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Abstract In this article a domain decomposition approach is combined with
the nonsmooth contact dynamics approach for analysing the global behaviour
and the micromechanical structure of large-scale dense granular systems. Pre-
viously introduced and theoretically investigated, this method is herein in-
vestigated precisely on two aspects: the properties of the interface operators,
especially when applied to the corners of the subdomains, and the influence
of the substructuring on the solution of a mechanical test. Such topics are
specific to the dense granular systems characterized by the discreteness and
the nonsmoothness of their behavior.
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1 Introduction

In connection with a domain decomposition strategy, the granular dynamics
reveals two main features: discreteness and nonsmoothness.

The non-overlapping decomposition of a granular domain is all the more
delicate since such a medium is a non-structured discrete system. Contrary to
trusses or tensegrity structures studied in [36] for which an elementary pattern
may be defined during the whole process, a granular system involves a per-
manent evolution of the connectivity of the particles, specially when granular
flows occur. Consequently a box-like partitioning insuring a locality of data,
useful for a parallel implementation, provides two possible approaches. A pri-
mal strategy leads to a ‘non-perfect’ interface between the subdomains made of
nonsmooth interactions. Because such a method is a simple algebraic partition
of the equations and is easy to implement, it has been applied to an industrial
problem, the simulation of railway ballasts [21]. However when some large rigid
bodies constitute the boundaries of several subdomains of the system (as the
sleepers on a railway track), the size of the interface increases drastically. The
dual strategy is less intuitive because it requires to split the grains at the inter-
face. Contrary to the primal approach the interface behavior is now ‘perfect’,
in the sense that only linear equations are describing it (local equilibrium and
velocity continuity). Indeed we have to glue the interface grains by adding a
new, but linear, equation which modifies strongly the global nonlinear (nons-
mooth) solver and which complicates the implementation. However this dual
approach has two advantages: (i) the occurrence of large rigid bodies do not
perturb the size of the interface; (ii) the perfect boundary of each subdomain
should allow to introduce an automatic homogenization process to switch pos-
sibly from a discrete model toward a continuous model. This second approach
is detailed in the following.

Once the sub-structuring has been performed, a nonsmooth solver has to
be combined with the domain decomposition strategy. The nonsmooth rela-
tions are derived from the NonSmooth Contact Dynamics (NSCD) approach
which is well suited to the simulation of granular systems. NSCD or Contact
Dynamics in short, has been developed by J. J. Moreau and M. Jean over the
last two decades [24,34]. Tt is suited to many applications but has proven to be
particularly useful when collections of rigid or deformable bodies are packed
together in a dense assembly and subjected to dynamic loading deformations.
Numerical simulations have to be performed using a fully implicit resolution
of the contact impulses. This allows us to deal properly with nonlocal momen-
tum transfers involved in multiple collisions, contrary to classical molecular
dynamics schemes that consider the system evolution as a succession of binary
collisions. The approach proposed by Cundall [14], inspired from the molecular
dynamics, as the event-driven methods, requires very short time steps for ac-
counting for the successive collisions and such a strategy leads to a prohibitive
computational cost, especially for the dense granulates with a large number of
simultaneous collisions. The NSCD approach refers to a time-stepping method
that requires at each time step the solution of nonsmooth equations by an
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iterative solver. The computational cost may be quite high, but the gain is
substantial. Simulations of very large granular systems can range from 10 m of
a ballast railway submitted to cyclic dynamic loading, to the behavior of the
Nimes arena and Arles aqueduct (France) subjected to seismic loading, which
are examples of two challenges in computational mechanics.

The Domain Decomposition Methods (DDM) in the context of multipro-
cessor computations are well established from theoretical and practical stand-
points when dealing with a linear system derived from a discretization of a
continuous problem [29]. For nonlinear continuous problems the DDM seems
to be efficient when it is used only to solve an intermediate linear problem em-
bedded in an iterative process as a Newton type method [15]. Unfortunately
the simulation of the granular systems with nonsmooth interactions between
grains does not use such a nonlinear solver and the combination with a DDM
has to be rethought. Indeed the NonLinear Gauss-Seidel (NLGS) algorithm
may be considered as the generic nonsmooth solver because it allows to em-
bed a large range of interaction laws such as adhesion, cohesion, capillarity...
without modifying deeply the algorithm. In line with the NSCD approach, the
velocity-impulse formulation is extended herein to a multidomain reformula-
tion preserving the generic algorithm. More precisely the multidomain refor-
mulation is based on a FETI-type approach where the subdomains are ‘glued’
by Lagrange multipliers which are inter-domain forces. This choice is made in
accordance with the NSCD approach where the impulses are privileged vari-
ables. The so-called NonSmooth Contact Domain Decomposition (NSCDD)
solving method consists of a two-stage algorithm. One of these stages recovers
the generic NLGS method applied subdomain per subdomain in conjunction
with the NSCD formulation; for details about convergence, refer to [25]. This
generic algorithm is presented in Section 2 and a theoretical study of the con-
vergence is developed in [4].

The DDM introduces different types of interface according to their dimen-
sion. For a three-dimensional continuous problem, we distinguish facets, edges
and corners. Specific strategies are developed for dealing with the corners re-
sulting from the domain decomposition of structures discretized by a finite
element method [19,30]. For discrete systems the distinction is less clear and
we have developed in [3] the concept of ‘weak’ interfaces in the context of
static problems solved by a LATIN type method. We investigate in Section 3
the features of the interface problem solved at the second stage of the generic
algorithm when some grains, located at the corners, are connected to more
than two subdomains.

