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Scalability and Efficiency of Push-Driven

P2PTV Systems
Cyril Cassagnes, Damien Magoni, Hyunseok Chang, Wenjie Wang, and Sugih Jamin

Abstract—Television transmitted over IP (IPTV) presents nu-
merous opportunities for users as well as service providers,
and has attracted significant interest from industry as well as
research communities in recent years. Among the emerging
IPTV delivery architectures, the peer-to-peer based delivery
mechanism is considered attractive due to the relative ease of
service deployment and potential bandwidth savings. However,
the question of how well P2PTV networks would support a
growing number of users has not been fully investigated so far. In
this paper, we try to address this question by studying scalability
and efficiency factors in a typical P2P based live streaming
network. Through the use of the data provided by a production
P2PTV network, we carry out simulations whose results show
that there are still hurdles to overcome before P2P based live
streaming could become widely deployed.

Index Terms—P2PTV, overlay network, peer churn, peer
selection.

I. INTRODUCTION

W ITH the increasing broadband speed and contin-

ued improvement in video compression technologies,

Internet-based television (IPTV) services have been experienc-

ing sustained growth lately. When it comes to realizing IPTV

services in today’s Internet, peer-to-peer (P2P) based delivery

mechanism is considered an attractive option because of the

ease of deployment and potential bandwidth savings.

In a typical P2P based IPTV network, clients retrieve video

streams by connecting to the broadcast server or any other

existing clients that are already connected to the network.

The broadcast server generates packetized video streams by

encoding live TV signals captured from satellite. After joining

the network, clients can contribute their uplink bandwidth by

forwarding the incoming video streams to other clients needing

those streams. To allow more efficient utilization of client’s

uplink bandwidth, the video streams are typically distributed

via the P2P network in the unit of chunks (e.g., [1]) or sub-

streams (e.g., [2], [3]). Chunks are time-divided segments

of packetized streams, while sub-streams are space-divided

subsets of the original streams (e.g., layers in H.264 SVC). The

chunks or sub-streams are either pushed by forwarding clients,

or pulled by receiving clients, depending on the P2P sharing

protocol used. In the pull-driven delivery, clients search and

pull individual stream units in an opportunistic way, while
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in the push-driven approach, a client establishes a virtual

connection to a forwarding client, and continues to receive

data pushed from the forwarder until either end terminates the

connection. Push-driven delivery design was shown to be more

efficient than pull-based counterpart in recent work [4].

Compared to traditional P2P data sharing or progressive

streaming of video on demand, optimizing end-user experience

in the P2P based live streaming environment is a non-trivial

task because of its more stringent delay constraint and limited

shared buffer space. In addition, upload capacity constraints

and inherent churning behavior of participating clients can

add to the difficulty in realizing a fully scalable delivery

system. Motivated by our earlier studies on the operational

scalability of P2P based live streaming [5], [6], we explore the

impact of various peer selection algorithms as well as various

overlay configuration parameters on the system performance.

Configuration parameters includes the number of sub-streams,

the buffer capacity, and the number of search attempts. In our

study, we focus on the push-driven, sub-stream based stream-

ing architecture, and perform detailed simulations instantiated

with the data contributed by a production system employing

such an architecture. Upload capacity and session length are

important parameters for the P2P network as they determine

its scalability and churn.

The remainder of this paper is organized as follows. Section

II outlines the previous work done on P2P based live streaming

systems. Scalability of such P2PTV networks relies on many

characteristics whose impacts on the networks have not been

analyzed in depth, to the best of our knowledge. To provide

a realistic and fined-grained study of P2P live streaming,

Section III presents realistic parameters derived from the

analysis of 9.8M sessions collected by the professional-grade

Zattoo P2PTV network. Section IV presents evaluation results

obtained by simulating the architecture of the Zattoo P2PTV

which is one of the largest production P2PTV providers in

Europe and identifies the parameters with the most effect

on the scalability and efficiency of P2PTV networks. Finally,

we conclude the paper by summarizing our contributions and

presenting future research directions in Section V.

