
HAL Id: hal-00689768
https://hal.science/hal-00689768

Submitted on 20 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

WaterCOM: An Architecture Model of Context-oriented
Middleware

Keling Da, Marc Dalmau, Philippe Roose

To cite this version:
Keling Da, Marc Dalmau, Philippe Roose. WaterCOM: An Architecture Model of Context-oriented
Middleware. FINA Workshop help at The 26th IEEE International Conference on Advanced Infor-
mation Networking and Applications (AINA-2012), Mar 2012, Japan. pp.1-8. �hal-00689768�

https://hal.science/hal-00689768
https://hal.archives-ouvertes.fr


WaterCOM: An Architecture Model of Context-Oriented Middleware

Keling DA
IUT Bayonne

LIUPPA, UPPA
Bayonne, France

Email: kda@univ-pau.fr

Marc DALMAU
IUT Bayonne

LIUPPA, UPPA
Bayonne, France

Email: dalmau@univ-pau.fr

Philippe ROOSE
IUT Bayonne

LIUPPA, UPPA
Bayonne, France

Email: roose@univ-pau.fr

Abstract—Integrating physical and information space into
applications increases application’s complexity and develop-
ment difficulty. In Ubiquitous environment, context collection,
aggregation and notification raise complex scientific problems
and new challenges. In this paper we address these chal-
lenges by proposing a conceptual context-oriented middleware
architecture. We first discuss the reason to use context in
ubiquitous computing, and context-oriented middleware re-
quirements. Then we present our approach by describing a
service-oriented architecture model. It provides a dynamic
adaptation ability, supports multiple context models and multi-
domain context consumer. Finally, we discuss the benefit of
our conceptual approach by describing and comparing current
context middlewares.

Keywords-Context-awareness; Middleware; Ubiquitous com-
puting; Software architecture;

I. INTRODUCTION

Ubiquitous computing was first proposed by Mark Weiser
in September 1991 as: ”Ubiquitous computing is the method
of enhancing computer use by making many computers
available throughout the physical environment, but making
them effectively invisible to the user” [1].

According to the previous definition, ubiquitous com-
puting must be pervasiveness, convenience and adaptable.
The future ubiquitous applications face with heterogeneous
and dynamic environments. They must be able to adapt
(supervision/self-*) and react dynamically to the environ-
ment (heterogeneous hardware and software environment)
and to the context [2] (user and environment context).

Context middleware is one solution to collect low-level
context information (e.g. GPS position, temperature of envi-
ronment, time and date, etc) and provide high-level context
information (e.g. someone come into the meeting room, the
meeting is interrupted; Mike drives his car to go to work;
etc) more suitable to make long term and pertinent decisions.
In ubiquitous environments, the context middleware needs
to take care of the context collection, and aggregation to
provide a high-level context model reasoning, and a context
notification mechanism.

The paper structure is as follows: Section 2 discusses
motivation and objectives via the definition of the con-
text, the motivation for context-oriented middleware and
its definition. Section 3 presents details of our conceptual

architecture approach. Section 4 describes and compares
current context middlewares and discusses the benefits of
our approach. Section 5 concludes the paper.

II. MOTIVATION

A. What is Context?

The context includes the operating environment and user’s
utilization environment. The operating environment includes
any observable information (i.e. any environment informa-
tion that can be captured and measured) by the software
system, such as end-user input, external hardware devices
sensors, program instrumentation, network infrastructure, etc
[3]. The user environment means anything about the user,
which includes user’s profile intents, and user’s context
information.

B. Why get and use Context information is difficult?

To use context information, we firstly need to collect
it. Then make it semantically interpretable, and therefore
ready for analyze. To collect context information in a highly
dynamic distributed environment is a challenge. According
to the previous context definition, it is a very wide set of in-
formation. There are various types of context providers, and
the environment is heterogenous. That raises the problem
of ’how to collect context information from heterogenous
sensors with minimum recurrence code and maximum code
reuse’. In addition, there is another problem in mobile
environment, which is ’how to continue acquiring context
information’.

After collection, the use of raw data to serve analysis
raises the following difficulties: i) It must be abstracted to
make sense for context consumers. A GPS coordinate is
meaningless for a map service application. It needs to be
translated to road or building name, etc. ii) It must allow
context consumer accessing to all information level. Context
consumers have different emphases with context informa-
tion. Some need raw data while others need interpreted data.
iii) Context consumer needs a generic and uniform access in-
terface. That will simplify context consumer’s development
and provide code reusability. To deal with such challenges
and difficulties, context oriented middleware is one of the
more powerful solutions.