Finally the evaluation of the efficiency of a new multidomain solver in com-
parison with a previous monodomain one is a difficult topic because a dense
granular system is an evolutive nonsmooth problem leading to a large mul-
tiplicity of solutions [32]. Consequently we have not relevant error estimates
as underlined in [24]. Only the quality of the computation may be appreci-
ated using a set of qualitative indicators as presented in Section 4 for studying
the global behavior and the micromechanical structure of a granular sample
submitted to a biaxial test. A time consuming analysis is performed on a Se-
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quential Multidomain implementation in order to estimate the CPU time gain
that we can expect from a multiprocessing implementation on a distributed
memory architecture. The present approach has been implemented into the
LMGC90 platform [16].

2 Dual domain decomposition method for granular systems
2.1 Reference problem

When a time-stepping scheme is used, we denote known quantities at the
beginning of the time slab [¢;,¢; 1] with a superscript (—); the quantities at
the end of the time slab (without a superscript) have to be determined.

Grain nonsmooth dynamics. Considering a rigid model for the grains, the dy-
namics of the granular medium is written as the following vector equation
[34]

MV -~ R=F¢ (1)

where the prescribed right-hand side is F¢ = R? 4+ MV ~. V is the velocity of
the grain (it contains the translational degrees of freedom, and the rotational
ones); R is the resultant impulse on the grain due to interactions with other
grains. The matrix M contains both the mass (for the translational degrees
of freedom) and the inertia (for the rotational degrees of freedom). A choice
leading to get a constant, and diagonal, matrix M consists in expressing the
global coordinates of rotation vectors in the inertia eigenbasis of each grain,
Figure 1. With such a choice, R = R 4+ R™! where R®** are the prescribed
external forces and R** are the fictitious forces defined as

rot __ O
R _(wXIw ’

where [ is the moment of inertia and w is the angular velocity. These fictitious
forces are non linear with respect to the degrees of freedom. In the case of
dense granular media, angular velocities are small enough to express R™" in
an explicit way, by choosing the value obtained at ¢;, as reported in [37]. This
renders them explicitly known, and so, they are assembled into the right-hand
side R, that contains also the prescribed impulse fields. The assembly of these
equations (independent for each grain) for all the involved grains is formally
written in the same way (1).

Contact interaction. Here we focus on simple unilateral contact which is nat-
urally expressed as a complementary condition linking contact force to a gap.
For dynamics, Moreau proved via a viability lemma [34], that we can use a
velocity-impulse complementary law. The constitutive relation is summarized
in the following formal equation:

R(v,r) =0 (2)
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Fig. 1 Coordinate basis; Ry: global coordinate basis (for interface quantities), R;: local
(related to the grain ¢) coordinate basis (for grain dynamics), Rq: local (related to an
interaction o between two grains) coordinate basis (for interactions). Details of the local
contact frame (n,t) at a contact o between two touching particles ¢ and j.

v is the velocity jump at the contact point between the two interacting grains,
r is the impulse at the same contact point. R is usually a non linear and mul-
tivalued relationship between the previous two dual quantities. For instance,
for frictionless contact, it relates the normal components with the KKT com-
plementary conditions v, > 0, r,, > 0 and v, f,, = 0. Other models, such as
extensible cables and frictional contact can be found in [36,46]. The assembly
of the interaction-related quantities for all interactions is also written formally
in the same way (2).

Both v and r are expressed in the local coordinate basis to the contacts
between the interacting grains, Figure 1. Therefore, they are linked to the
global kinematic and static quantities with a compatibility condition:

v=H'V —and R=Hr (3)

H is the signed mapping between the global quantities related to the grains in
their local basis R; with the local relative quantities related to the interactions
in the local basis R,,.

Reduced dynamics. Taking the dynamics (1) and the compatibility conditions
(3) into account, the reduced dynamics involving material variables can be
obtained:

Wr —v=—v? (4)

where W is the Delassus operator: W = H'M~'H, and v = HTM~1F¢<.
To close the problem, one adds the constitutive relation (2), and the refer-
ence problem reads:

R(v,r) =0 (5)

This problem is classically solved within the NSCD (NonSmooth Contact Dy-
namics) method with a non-linear Gauss-Seidel (NLGS) solver [34,24,25].

{Wr—v:—vd

Extension to deformable grains. Even if it will be not tested in the numerical
results presented in the following, the case of modeling the grain behavior
as an elastic deformable solid, with a finite element discretization, can be
derived easily. This leads to even more large problems for which a domain
decomposition method has also potentials for larger gains. Such a modeling is
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suited in particular for granular materials where deformation and eventually
fracture of grains is under concern.

Now, the kinematic global unknowns V' are the whole set of translational
degrees of freedom of the nodes, K is the classical finite element stiffness
matrix of the grain and M is the mass matrix of the grain. Some care must
nevertheless be taken with this mass matrix to get a discretized well-posed
problem, see for instance [26].

A co-rotational formulation [1,2] has several advantages: if the rotations are
finite, but the deformation is small, expressing the degrees of freedom in the
inertia eigenbasis of the grain allows to consider constant operators M and K.
In such a case, as previously, the Coriolis and centrifugal effects are explicitly
written, and are part of the given right-hand side of generalized forces Fj.