II. RELATED WORK

With the P2PTV’s growing popularity, new P2PTV systems

have been proposed, which include ZigZag [7], PRO [8],

Anysee [9], and PULSE [10], [11]. Besides such proposals,

a large number of measurement papers on existing P2P live

streaming systems have been published as well, characterizing

workloads [12] or specific systems such as Telefonica IPTV

service [13] and CoolStreaming [14], [15].



Being one of the most popular operational P2PTV systems,

PPLive has been extensively studied by researchers [16], [17],

[18]. Silverston et al. [19] characterized various P2P IPTV

traffic generated by PPLive, PPStream, Sopcast and TVants,

in terms of the transport-level protocols used and session

behaviors.

In addition, numerous research proposals for improving

existing P2P-based live streaming systems have been pre-

sented, ranging from feasibility study [20] and upload capacity

analysis [21], to locality awareness algorithm proposal [22]

and stochastic fluid theory for P2P streaming systems [23].

Many proposals based on robust incentives [24], altruism

[25], contribution awareness [26] and sub-stream trading [27]

aim at avoiding free-riders in large scale systems that have

appeared. Most recent works explore topological properties of

practical P2P streaming [28]. Small et al. [29] address the

subject from a theoretical perspective and propose a heuristic

called Affinity which considers in its neighbor selection process

multiple parameters such as upload capacity, playback delay

and bandwidth cost, in order to build optimal P2P topology

for live multimedia streaming.

III. PEER CHARACTERISTICS MEASURED IN A REAL

P2PTV NETWORK

In order to carry out realistic simulations and to achieve

a fine-grained analysis of the scalability and efficiency of

a P2PTV network, we must take into account many peer

characteristics. To this end, we collected data from the Zattoo’s

P2PTV network which is a push-based P2P streaming network.

In Zattoo, peer selection is based on delay measurements

between peers, as well as their topology and geographic

information (e.g., IP address, AS number, country, etc.). The

network covers eight European countries, serving over 3

million registered users. The data used in our analysis originate

from a Zattoo’s session database collected during a two-week

period from March 10th to 24th, 2008. Each session in the

database records user’s stream watching behavior including

start/end timestamps, number of bytes uploaded/downloaded,

etc. The number of sessions recorded amounts to 9.8 million

sessions covering 198 channels and 8 countries. From the

collected data, we identify four main peer characteristics that

may impact a P2PTV network:

1) Session length (Section III-A).

2) Inter-arrival time (Section III-B).

3) Upload capacity (i.e., redistribution factor, Sec-

tion III-C).

4) NAT compatibility (Section III-D).

A. Session length

Figure 1 shows the distribution of session lengths with the x-

axis using a log scale. As already observed in several previous

works [13] [16] [17], its Cumulative Distribution Function

(CDF) fits a log curve. On this figure, we can observe that

80% of the peers have sessions shorter than 10 minutes. This

is a typical value also observed in prior works, but it can vary

depending on both channel contents (e.g., news-only, movie-

only channels, etc.) and users’ channel surfing behavior. It is

important to note that the shorter the session length is, the

higher the rates of churn is. High churn rate could have an

adverse effect on the stability of the overlay.
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Fig. 1. Distribution of the peers’ session length.

B. Inter-arrival time

Figure 2 shows the distribution of the inter-arrival times

measured for one popular channel. We have used a log scale

for the x axis. We can observe that the CDF distribution

roughly fits a log curve for inter-arrival times between 1 and

6 seconds. On this figure, we can locate the knee of the

distribution at roughly 10 seconds for the vast majority of the

peers (i.e., 96%). This means that the start times of the sessions

are often very close to each others suggesting flash crowd

patterns. It is not common that two following starting sessions

are separated by a long time interval. For this popular channel

the maximum inter-arrival time recorded was 300 seconds but

this value can vary depending on both channel content and

user behavior.
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Fig. 2. Distribution of the inter-arrival time.