The process of context information and the build of
high-level context models consume computing resources,
which may be critic on embedded and/or mobile devices
(wireless sensors, smartphones, tablet, etc.). Changes in the
environment must be detected at run time and therefore the
high-level model must also be built in real time.

In pervasive environments, computing resources are lim-
ited. Context middleware needs to adapt itself to get aware
of surrounding resources (e.g. benefit more powerful com-
puting resources, save battery life, explicit information of
neighbor, etc.) In the next section, we present our context-
oriented middleware solution.

C. What is Context-oriented Middleware?

A Context-oriented Middleware (CM) is a middleware
aware of its context. The context is both (contextual) infor-
mation as well as the architecture of the application running
above and of the CM itself. A CM provides mechanism to
dynamically reconfigure the application and the CM itself.
See our architecture model WaterCOM in figure 1.

Figure 1: Architecture model WaterCOM

Our longterm research is to design and to implement
an architecture of Adaptation System (AS). An adaptation
system is a system providing application adaptation accord-
ing to the environment. In an adaptation system, there is a
middleware layer and an adaptation platform. An adaptation
middleware layer composes adaptation middleware, context
middleware and communication middleware. It provides
some mechanisms to achieve adaptation tasks. It is also a
layer that handles heterogeneity, communication and context
collection.

In addition an adaptation platform is also called Decision
Making system. A Decision Making system (DM system)
reasons and identifies context situation that the CM provides
according to high-level context model. If DM system decides
to execute an adaptation operation, the CM could be part of
the adaptation. It means that CM will be distributed into ex-
ecution environment. To be able to accomplish this purpose,
the architecture design of the CM should be distributed, with
loose coupling and can be dynamically reconfigured (hot
reconfiguration). Such CM architectures are called context-
aware middleware.

Context Middleware has the following requirements:
Firstly, sensors could be hardware sensors such as tem-
perature sensor, or software sensors such as system in-
formation collection component (e.g. CPU performance
monitor, network performance monitor, and memory usage
monitor). Hardware sensors are called physical sensor and
software sensors are logic sensors. CM provides a unified
context information service to its end-users (i.e. context-
aware application or Adaptation System) in a distributed
environment. It hides the complexity and the heterogeneity
of sensors. Secondly, in ubiquitous environment, context
information data is continuously created. Different kinds of
context users have different emphases. CM provides data
management services and filter context notification/query
services. It manages the data flow of contextual information.
Finally, information from physical sensors, called low-level
context is acquired. Without any further interpretation, it
can be meaningless, trivial, vulnerable to small changes, or
uncertain [4]. CM abstracts low level context information to
provide high-level context models. These models are specific
to context reasoning and situation identification.

III. CONTEXT-ORIENTED MIDDLEWARE ARCHITECTURE

In this section, we introduce a generic conceptual Context-
oriented Middleware Architecture Model for pervasive envi-
ronment. It is based on a service-oriented architecture and
aims these requirements mentioned in section 2.

A. Architecture Model

The model is based on three services: Context Col-
lection Service (CCS), Context Model Building Service
(CMBS) and Context middleware Management Service
(CMS). (See figure 2). This architecture model allows our
context-oriented middleware to support dynamic adaptation,
multi-types of context model, and multi-domains of user.
This architecture is based on Kalimucho middleware [2],
which provides a runtime dynamic reconfiguration with
distributed environment. We will use Kalimucho’s Osagaia
[5] component-based model to implement it.

Context Collection Service composes of various Context
Collectors (CC (s)). Context Collectors are distributed on
network and executed on various devices. A CC has two
components, Sensor Monitor and Context Collection Com-
municator. Context Collection Service handles hardware and
software heterogeneous in order to provide low-level context
information. It is detailed in section 3.B.

Context Model Building Service composes of Aggregator,
Interpreter Repository and Model Repository. Context Model
Building Service builds instances of high-level context
model. We introduce it in section 3.C.

Context middleware Management Servic composes of
Low-level Context Manager, High-level Context Manager



Figure 2: Architecture model.

and Reconfiguration Manager. Context middleware Man-
agement Servie handles context resource discovery and
supervises component’s status. We detail it in section 3.D.

We define a high-level context model building process
for our architecture model. Context information is created
by operating environment (e.g. Applications, OS, Hardware,
etc.). Then, Context Collector observes context information
and send to Aggregator to execute high-level model building
process by using Interpreters. Model Repository keep an
instance per model and when an instance is changed Model
Repository will notify it to consumers (e.g. Applications,
adaptation system, etc.). See figure 3.