A two-scale description consists in setting V = R,V + V. where V is the
previously described small-sized vector of the global rigid body movement of
the grain, at its center of mass. R is the extension of this movement to all the
nodal degrees of freedom of the discretized body (in its inertial eigenbasis).
V. is an additional movement mainly containing the elastic deformation of the
grain (in its inertial eigenbasis as well), to be precised in the following. The
non smooth dynamics of the grain therefore reads:

MV + Ry — R=F* (6)
with the internal impulse
tit1
Rint = KU dt (7)
t;

where U is the nodal vector of the displacement in the inertial eigenbasis).
Using the test functions V* = R,V 4+ V/*, the dynamics leads to

MV, + Ring + MRV, — R = F* (8)
MV + R! Ry + RIMV, — R = F? (9)

where M = RTMR,, R= RTR, FF? = RTF4.
With a constant stiffness matrix, one coupling term is

tit1
RTRyy = RZK/ Udt=0
ti

since KR; = 0, and, to ensure the uniqueness of the two-scale description,
we choose as an orthogonality condition between the two kinematic spaces:
RTMV, = 0 that cancels the second coupling term in (9), which is there-
fore identical to the rigid model (1). Once V; is obtained, the “deformable”
component V. then arises from (8):

MV, + Ryt — R=F%— MRV,

The last step is to link the displacement update U to the velocity V. A
possibility is to obtain it from two sources: U = Uy + U, where Uy is a rigid
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body rotational finite movement (useful to update the finite rotation of the
inertial eigenbasis), and U, corresponds to the complementary part. Uy can be
obtained with the Hughes-Winget scheme [22] or the Rodrigues formula, while
U, can be obtained with a #-method as a time integration scheme. Neglecting
the residual KU in algebraic developments, one gets the internal impulses as

Rine = hKU + hO[h(1 — 0)KV.” + hOKV,)]

where the time step is h = t;41 — t;. The corresponding dynamics therefore
reads:
MV, - R=F*— MR,V, (10)

where F% is a given right-hand side, and M = M + h262K. One can check
that, with the coupling term M RV, the dynamics (10) gives a solution that
satisfy to the orthogonality condition. Indeed, by pre-multiplying (8) with RY
one can easily check that it leads to RT MV, = 0.

Finally, the reduced dynamics can also be drawn for this model case, as
previously with a new definition of matrix H which is now correlated to the
whole set of degrees of freedom, but with the same expression as in (3):

v=H"(R,\V,+V,) and R=Hr, R=RIHr (11)
which leads to ~ J
Wr—v=—-v

{R(U,T) =0 (12)

with, in fine, W = H'M " H and ¢ = HTM~'F?. Therefore, the problem
characteristics are very close to the ones obtained from the case of rigid grains
and algorithmic choices in a domain decomposition approach should be valid
for both modelings.

2.2 Domain partitioning

The domain has to be split into subdomains in order to use parallel computing.
This decomposition is performed as frequently as needed to take into account
the migration of grains from one subdomain to another. Such a strategy may
be implemented with minimal computational efforts using sophisticated rou-
tines out of the purpose of this paper. Since the nonsmoothness may occur in
interactions between grains, we choose to distribute interactions among sub-
domains as in [4] (we proceed by distributing the middle points between the
centers of mass of interacting grains, according to their coordinates, using an
arbitrary regular underlying grid, Figure 2 and Figure 3). Indeed, with such a
choice, the “boundary” grains are duplicated in the two subdomains. If a grain
indexed with 4 is connected with m® subdomains, m? is called its multiplicity
number. For consistency for the rigid model of the grains, the masses and mo-
ments of inertia are distributed among the neighboring subdomains according
to their multiplicity number. More precisely the distribution of masses and



8 V. Visseq et al.

Fig. 2 Geometrical partitioning of the discrete domain and duplication of the interface
grains.

Fig. 3 Illustrations of the proposed domain partitioning technique: four grains having a
multiplicity of 2 (a) (cf. Figure 6(b)), four grains having a multiplicity of 2 and one having
a multiplicity of 3 (cf. Figure 10(b)). Contacts are colored according to the subdomain they
belong to. The grains having a multiplicity of 2 are hatched, the grain having a multiplicity
of 3 is crossed-hatched.

inertia is an algebraic partitioning and not a geometrical partitioning. It is
more meaningful to speak about a duplication of the boundary grains than a
splitting of them. For the elastic deformable model of the grains, this splitting
can be performed with a classical mesh decomposer. The interface between two
subdomains is defined as the set of these grains, that joins the subdomains.
The nonsmoothness is therefore localized only within the subdomains. This
modeling choice is identical to [10] and somehow the dual of that proposed in
[28], where nonlinearities (contact on crack lips) are isolated at the interfaces.
Note that a direct algebraic partitioning of the reference problem can also be
chosen, leading to a dual partitioning and a different algorithm [21]. Some ad-
vantages and disadvantages have been mentioned in the introduction but such
a topic has to be investigated more deeply in forthcoming works.
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2.3 FETTI-like formulation and NSCDD algorithm

In each subdomain FE, the problem is identical to the global one (with the
subscript E), provided that a term arising from the inter-grain interface is
added. It is therefore described in the following only for the rigid model of the
grains. It can be built from the interconnecting condition (on the velocities
of boundary grains) that has been added to “glue” neighboring subdomains,
where Arg is a signed boolean matrix with a finite rotation, to map the grain
velocities Vg to the global coordinate basis into which the interconnectivity is

expressed:
MNsd

> ArgVe=0 (13)

E=1

I" denotes the global interface between all the neighboring grains. Formally
the previous summation is performed on all the subdomains (number equal to
ngd ), even if, for a given interface grain the only neighboring subdomains have
to be considered. Then we obtain a FETI-like formulation [18] for the reference
problem using a multiplier field F- and the notations AT, = HE Mg A%

WETE—UE—A,}:EFF:—Q}% E=1 Neq
R(UE,TE)ZO P
Nsd (14)

> ArgVe=0

E=1

The reduced problem on (rg,vg,Fr), with the notations f =>z AFEMgng
and X =", ArpMg' AL, reads:

WETE_UE—A%EFF:_U%}Ezl’...,nsd

R(UE,TE) = 0 (15)
XFF— ZAFE’/‘E :f
E=1

As for many domain decomposition approaches, the goal is to be able to lo-
calize the same typical problem that is under consideration on each subdomain
independently, while designing a suited coupling recovery algorithm between
subdomains, i.e. on the interface.