C. Upload capacity

We define the ratio of one incoming stream that can be

redistributed to other peers as a redistribution factor, and label

it with k. The redistribution factor k may take a value from

0 to infinity depending on the peer’s uplink capacity. For

instance, if k = 1, it means that the peer can redistribute a full

stream, whereas if k = 2, it means that the peer redistributes

two copies of the stream. Fractional values are also possible

as a full stream can be divided into multiple sub-streams. Sub-

dividing a stream allows a peer to redistribute only a subset

of the stream to other peers; for instance, if k = 0.5, it

means that the peer redistributes only half of the stream due

to its uplink bandwidth constraint or buffer availability. The

maximum number of peers able to connect to the system will

depend on the average value of k: if it is below 1, the system

can not scale and the overlay will reach a maximum size.

Figure 3 shows the distribution of the ratio k, where k is

the upload rate divided by the download rate. Upload rate is

measured between the peer and a specific server located in

Europe. As bandwidth measurement depends on many factors

and is very difficult to do, the values reported here may not be

accurate. The CDF distribution looks like a log plot although

it does not fit a log curve. The distribution is therefore highly

heavy-tailed.The average value of k computed from all the

distribution values is equal to 0.89, thus still below 1 (and its

value is not significant since the distribution is not normal).

We found that 50% of the peers can redistribute less than 50%

of the full stream (i.e., k < 0.5), while 82% of the peers can

redistribute less than the full stream (i.e., k < 1). A P2PTV

network relying solely on these redistribution values cannot

scale.
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Fig. 3. Achievable redistribution factor.

D. NAT compatibility

In today’s Internet, the majority of peers are behind some

type of NAT gateways which can in some cases block the

communication between two peers [30]. Therefore a typical

P2P sharing software implements a NAT traversal method [31]

in order to facilitate communication between peers behind

NAT gateways. Zattoo’s NAT traversal process can detect

six different NAT configurations: open host, full cone, IP-

restricted, port-restricted, symmetric, and UDP-disabled. Each

NAT configuration is assigned a distinct NAT type number,

from 1 (open; the least restrictive type) to 6 (UDP-disabled;

the most restrictive type).
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Fig. 4. NAT type compatibility matrix.

Figure 4 shows the reachability among the various NAT

types. Consider a pair of peers whose NAT types are repre-

sented on the row and column of the matrix. Notice that the

matrix is symmetric; it does not matter whether the parent peer

or the child peer is represented in the row or column. At the

intersection lies the reachability. If the cell is white, the peers

can connect to each other. If the cell is black, the peers cannot

connect to each other.

Figure 5 shows the distribution of the NAT types of the

peers. Most peers have a NAT type of 4 or 5. Some peers

have a NAT type of 1, 2, or 6. There is a negligible number

of peers with NAT type 3.
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Fig. 5. Distribution of the peers’ NAT type.

Given the previous distribution and the matrix, the first

chance connectivity probability for a peer to connect at a

given layer of depth n > 1 is around 56% (total area minus



black area divided by total area, p1 = (10000 − (1800 +
2000 + 625))/10000 = 0.5575). On the other hand, if the

peers try to optimally connect to each other in order to

maximize redistribution, the average connectivity probability

for the peers to connect to a layer of depth n is around 90%.

In this optimal configuration, all type 6 peers connect to type

1 peers, 60% of type 5 peers connect to type 2 peers, all type

4 peers connect to type 4 peers, and all type 2 peers connect

to type 5 peers. The remaining 40% of type 5 peers cannot

connect to anyone, thus giving 10% chance of connection

failures.

IV. SIMULATION OF A P2P LIVE STREAMING OVERLAY

In this section, we propose several enhancements in con-

structing a P2P overlay and we evaluate them by carrying out

detailed simulations.

