case,

sup
˜̃t<j≤t̃

2j(
dp
2
−d)|2rt2−jr(s+ d

2
− d

r
) − 1| ∼ 2

td(p−2)

2(s− d
r )+d .

And once again,

∀t > 0 |α1 − α2|(1−α̃−ε)p ≤ c2−εpt. (29)

As 1− α̃− ε > 0, it can be deduced from equations (28) and (29) that for
t large enough, M is of vanishing Lebesgue measure and W ((1− α̃− ε)p, p)
is an Haar null set in Bs,∞

r ([0, 1]d). 2

Thanks to invariance under inclusion, we have obtained that for every
ε > 0, the set of functions f in Bs,∞

r ([0, 1]d) such that

∃c > 0 ∀n ∈ N, E(‖f̂T
n − f‖pLp) < c

√
n

log n

−(α(s)+ε)p

is a Haar null set.
The end of the proof is similar to part 4.2.
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