Here, the algorithmic formulation described in Algorithm 1 has been imple-
mented into the LMGC90 platform [16] for time-evolution problems (N is the
number of time steps). At each new time step of the incremental solving pro-
cedure, the mapping H and the contact graph have to be reevaluated within
a contact detection phase. Eventually, the domain could also be repartitioned
according to the new contact graph. For each time step, the iterative resolution
proceeds with several stages. First, the interface impulses obtained at the previ-
ous iteration are disassembled into Fr = — AL Fr that is considered as given
additional external impulses in the subdomain F, and added to the prescribed
values Fg. At each iteration, the solver is itself a predictor-corrector scheme,
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for which a “free” grain velocity is first computed as V& = M, 1(Fg + Fg). At
the interaction level, one then computes v$, = HLVgZ. The correction phase
is composed with an incomplete solving procedure of the nonsmooth dynam-
ics problem on each subdomain, with ngg prescribed iterations of non-linear
Gauss-Seidel algorithm. This provides the local impulses 75 (satisfying the
reduced dynamics, even if the solve is incomplete). The resultant impulse per
grain is Rp = Hp7g, and the correction reads: Vg = V& + M, ' Rp.

Up to this point, it is interesting to note that the interface problem in (15)
can be stated in a correction form, using AFp = Fr — Fr: noting that 7g
satisfies to the grain dynamics, this interface problem can be restated as

MNsd Nsd
XAFF:fﬁLZA[‘EfE*XFp:ZAFEVE (16)
E=1 E=1

the last term being the residual on the interface, i.e. the velocity jump.

At each time step, inner iterations are stopped when the classical NLGS
convergence criterion (on the subdomains [12]) and the gluing criterion over
the interface [23] are verified.

Algorithm 1 NonSmooth Contact Domain Decomposition (NSCDD)

fori=1,...,N do

contact detection (eventually parallelized) and

possible new decomposition of the domain

initialize unknowns at time t;: (rg,vg, Fr)

while (convergence criterion not satisfied) do

In parallel for E=1,...,ngq

Disassemble interface impulses Fr into local impulses Fg
Compute the “free” velocity Vg and 17%
Compute (Tg,0g) with ngg non-linear Gauss-Seidel iterations on:

Wgrg — v = —ﬁ%
T\’,(’T)E7 FE) =0
Update (rg,vE) + (Tg,0E) ~
Compute Rg and correct the velocity on interface grains to get ArpVg
In sequential (may be partially parallelized)
Compute AF as: XAFp = Z::Sil ArgVg and update interface impulses F
end while
Update grain positions in parallel
end for

3 Interface topics

For discrete systems, several specificities of the interface treatment are detailed
in this section, in particular the structure of the interface operator X.
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3.1 Structure of the interface

For discrete systems, the global interface I" is constituted of grains supporting
contacts in more than one subdomain. The number of subdomains a grain 7 is
connected to is called its multiplicity m’. As for classical domain decomposition
methods [43] one gets mp = 1+ AL Arp as the diagonal matrix whose entries
for each grain i kinematic dof is m’. Depending on their multiplicity, the grains
are called “internal grains” if m? = 1 (otherwise, they will be called “interface
grains”), “face grains” if m* = 2 and “corner grains” if m* > 2. Contrary to the
continuous media case where face, edge and corner nodes can be distinguished
in 3D, the discrete systems we are considering here do not differentiate edge
and corner topology.

Corner grains are split in m? parts and links are stated as gluing conditions
between these parts (the impulses in such gluing conditions are stored in Fr).
Sufficient gluing conditions should be stated for each interface grains (face or
corner) to ensure to recover the reference problem solution. Several options
are:

— Discard the treatment of corner grains. This option can be used for several
DDM for the continuous media case when interface fields are defined at the
finite element level on edges of elements rather than at nodes [17,11] since
the measure of corner nodes is zero. For a discrete model as considered
herein, this is not an available option since then, continuity at these grains
won’t be taken into account.

— Consider as many gluing conditions as the mutiplicity of the considered
corner grain: n! = m’. In this case, there is a small overconstrained gluing
condition (only m® — 1 links are sufficient to glue m® parts).

— Consider an even larger number of gluing condition, similarly to redundant
corner conditions in FETI methods [43]. The maximal number of conditions

that can be established between m’ parts is m‘(m’ —1).

In order to avoid singularity of the interface operator X, and to allow several
solving procedures for the interface problem, we choose to prescribe the nec-
essary and sufficient number of gluing conditions on corner grains, i.e. m* — 1
conditions only.

3.2 Analysis of the interface operator X

Internal grains (m’ = 1) indeed have no contribution to X. When only face
grains exist (m® = 2), X has been proved to be diagonal per block, i.e. each
grain is decoupled with the other ones [4] and each block is at most of size
(b,b) where b is the number of kinematic or static components for each grain:
b = 3(D—1) for rigid grains where D = 2,3 is the dimension of the considered
physical space. In a dynamic framework “sthenic” may be preferred to “static”
in reference to a description of dual variables to the kinematics. This is a
specific issue of the dynamics of rigid grains: the interface problem does not
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Fig. 4 Gluing conditions between interface grains. (a) m* =2 and n{ = mf—1= %mi(mi —
1) = 1; (b) m* = 3 and n} = m? = %mi(mi—l):?); (c) m* =3 and n} = m® — 1; (d)
m® =4 and n} =m’; (e) m’ =4 and n} = Imitm? —1) = 6; (f) m' =4 and n{ =m’ — 1.