A. Simulation parameters and metrics

Our simulation code faithfully implements Zattoo’s peer-

division multiplexing protocol for P2P based streaming

[3]. The simulation is then performed using the network

manipulator software called nem [32] which is driven by a

packet level discrete event engine. An Internet map consisting

of 4,200 nodes is used as the underlying topology [33]. Each

simulation experiment lasts for 12 hours, and analysis is done

only for the last 6 hour period when the system is in a

steady state regime. We repeat each experiment 30 times, and

we report the average taken from those 30 runs. We draw

from the peer characteristics described in Section III to set

the following input parameters in our simulation: (i) session

length, (ii) NAT type, and (iii) upload capacity (k factor).

We randomly instantiate these parameters so that the resulting

distributions match those reported in Section III. Table I shows

the remaining input parameters.

TABLE I
SIMULATION PARAMETERS.

Parameters Values

Number of simulation runs per scenario 30

Source capacity 50 peers

Maximum size of candidate peer list 40 peers

Join timeout period 0.25 sec.

Search period 2 sec.

Number of substreams per stream 1, 2, 4, 8, 16

Buffer capacity 3, 6, 12 sec.

Number of peer search attempts 1, 2, 4

Our simulation models Zattoo’s peer-division multiplexing

based P2P streaming network, except that peer selection is

purely random. We consider alternative peer selection algo-

rithms to investigate their impact in Section IV-C. In order to

assess the performance of the P2P live streaming system, we

study the following output metrics.

1) View time ratio: This metric is calculated by peer’s

view time divided by the peer’s life time. From this

metric, one can infer how much time is devoted to

joining the P2P overlay and searching for available

streams before starting to watch a given channel.

2) Ratio of kicked out peers: This metric is calculated

by the number of peers that could not connect to the

P2P overlay during a given period, divided by the total

number of new peers joining during the period.

3) Average number of interruptions per peer: This

metric is calculated by the number of video viewing

interruptions for all peers in a given period, divided by

the total number of new peers joining during the period.

B. Influence of peer characteristics on simulation results

We analyze the above output metrics by varying the number

of newly joining peers per hour, which is defined as the traffic

load on the P2P network. We assume that a stream consists of

16 substreams, and that each peer’s buffer can store 6 seconds’

worth of streaming data. Furthermore, each peer is assumed

to attempt two rounds of searches when the peer detects any

missing substream in its buffer.

1) Influence of the session length: Figure 6 shows the

average view time ratio of peers with different traffic load

(i.e., number of newly added peers per hour). To observe the

influence of the session length on view time ratio, we set

the redistribution factor k to 1. Different NAT configurations

are not taken into account in this experiment. Three sets

of simulations are performed, one with a constant session

length of 12 minutes, another with 24-minutes, and finally

with variable session lengths following the distribution shown

in Figure 1. Twelve minutes is the average value of the

distribution shown in Figure 1. The small difference in the

session length curve is due to the necessary startup join time to

connect to the network. When sessions are shorter, this startup

join time increases, and is no longer negligible, as is the case

of the real session length distribution (i.e., around 4%). It turns

out that regardless of the session length distribution, the view

time ratio is close to 100%. So the number of interruptions is

minimal and the short session length allows the overlay not to

saturate. We do not show the amount of kicked out peers as

it is equal to 0 for all these simulations with k = 1.

2) Influence of the upload capacity: Figure 7 shows the

average view time ratio of peers with different traffic load. To

highlight the influence of the redistribution factor k on view

time ratio, we use a constant session length of 12 minutes. As

in the previous case, different NAT configurations are not taken

into account in this scenario. We run 3 sets of simulations,

with fixed redistribution factors k = 1 and k = 2, as well

as variable k following the distribution shown in Figure 3.