First, to build a high-level context model, we need to
reason on some low-level context data and interpret it. The
question is, how to get this data from a distributed envi-
ronment, and the condition to notify it (e.g. An application
needs to be aware of a specific temperature information
about room 10 at 9 o’clock each morning to construct
its context model, but there are many temperature sensors
online and they are in different location)? Low-level Context
Manager provides two services to resolve the first problem, i)
Context resource discovery service that allows Aggregator to
find what context information it needs. ii) Context resource
subscription service allows Context Collector to subscribe
as a context resource. We give more detail about Low-
level Context Manager in section 3.D.1. Context Collection
Communicator allows context consumer to subscribe to a
context notification. Context Collection Communicator no-
tifies context data under user’s given condition. (See section
3.B.2.)

Second, the end-user of CM needs to subscribe its Aggre-
gator(s) in order to get its context model instance. High-level

context manager works with Model Repository to provide a
high-level context information notification/query service and
Aggregator management. We introduce them in section 3.C
and section 3.D.

Finally, how CM supports hot-reconfigurations? Our
model is based on the Kalimucho middleware and its Os-
agaia component model as mentioned above making possible
dynamic reconfiguration while the middleware is running.
Hence the CM is natively reconfigurable during the runtime.
However, during the runtime, each component needs to know
its client’s or cooperator’s status (e.g. Context collector
needs to know its subscribers status, if someone being
migrated, Context collector will buffer the context data
and send it after subscriber’s migration). Reconfiguration
Manager will handle each instance of component’s status
and information.

Next we will first discuss the Context Collection Service
in detail.

B. Context Collection Service (CCS)

Context Collection Service is required in a distributed
architecture because context may need to be acquired from
different distributed sensors. CCS is a layer including many
different and distributed Context Collectors (CC). One CC
corresponds to one context source (e.g. a GPS sensor, a
temperature sensor, a CPU monitor service, etc). CC is
composed of two components: Sensor Monitor, and Context
Collector Communicator. Sensor Monitor collects context
information from sensors and controls sensors configuration
and functional state. Context Collector Communicator is
a unified communication service, hiding communication
complexity to context consumers.



Figure 3: Context middleware high-level context model building process.

1) Sensor Monitor (SM): Sensor Monitor directly deals
with (physical and logical) sensors API. It is like a data
access layer. In addition, SM provides a sensor control
interface to monitor and adjust sensors. The sensor API
specifies implementation of a SM. However, SM provides
a unique interface for all sensors. This interface includes:
connectSensor(), setSensorState() / getSensorState(), setSen-
sorConfig() / getSensorConfig(), and two exceptions: ExSen-
sorStateIncompatible and ExSensorConfigIncompatible.

Sensor state is the functional state, i.e. Start, Pause, and
Stop. Sensor configuration is a set of attributes depend-
ing on concrete sensor. A new configuration will adjust
functional of sensor. For example: a temperature sensor
provides temperature data in Kelvin unit. Context consumers
may acquire other units like Celsius or Fahrenheit. Hence,
Context consumer needs to configure CC using Context
Collector Communicator. It will call changeSensorConfig()
of SM.

2) Context Collector Communicator (CCC): Context
consumer acquires context information from Context Col-
lector by CCC. It means CCC is a unified communication
interface between consumer and Context Collector. One
CCC can deal with many context consumers. When context
consumers subscribed to CCC, they receive notification
when data is collected/updated. CCC deals with transparency
of data transport. It also allows the transfer of Sensor
configuration to Sensor Monitor. In addition, CCC provides
a conditional notification. Consumer can set a notification
condition like a notification frequency, a specific time, a
specific location. For example, if temperature more than
30C ◦, collect temperature every 10 min; else once every
hour.

To implement these functionalities, CCC needs to main-
tain a subscribers information table. It contains: consumer
id, consumer communication address, consumer state, and

notification condition as items. Notification condition is an
option. Context consumer state can be indicated: available
(i.e. waiting for notification), or busy (i.e. may be on
reconfiguration process, CCC will keep notification data into
buffers and send data while consumer state changed as avail-
able.), or unavailable (i.e. CCC will delete this subscriber
from the table). Consumer can set its state, communica-
tion address, and notification condition by calling CCC’s
methods (e.g. setConsumerState(), setConsumerAddr(), and
setNotificationCondition()).

CCS can also directly provide low-level context data to
consumer. If consumer does not need the high-level context
model reasoning, they can use context middleware as a
context collection platform to reduce their development cost.
Next section will introduce context model building service
in detail.

C. Context Model Building Service (CMBS)

Context model building service get low-level context
information from Context Collection Service and build in-
stance of high-level context model than store it into Model
Repository. CMBS has three components, Aggregator, Inter-
preter Repository and Model Repository.