2
(For convenience the grains have been split even if they are not geometrically cut.)

condense information from the inner part of subdomains. Moreover, each block
may itself be diagonal for special cases (circular or spherical grains). In these
cases, solving the interface problem is trivial. Corner grains do indeed modify
the structure of this operator. It is still block-diagonal, but a full block occurs
on links related to each corner grain i with a size (nib, nib).

Consider the contribution of corner grain i from the various subdomains
that share this grain; this corresponds to a block in matrix X denoted as:

Nsd
X=3" App(Mp)  (Arp)”
E=1

There are no gluing impulse Fr between different corner grains, so blocks X*
are decoupled to each other. MY is the mass matrix for the part of grain i lo-
cated in subdomain E. Since they are always symmetric, positive definite, and
for sake of simplicity, they are omitted in the following developments (they are
all considered as identity matrices, which does not change the structure of the
interface operator), moreover, all the following matrix entries will correspond
to a block of size (b,b) corresponding to a whole set of kinematic or static
(or sthenic) components. With an arbitrary sign convention in A%, and for
nj =m' — 1 gluing conditions, which is an open cyclic connectivity graph, the
block X" is a permutation of the following pattern:

2 -1
xi— |7t o (17)
' 2 -1
-1 2

which is clearly invertible. Adding an additional gluing condition will close a
sub-cycle in the connectivity, and therefore produces a sub-block in X* with
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the pattern

2 -1 1
-1
9 _1 (18)
-1 2|1
1 1|2

which turns out to be singular (last row is the sum of all the previous ones).
Since this is a minor of X, this last matrix will be singular as soon as n} >
m? — 1.

The convergence study of the NLGS algorithm is quite complicated and
will not be discussed herein. Nevertheless, simulations using corner grains will
exemplify the impact of those grains on the physical properties of the granular
system are discussed in the following.

4 A mechanical study as a validity test

The issue of this section is to test the robustness of the DDM approach with
respect with various “well-known” aspects of the mechanical behavior of model
granular media. To do so, at a first hand, we describe the numerical samples,
and compare the macroscopic response of sheared granular packings for dif-
ferent decompositions. The microstructure (i.e. the spatial organization of the
particles and their contacts) is analyzed at a second hand as a function of the
number of subdomains.

4.1 Simulation of a biaxial test

A dense packing composed of 12000 disks is first set up by means of a layer-
by-layer deposition model based on simple geometrical rules [49]. The particles
are deposited sequentially on a substrate. Each new particle is placed at the
lowest possible position on the free surface as a function of its diameter. This
procedure leads to a random close packing in which each particle is supported
by two underlying particles and supports one or two other particles. To avoid
long range ordering a small polydispersity in size is used.

(a) 0 (b) v

0o 0Op go

Fig. 5 Boundary conditions for (a) isotropic and (b) biaxial compactions.
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Following this geometrical process, the packing is compacted by isotropic
compression inside a rectangular frame of dimensions [y X hg in which the
left and bottom walls are fixed, and the right and top walls are subjected
to a compressive stress og. The gravity g and friction coefficients p between
particles and with the walls are set to zero during the compression in order to
avoid force gradients and obtain isotropic dense packings, see Figure 5(a). The
isotropic samples are then subjected to a vertical compression by downward
displacement of the top wall with a constant velocity v,, for a constant confining
stress og acting on the lateral wall, see Figure 5(b). The friction coefficient
1 between particles is set to 0.35 and to zero with the walls. Since we are
interested in quasistatic behavior, the shear rate should be such that the kinetic
energy supplied by shearing is negligible compared to the static pressure. This
can be formulated in terms of an inertia parameter I defined as [20]:

€4 /% in 2D,

I= (19)

¢,/ in 3D,

where ¢ = ¢/y is the strain rate, m is the mean particle mass, d the mean
diameter and p is the mean pressure (defined as the force per unit width for
the 2D case). The quasistatic limit is characterized by the condition I < 1; in
the proposed simulations, I is below 107%.

This simulation is repeated 5 times, with various numbers of subdomains
ranging from 0 (corresponding to the reference simulation) up to 4 (they are
tagged in the following with SO up to S4). Figure 6(a) depicts the five decom-
positions we choose at the initial state. Figure 6(b) is a zoom of the case S4
to illustrate the particle arrangement.

4.2 Macroscopic behavior

In this section, we consider the stress-strain and volume-change behavior ac-
cording to the domain decomposition. We therefore need to evaluate the stress
tensor and solid fraction during deformation from the simulation data at mi-
croscopic scale.

4.2.1 Definition of some macroscopic parameters

In granular media, the expression of the stress tensor ¢ in the volume V is an
arithmetic average involving the branch vectors ¢% (joining the centers of the
two neighbouring particles) and the contact force vectors f* at contact a. It

is given with [33,47):

1 a(po\T
o= [ (20)
acV

Under biaxial conditions with vertical compression, we have o; > 03, where
the oy are the stress principal values. The mean stress is p = (01 + 02)/2, and
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é
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Fig. 6 Examples of decomposition at the initial state (a) and zoom at the intersection of
the four subdomains of case S4 (b). The multiplicity is (b): 1 for a gray particle and 2 for
a black particle.

the stress deviator is ¢ = (01 — 02)/2. According to the Mohr-Coulomb model,
the shear strength of dry granular materials can be linked to the internal angle
of friction ¢ as follows [31]:

q _ 01— 02

sihp =+ = —-—= 21
4 p 01+ 02 1)

The vertical macroscopic strain ¢ is the cumulative value defined as:

h /
dh Ah
51‘@?““(”%) 22)

where hg is the initial height and Ah = hg — h is the total downward displace-
ment.