The figure shows that when realistic redistribution factors k
are used, the overlay does not scale. That is, the view time

ratio falls rapidly as the traffic load increases. Note that the

traffic load is a loose underestimate of the network capacity

(as it is computed with the average session length). We can

see in Figure 7 that the network starts to get saturated with

a traffic load around 500, but not 250, because most of the

sessions are much shorter than the average 12 minute length,

and thus more sessions are needed to overload the network.
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Fig. 7. Average peer view time vs. traffic load.

We observe that at a traffic load of 1,000, only 50% view

time ratio is achieved. At a load of 2,000, view time ratio is

as low as 5%. At this load, most peers cannot connect to the

network as it is completely saturated. The view time ratio is

close to 100% for k = 1 and k = 2 (as already seen above for

k = 1). This result illustrates the importance of having peers

with k > 1 for the P2P overlay to scale.

In order to see if the view time ratio decrease is due to a

higher startup join delay or because peers cannot connect to

the overlay, we look at the number of peers that are kicked

out of the network. When peer’s view time ratio is very low

(e.g. below 1%), it may be because the peer could not get

the stream and left prematurely). Figure 8 shows the average

number of peers kicked out as a function of the traffic load.

To observe the influence of the redistribution factor k on the

number of kicked out peers, we use the same parameters as

above. The ratio of kicked out peers is equal to 0% for k = 1
and k = 2. However, when we use the real distribution of

k, the number of kicked out peers increases rapidly as the

traffic load increases. Figures 7 and 8 together show that the

decrease of view time ratio is mainly due to the increase in
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Fig. 8. Number of peers kicked out vs. traffic load.

the number of kicked out peers. These results confirm that the

real k distribution is a limiting factor that prevents the overlay

from being scalable in itself.

3) Influence of the NAT compatibility: Next, we examine

the average view time ratio when we use realistic redistribution

factors k and session lengths taken from Figures 3 and 6

respectively. Figure 1 shows the average peer view time ratio

as a function of the traffic load. We run two sets of simulations,

capturing two different scenarios. In the first scenario, every

peer has a NAT type 1 configuration, while in the second

scenario, each peer is assigned a NAT type taken from the

realistic NAT type distribution shown in Figure 5. When the

number of peers is small, everybody can connect directly to the

source, and the view time percentage is close to 100%. When

the number of peers increases, peers have to connect to each

other to create a P2P network. Due to the NAT compatibility

issues and the limitations caused by the k factor, the view

time ratio gradually decreases to 75% and 60% for the first

and second scenarios respectively. The relative gap between

the first and second scenarios depends on the traffic load. It

starts at close to 0% when the load is 250 or less, and then

increases up to roughly 15% when the load is 4,000 peers

per hour. In the simulations, peers perform only two rounds

of searches for available peers before quitting, which explains

why the relative difference between the two scenarios is much

more than the theoretical 10% defined at the end of Subsection

III-D. The latter figure can be reached only after a sufficient

amount of tries. With only one try, there is a relative difference

of 43% on average between the two. Also, due to the upload

capacity limitation, each peer redistributes only a part of the

full stream, resulting in the view time ratio decreasing to 75%

at traffic load 4,000 in the first scenario. Results in this plot and

the next one are different from the ones presented in Figure 7

and Figure 8 because here the session length of the peers is not

fixed but instantiated realistically by following the probability

distribution shown in Figure 1. The values of the randomly

set lifetimes are on average much shorter than the fixed 12

minutes used in the previous subsection. That explains why

the percentage of viewing time is much higher in Figure 9
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Fig. 9. Average peer view time vs. traffic load.

than in Figure 7 and why the percentage of kicked-out peers is

much lower in Figure 8 than in Figure 10. As the peers remain

on average less time in the overlay, the traffic load must be

much higher to saturate the overlay in order to prevents new

peers to join and view the stream.

As before, we consider the average number of kicked out

peers that account for the decrease of the view time ratio.