4.2.2 Shear strength and solid fraction

Figure 7 depicts the internal angle of friction sin ¢ as a function of the shear
strain e; for all the decompositions. The jump observed at €; = 0 reflects both
the rigidity of the particles and the large initial solid fraction of the samples.
In all cases, the shear stress passes by a peak (q/p)P¢®¥ ~ 0.38 before relaxing
to a stress plateau (g¢/p)* ~ 0.28 corresponding to the so-called “residual state”
in soil mechanics [31]. We see that, up to the fluctuations, all curves join nicely
on the same curve.

Figure 8 shows the variation of the solid fraction v = V},/V as a function
of &1 for all the decompositions, where V,, is the volume (area in 2D) occupied
by the particles. The solid fraction decreases first from vy ~ 0.84 to 0.825. It
is remarkable that, during this phase the solid fraction is rigorously identical
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Fig. 7 Internal angle of friction sin ¢ as a function of the vertical deformation e;.
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Fig. 8 Solid fraction v as a function of the vertical deformation e;.

for all the samples. At larger strains, the solid fraction decreases much more
slowly and, up to the fluctuations, saturates on the same curve. Indeed, at
larger strains, dilation is localized within shear bands appearing and vanishing
throughout the system underlying the saturation of v. This is well illustrated
in Figure 9 where two maps of the particle velocities are shown at e; = 0.2
for SO and S3 cases. We see clearly that the topology of the shear band are
slightly different even if, on average, the solid fraction is identical. In fact,
localization phenomena leads to multiple possible physical solutions, and it has
been already been exemplified that the formation of the shear band depends
on the details of the numerical parameter of the simulations (time step, solver,
number of iterations...) [41].

In this section we have shown that the macroscopic response of a sheared
granular material is independent of the chosen number of subdomains. Nev-
ertheless, a granular material is a typical example of multi-scale material: the
macroscopic behavior results from the average properties of a collection of in-
teracting particles through the contact network. This is clearly illustrated in
the case of elongated particles where the residual shear strength increases lin-
early with elongation [7], whereas for angular or non-convex particle shapes,



Dense granular dynamics analysis by a domain decomposition approach 17
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Fig. 9 Maps of the normalized angular velocities of the particle for SO (a) and S3 (b) cases,
at e1 = 0.2.

the residual shear strength increases first and saturate as the level of angularity
or non-convexity of the particles is increased [6,45]. An other surprising effect
is that the residual shear strength is independent of the polydispersity [50].
This wide variety of behaviors finds its origins at the scale of the particle and
contact properties. Thus, we also need to test the robustness of the domain
decomposition solver in terms of the granular microstructure.
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4.3 Micromechanical analysis

The granular microstructure (granular texture), i.e. the spatial organization

of the particles and their contacts, is basically controlled by steric exclusions
between the particles and force balance conditions [48]. The strong inhomo-

geneity of contact forces is a well known feature of granular media. Figure 10
shows the contact forces for S2 and 54 cases at the residual state. For the same

level of strain, the force-carrying backbones are different, even if the global in-

homogeneity seems to be preserved. Of course, this is due to the fact that
the resolution of the contact forces is performed domain by domain, and to

the plurality of local solutions for frictional granular media. Nevertheless, this

anisotropic structure, generally at the origin of the shear strength of granular
media, can be described more rigorously in terms of various statistical de-

scriptors pertaining to the force-bearing network of particles. In the following,
we consider two aspects of the microstructure: (i) the angular average of the

contact and force orientations, and (ii) the normal force distributions.
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Fig. 10 Maps of force chains in a portion of S2 (a) and S4 (b) samples, at €1 = 0.2; (c)
is a zoom on map at the subdomains intersection (b). Line thickness is proportional to the
normal force. Strong forces (fn > (fn)) are in black and weak forces (fn < (fn)) in gray
(see text). The multiplicity is: 1 for a light gray particle, 2 for a medium gray particle and

3 for a black particle.



Dense granular dynamics analysis by a domain decomposition approach 19

4.8.1 Contact and force anisotropy

A common approach is to consider the probability distribution of the contact
normals n, which is usually nonuniform. As shown in Figure 1, for the 2D
case the unit vector n is described by a single angle #. The probability den-
sity function P(6) of contact normals provides detailed statistical information
about the texture. In the same way, expressing the force vector in the local
contact frame (n,t), where t is an orthonormal unit vector oriented along the
tangential direction, we can compute the angular distributions (f,)(0) and
(ft)(0) of normal and tangential forces, respectively. The above three func-
tions describe the general state of the packing. Under shearing, the packing
organizes itself into a state where these functions are well approximated with
their lowest-order Fourier expansion [44,27,39,7]:

Py(0) = 5={1+accos2(6 —0.)}
(fa)(0) = (){L+ apncos2(0 — Opn)} (23)
(f0)(0) = (frayesin2(0 —0y:)

where a., af,, and ay; are the anisotropy parameters and 0., 0,, and 0
represent the corresponding privileged directions. In a sheared state the priv-
ileged directions tend to follow the principal stress direction (i.e. . = 6, =
6t+ = 0,). In practice the values of all anisotropy parameters can be computed
from generalized fabric and force tensors presented in [40,7].

Figure 11 shows the variations of all these anisotropy parameters as func-
tions of €1 for all the domain decompositions. Up to fluctuations, all the curves
join also nicely on the same curve. We see that a. follows the same trend as
the shear strength, increases first to a maximum value equal to ~ 0.35 and
then declines to a plateau at ~ 0.26. In contrast, ar, decreases from ~ 0.38 to
a constant value ~ 0.24, whereas ay; remains nearly constant with the strain.