Figure 10 plots the average percentage of peers that could

not connect to the P2P network as a function of the traffic

load. We use the same parameters as in the previous figure.

When the load is equal to or less than 250, every peer can

connect directly to the source, and there is no kicked out peer.

When the number of peers increases, the number of kicked out

peers with realistic NAT type distribution gradually increases

to around 26% for a load of 2,000 and 31% for a load of

4,000. As the view time ratio is equal to 61% at a traffic

load of 4,000, we can conclude that the decrease in view

time ratio is mainly accounted for by the kicked out peers.

Only a small part is due to the startup join time. When all

peers have NAT type 1 configuration, they can connect to each

other. Therefore, although the number of kicked out peers does

increase due to the k factor, it is always relatively 15% or more

below the kicked out peers compared to the realistic NAT type

case. Based on all these results, we conclude that in a P2PTV

overlay network, the NAT compatibility issue can create a non

negligible loss of peers.

C. Influence of peer selection algorithms on simulation results

Next, we present the results that highlight the impact of

peer selection algorithms on the performance of a typical P2P

live streaming system. When a new peer joins an overlay, it

performs its own peer selection algorithm to choose the target

peer(s) to connect to. If the peer selection is done randomly,

the resulting overlay could become quite inefficient in two

perspectives. First, the overlay could become too deep and not

wide enough, thus incurring large playback lags. Secondly,

the overlay could experience a lot of churns, thus incurring

frequent playback interruptions for users.
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Intuitively, P2PTV overlays could be made more efficient

by placing more stable and high bandwidth peers closer to

the source. The peer selection algorithm is a good place to

influence the evolution of the overlay as we can more or less

control where the peers will place themselves in the overlay. If

a peer selection algorithm manages to put stable peers close to

the source, this should reduce the overall churn in the overlay.

Also, if this algorithm manages to put high bandwidth peers

close to the source, this should increase the capacity of the

overlay while keeping a reasonable depth in the overlay.

A carefully designed peer selection algorithm should im-

prove the efficiency of a streaming overlay by incorporating

dynamic parameters such as upload capacities, session lengths,

distances among peers and overlay depth positions. Such

modifications may impact both P2PTV overlays and peers.

According to the session data collected by Zattoo, the

CDF of the redistribution factor k follows an exponential

distribution, where 50% of the peers can redistribute less than

50% of the full stream (i.e., k < 0.5), and 82% of the peers can

redistribute less than the full stream (i.e., k < 1). Following

this observation, we assign uplink capacity to individual peers

so that the resulting uplink distribution becomes identical to

the empirical distribution. The NAT type of a peer, which

determines the peer’s reachability in the overlay, is also taken

from the empirical distribution of NAT types. Finally, session’s

inter-arrival time and session length are all instantiated from

the corresponding exponential distributions.

A peer trying to connect to other peers to get all necessary

substreams is called an orphan peer. It sends search messages

to discover other peers, sends join messages to connect to

available peers, and finally constructs the full stream from

them. A peer who is able and willing to offer a part of

or all requested substreams for an orphan peer is called an

adoptive peer. An adoptive peer positively answers to the

search message of an orphan. Once having multiple positive

answers from potential adoptive peers, an orphan has to choose

to which peer it should send a join message. We evaluate

the following four peer selection algorithms all relying on

available information:
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• Random: an orphan peer tries to connect to a randomly

selected adoptive peer.

• Local: an orphan peer tries to connect to its closest

adoptive peer (in terms of the hop distance).

• Upload: an orphan peer tries to connect to the adoptive

peer proposing the highest upload amount (measured in

terms of the number of substreams).

• Uptime: an orphan peer tries to connect to the adoptive

peer which joined the overlay the earliest as it has the

highest probability of remaining in the overlay.

Figure 11 shows the average peer view time ratio as a

function of the traffic load. We can see that the effects of

the various algorithms on the view time do not make much

difference compared to random peer selection. Although there

is 7% difference between the worst (uptime) and the best (ran-

dom) algorithms at a traffic load of 2,000, and 5% difference

at a load of 4,000, the differences are not significant. This

somewhat unexpected result implies the relative importance

of the user level characteristics such as upload capacity and

session length, over the system level configurations such as

the peer selection algorithms.

Figure 12 shows the average percentage of peers kicked

out as a function of the traffic load. Compared to the previous

results, the decrease in view time ratio, as illustrated in Figure

11, is mainly due to peers being kicked out of the network.

Only a small percentage is caused by the interruptions result-

ing from peer disconnections and reconnections.

Figure 13 shows the average number of interruptions per

peer as a function of the traffic load. We observe that the

average number of interruptions per peer gradually increases

when the number of peers increases until reaching traffic

load 2,000. When the number of new peers increases, the

overlay grows and the average churn rate becomes higher, and

thus leading to more frequent connections and reconnections.

However, when the overlay is getting saturated by new peers,

those new peers cannot manage to join the overlay and are

kicked out. The number of connections and reconnections does

not grow as much in this case because those kicked out peers

do not significantly contribute to this number. However, the
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Fig. 12. Average percentage of peers kicked out vs. traffic load.
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Fig. 13. Average number of interruptions per peer vs. traffic load.

total number of peers still increases, and thus the ratio does

not increase anymore.

Two remarks can explain the marginal improvements made

by the alternative algorithms compared to the simple random

selection algorithm. First, the sessions are typically short-lived.

Roughly 50% of the sessions are shorter than 1.5 minutes. This

creates a lot of churns that render the evolution of the overlay

hard to control over time. Second, the redistribution factor

distribution is heavily lopsided towards small values; 50% of

the peers have an upload capacity lower than 50%. Thus, peers

with long sessions may have a low upload capacity and not be

so useful. It turns out that these two factors impact the view

time ratio much more than the various selection algorithms.

When traffic load is high, the algorithm that performs better

than random selection is the local algorithm.

D. Influence of overlay parameters on simulation results

We now study the influence of three important parameters

used in the overlay which are the number of substreams per

stream, the buffer capacity and the number of search attempts.
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Fig. 15. Impact of the number of substreams on the interruptions.

1) Influence of the number of substreams: In P2PTV sys-

tems such as Zattoo, a full stream is subdivided into multiple

substreams. Here we study the impact of the number of

substreams that constitute a full stream. In this experiment,

we change the peer buffer size so that it can store 12 seconds

of streaming data. we keep the other parameters the same as

previously, such as realistic inter-arrival time, random peer

selection algorithm, and two search attempts. Figure 14 shows

that the view time ratio is increasing when the main stream is

divided into multiple substreams. The redistribution is easier as

peers can allocate their uplink bandwidth on a finer granularity.

As a result, substreams improve system scalability.

Figure 15 shows that the number of interruptions increases

with the number of substreams, due to the difficulty in finding

multiple different substreams that are roughly in sync. In fact,

the substreams increase the control traffic overhead. However,

this is not an issue while the view time ratio remains high.

2) Influence of the buffer capacity: We now use the same

number of search attempts as above with the random peer

selection algorithm. To observe the influence of the buffer

capacity, we increase it from 3 to 12 seconds. We show in

Figure 16 the impact of the buffer capacity on view time ratio
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Fig. 17. Impact of the buffer size on the interruptions.

and the number of interruptions per peer. Under the heaviest

load of 4,000 new peers per hour, the view time ratio is roughly

60% for 16 substreams and 45% for 1 full stream. This shows

that splitting the stream does significantly improve the viewing

time. The buffer time however, has no real impact on the

viewing time. When observing the number of interruptions

shown in Figure 17, we see that it grows with the traffic load

and is higher when the stream is divided into 16 substreams.