These anisotropy parameters are very relevant to the analysis of the gran-
ular microstructure because they can bring to light the geometrical and me-
chanical origins of the shear strength. Indeed, it can be shown that the general
expression of the stress tensor (21) leads to the following “stress-force-fabric”
relationship (a term coined for the first time by Rothenburg and Bathurst in
j44]):

(ac + agn +ag), (24)

DN | =

sin ¢ =~

where the cross products between the anisotropy parameters have been ne-
glected. It is very important to test the validity of relation (24) in the context
of numerical simulation by DDM because this equation reveals an explicit link
between microscopic and macroscopic scales in granular media. We plot in
Figure 12 the variation of the shear strength together with the harmonic fit of
equation (24). We see that data are in quantitative good agreement with this
harmonic approximation which is not affected by the number of subdomains.
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Fig. 11 Contact anisotropy (a) and normal and tangential force anisotropies (b) as func-
tions of the vertical deformation €1 for all the tested decompositions.
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Fig. 12 Friction angle sin ¢ (symbol) together with the harmonic approximation (line) as
functions of the vertical strain e; for all the tested decompositions.
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4.8.2 Force distribution

Force transmission has been investigated by experiments and numerical simu-
lations for disks, elongated, polygonal and non-convex particles in 2D as well
as for spherical, cylindrical and polyhedral particles in 3D [38,13,35,5,42,8,9].
The probability density function (pdf) of normal forces is characterized by two
features that are specific to granular media: (i) the pdf is roughly a decreasing
exponential function for forces above the mean value, (ii) in the range of weak
forces below the mean value, the pdf does not decline to zero with the force.
The relative scattering of data reported by different authors for weak forces
shows the sensitivity of the pdf within this range to the microstructure details.
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Fig. 13 Probability distribution function of normal forces fy,, normalized by the average
normal force (fy) in log-linear (a) and log-log (b) plots for all the tested decompositions.

The probability density function (pdf) of normal forces normalized by the
mean normal force (f,) is shown in Figure 13 in log-linear and log-log scales
at large strains (the data are cumulated from several snapshots in the residual
state) for all the simulations. As usually observed in the literature [38,13,35,5,
42.8,9], the number of forces above the mean value (f,,) falls off exponentially
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whereas the number of forces below the mean value varies as a power-law:

e~ 0=In/{n)) for £, > (f,)
P(fn) { (fn/(fa))? for f,, < (fn)

where « and 8 are the exponents. As we can observe, the pdf of the forces in
each samples collapse to the same curve given precisely by (25). This shows
that the inhomogenous character of the force distribution chain in granular
media is not affected by the number of subdomains used for the solver.

The genuine organization of contact forces in granular media was first an-
alyzed by Radjai et al. by means of contact dynamics simulations for packings
of circular and spherical particles [40]. The most important result was that
the contact network can be decomposed unambiguously into two subnetworks
named “weak” and “strong” networks with complementary mechanical prop-
erties. More precisely, stronger forces chains are propped by large number of
weak contacts, so that the shear stress is almost totally sustained by the strong
contact network. This is well illustrated also in Figure 10 where strong forces
are plotted in black whereas weak forces are plotted in red. We see that strong
forces are mainly vertical (along the principal shear direction) whereas weak
forces are, in average, perpendicular to the direction of shear. Data are also in
good qualitative agreement with this feature, without much influence of the
number of subdomains.

(25)

5 Time consuming analysis of the NSCDD Sequential Multidomain
implementation

The issue of this section is to estimate the CPU time gain that we can ex-
pect from a multiprocessing implementation of the NSCDD algorithm on a
distributed memory architecture. We present at first the implementation and
the parameters chosen before to an analyse of the numerical tendencies of the
proposed method.

5.1 Sequential Multidomain implementation and chosen parameters

A Sequential Multidomain implementation of NSCDD algorithm has been per-
formed on the LMGC90 software to study the influence of a domain decompo-
sition on the biaxial test presented above. To do so, the sequential LMGC90
database has been duplicated, according to the number of subdomains consid-
ered, to mimic the behavior of a multiprocessing environment. This approach
allows to separate the topic of physical validity of the solution given by the
proposed domain decomposition method from the technical aspects of MPI
implementation.

For the simulations we selected ngs = 1 (cf. Algorithm 1), which means
that one NLGS iteration in subdomains is always followed by an interface
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resolution, consistently with the study of the influence of ny, parameter on
the convergence of the NSCDD algorithm reported in [23].

The cumulative elapsed time and timers of the main steps of the NSCDD
algorithm for samples S0, S2 and 5S4 is given in Table 1, for the Biaxial test
presented above, and performed over 250 10? time steps. The various stages
are classified as:

— White: generic stages of NSCD algorithm which may be parallelized,

— Light-gray: stages introduced by the domain decomposition which may be
parallelized (intermediary routines between generic stages of NSCD algo-
rithm and specific stages of the NSCDD one).

— Dark-gray: stages of the NSCDD algorithm which must be done sequen-
tially (if a slave/master communication scheme is presupposed) and implies
exchanges between processors.

Main S0 S2 S4
stages/Samples
% Elapsed % Elapsed % Elapsed
time time time
Preprocessing
Domain partitioning 2 % 4103s 2% 4103%s 2 % 5 103s
and rough detection
Fine detection 5 % 14 103s 6 % 14 10%s 8 % 19 10%s

NLGS preprocessing 32 % 83 103s 25 % 57 103s 16 % 41 103s
NSCDD iterations

Compute 0%, (Fr) 0% 0 103s 4% 9 103s 7% 17 103s
NLGS iterations 50 % | 131 10%s 42 % | 101 103s | 40 % | 100 10%s
Compute ArgVg 0% 0 103s 9% 21 103s 13 % 33 103s
Interface problem 0% 0103s 1% 2 10%s 2% 410%s
Check convergence 1% 2 103s 1% 1103s 1% 1103s
Updates and outputs
Update positions 9% 23 10%s 9% 21 103s 10 % 26 10°s
Write files 2% 6 103s 2% 5103s 2% 5 103s
[ Total [ 100 % ] 262 10%s [[ 100 % | 235 10%s [ 100 % [ 251 10%s |

Table 1 Percentage and absolute elapsed time in the main stages of the NSCDD algorithm
related to samples S0, S2 and S4.

5.2 Analysis of the main referenced stages

“Domain partitioning and rough detection” (cf Table 1). As presented above,
the proposed domain partitioning leans on contact distribution among the
subdomains. More precisely, the considered contacts are those roughly selected
according to a box method referenced as the “rough detection”. The elapsed
time for each samples is quite similar, a small increase is observed only for S4.
In our simulations this phase is performed every 10 time steps leading to a
very small contribution to the overall computation time.
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“Fine detection” and “Update positions”. The increase in the elapsed time
related to those stages arises from the number of particles in samples, which
increases with the number of subdomains (nsq) due to the duplication of in-
terface grains, as illustrated in Table 2.

“NLGS preprocessing”. This routine stores every extra-diagonal block ma-
trix of the Delassus operator (Wyg, o # ). Its running time decreases ac-
cording to the number of subdomains. Indeed the duplication of the interface
grains in the neighboring subdomains reduces the number of the adjacent con-
tacts (and so the number of Wz, cf. Table 2). This phenomenon also explains
the similar behavior of “NLGS iterations” stage.

“Compute @%(F[‘)” and “Compute ArgVg”. As expected, the elapsed time
increases regularly according to the size of the interface.

“Check Convergence”. A similar elapsed time is observed for each samples.

S0 S1 S2 S3 S4
Total number of || 164.5 10° | 164.1 10° | 164.1 10° | 166.4 10° | 166.0 10°
NSCDD iterations

Number of interface 0 117 104 207 227
grains
Number of Wz 418 103 380 103 341 103 366 10° 303 103

Table 2 Total number of NSCDD iterations, mean number of interface particles and mean
number of extra-diagonal block matrices of the Delassus operator (W,g) over the 250 103
time steps of the processes related to samples S0, S1, S2, S3 and S4.

The numerical monitoring shows that the time consuming stages may be
parallelized whereas the sequential stages requires at most 5% of the total CPU
time in our study. Moreover, even for a Sequential Multidomain implementa-
tion, the total elapsed time may be reduced when using several subdomains in
comparison with a single subdomain, in spite of the increase of the interface
size (in terms of unknowns and equations). This is due to the simultaneous
decrease of W size (from 418 10% to 303 103 W, cf. Table 2). However, the
expected gain from MPI implementation may be quite different because of the
potentially expensive exchanges between processors.

6 Conclusion

The present work gives a new illustration of the ability to use a domain decom-
position method coupled with the nonsmooth contact dynamics approach for
dealing with large-scale dense granulates. The proposed approach is as close as
possible to the standard nonoverlapping DDM for large-scale linear problems,
more precisely the FETI approach. As the interfaces are made of grains, the
features of the interface matrix has been systematically studied, for example
when a grain belongs to more than two subdomains. A mechanical analysis
of a biaxial test exemplifies the relevancy of the results in spite of the chaotic
behavior of such a system with a large multiplicity of solutions. The solutions
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may depend locally on the substructuring procedure but the global behavior
of the granular medium is preserved. We rediscover the sensitivity, with re-
spect to the discretization, of a ductile material involving localization effects
such as shear bands, of plastic nature, that it is modeled by finite elements
or by discrete elements. However the discrete elements are not determined
by a discretization process but imposed by the microstructure. Moreover the
forthcoming behavior is not strongly oriented by the early localization because
of the appearance and the vanishing of multiple different shear bands in dry
granulates.

The numerical efficiency, especially the scalability, is recovered if a single
NLGS iteration is performed in each subdomain in the first stage of the algo-
rithm [23]. It is not necessary to iterate many times in the first stage because
the second stage, characterized by the quasi-diagonal interface matrix, does
not transfer long-distance correlation through subdomains. Likewise it is not
possible to improve the convergence by adding a coarse problem as in classical
computational structural mechanics based on the finite element method. Be-
fore extracting a macro-homogenized model from the interface problem it is
necessary to enrich this interface problem. Such an approach has been devel-
oped in [4] from a theoretical and semi-analytical point of view. As a conclusion
of this study the convergence of the so obtained algorithm does not seem to be
significantly accelerated whereas the computational cost of the second solution
stage strongly increases. Consequently we propose now to develop, not a non-
smooth solver on a single time step but a multiscale time integration scheme
over a time interval for granular systems. The principle would be to combine
an explicit linear prediction of the interface forces and an implicit correction
of the contact impulses inside the subdomains.

Finally the main drawback of the NSCD approach is the possible indeter-
mination of the contact impulses generated by severe kinematic constraints,
especially for dense granular systems. This is conveyed in the singularity of
the Delassus matrix whose null space represents the self-equilibrated impulse
networks. To overcome this indetermination, from an algorithmic viewpoint,
represents an important challenge. To conceive a time integration scheme dur-
ing a process requires to tackle this topic.
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