When the stream is not divided, a longer buffer duration

reduces the number of interruptions. When the traffic load

increases, the number of interruptions for a small or medium

buffer tend towards the same values whether the stream is split

or not. From the previous simulation results, it appears that the

division of the full stream into several substreams increases the

number of interruptions (especially under low traffic load) but

improves the amount of viewing time. Moreover, a large buffer

capacity can reduce the number of interruptions but does not

affect the view time ratio. Thus, the best solution is to divide

the full stream in many substreams and use a buffer with a

large storage capacity (i.e., 12 seconds in our simulations).
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3) Influence of the number of search attempts: We now

study the impact of the number of search attempts. We

set a buffer capacity of 12 seconds and use the random

peer selection algorithm.Regardless of the number of search

attempts, Figure 18 shows that the number of interruptions

does not change and remains low. A high number of attempts

with several substreams improve the overlay scalability. Figure

19 shows the benefit of using multiple substreams. With

substreams the view time ratio reaches 70%. When a peer

attempts two rounds of searches, the view time ratio curve

reaches 60%, and finally with four rounds of search attempts

the view time ratio falls below 50%. Figure 20 shows the

network saturation point. When this point is reached, new

peers start to get kicked out. This number is minimal when

the stream is divided into multiple substreams, and the number

of search attempts is equal to 1. If peers increase the search

attempts at the saturation point, the saturation phenomenon is

only amplified. Dividing the stream is necessary to ease the

redistribution while the number of search attempts helps peers

find adoptive peers. Without using substreams, the overlay

becomes less resilient and increasing the number of search

attempts does not help find available adoptive peers.
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V. CONCLUSION

P2PTV network is a content delivery architecture that is

particularly attractive due to the relative ease of deployment

and its potential bandwidth savings. However, as it gains in

popularity, we need to evaluate the behavior of large scale

P2PTV network under heavily loaded conditions. Such heavy-

load scenarios have not been fully investigated in the literature

due to the lack of measurement data. In this paper, we studied

several factors that can affect the scalability and efficiency of

typical P2PTV network by performing detailed simulations. In

order to instantiate realistic simulation settings, we analyzed

9.8 million sessions collected from the professional-grade Zat-

too’s P2PTV network. In this paper, we demonstrated that both

the redistribution factor and peers’ available upload capacity

have a strong impact on the P2PTV network’s scalability.

Contrary to the intuition, we found that the peer selection pro-

cess plays a relatively marginal role in improving the P2PTV

network scalability. Instead, we observed that the redistribution

factor and session lengths have far more significant effect

on the maximum capacity of the P2P overlay. Finally, we

demonstrated the influence of the buffer size and peer search

parameters on the overall efficiency of the overlay. Building

a scalable and efficient P2P overlay thus requires a careful

consideration of the parameters we have studied in this paper,

including peer characteristics as well as overlay configuration

parameters. Our contribution is therefore multifold and can be

summarized as follows:

• We have analyzed 9 million P2PTV sessions from a real

production network and we have derived the probability

distributions of the most important parameters such as

session length, redistribution factor, inter-arrival time,

NAT type. These distributions can be useful to other

researchers for realistically simulating P2PTV networks.

• We have simulated a P2PTV network and have shown

that the redistribution factor is the parameter that has the

highest impact on the viewing time and the amount of

kicked out peers.

• We have also shown that peer selection strategies have

nearly no influence upon these values.



• We have finally shown that configuration parameters such

as the number of substreams, the buffer duration and the

number of search attempts do have an impact but only

when the traffic load is high.

Our future work will be aimed at studying new methods to

limit peer churn and relieve the limitations imposed by low

upload capacity peers. For example, the positioning of long

lived peers at the top of the distribution tree could help to

reduce churn. Moreover, the filtering of low upload capacity

clients could also help to achieve a redistribution factor close

to one thus making the overlay scalable. We plan to carry out

further experiments to study these important issues.
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