1) Aggregator: Context-aware application needs to spec-
ify its own context interpretation process to build high-
level context model. This process is defined at aggregator.
Application or other context consumer can implement own
aggregator and plugin it into the Context Middleware (i.e.
Each aggregator needs to be subscribed at High-level context
manager, we present it in section 3.D.2). Each context
consumer (i.e. context-aware applications and others) has
own interests of context. Hence, context consumer uses its
own aggregator to subscribe to context information and to
interprets it to build its context model.



The aggregator processes high-level context models. An
aggregator may define the process like checking low-level
data, interpreting data, building model, and saving model
instance by using Model Repository. However, the building
process depends on concrete context consumer’s needs. In
addition a context consumer can subscribe various aggre-
gators and compose them to make the model instance.
Implementation data verification can be based on vari-
ous algorithms: Fuzzy Logic [6], Probabilistic logic [7])
or leaning based: Bayesian network [8], Hidden Markov
Models [9], [10], and Dempster-Shafer theory[11]). It is
called data checking interpreter , in our model. Interpreter
could be any algorithms component that handles one context
interpretation. Aggregator use these interpreters to reason
on model, check data, and so on. Interpreters are stored in
Interpreter Repository, which we will introduce next.

2) Interpreter Repository (IR): Interpreter Repository is a
repository allowing aggregator to find and use interpreter to
accomplish high-level model building process. IR provides
a search interface to request interpreter and maintains exe-
cution of interpreters (i.e. Where and how to execute; which
parameter).

Each Interpreter handles one objective of context in-
terpretation. It interprets low-level context information to
high-level context model. For example, a GPS sensor get
longitude and latitude coordinate. We get a low-level context
model by Context Collection Service, e.g. N 43 ◦29.58072′,
W 1 ◦28.49099′, gpsid01, 2011-07-12. This data cannot
be directly used. An application needs a more abstracted
information like the name of the corresponding city. Its
aggregator will use a GPS coordinate to Address Inter-
preter to interpret the context model. After interpretation,
aggregator will get this: N 43 ◦29.58072′, W 1 ◦28.49099′,
city: Bayonne, gpsid01, 2011-07-12. It is a simple example,
an implementation of interpreter could be very complex.
Interpreter can be implemented as a web-based interpreter
or as a local interpreter. Interpreter can be reused and or
aggregated in Context middleware by IR.

3) Model Repository (MR): Model Repository is respon-
sible for maintaining a set of instance of context models
provided by Aggregators. It provides a unified context model
query/notification interfaces for context consumers. It is
a context model specified component. (i.e. for different
model, the MR implementation will be different.)Context
middleware may have various MR instances. Thus, Context
middleware may maintain different context model categories
(e.g. ontology model, object model, spatial model, etc.).
Each MR corresponds to one context model category.

D. Context middleware Management Service (CMS)

This service composes of three components: Low-level
Context Manager, High-level Context Manager and Recon-
figuration Manager.

(a) LCM Starts for the first time

(b) LCM Started

Figure 4: LCM works sequence

1) Low-level Context Manager (LCM): The low-level
context manager provides Context resources subscription
service and Context resources discovery service. Context
resources subscription service allows Context Collector to
subscribe to LCM. Context Collector subscribes with sensor
id, device id, communication address, type of context data,
and description of sensor. This information will be used
to identify context resource. If a new Context Collector
starts, it will subscribe to LCM. If it does not find LCM,
means there is not LCM online, it will wait for a LCM’s
subscription notification and switch sensor to sleep state.
When the LCM start, for the first time, it will broadcast
a subscription notification for finding all available Context
Collector on networks. (See figure 4a)

The LCM also provides a context resources discovery
service to aggregator. Aggregators ask LCM to find one or
more context resources by context data type, and resource
description (e.g. it can be sensor id, device id, communica-
tion address, or anything matching with description of sensor
or a combination of information). The LCM will firstly
search into its context resources database. If it cannot find
the demand context resource, it will broadcast a subscription
notification. Finally, if there is no response, it will keep the
demand as an unfinished task. The aggregator can cancel
the demand, or wait for response, or change the resource
description, or trigger an exception. It depends on context
consumer’s strategy.(See figure 4b)

2) High-level Context Manager (HCM): The HCM han-
dles subscription of Aggregator and subscribes context con-
sumer to MR. Applications or Adaptation System need to
subscribe its aggregator(s) to context middleware by HCM.
They can have one Aggregator or a group of Aggregator.



However they can only have just one instance of context
model per each. When consumer subscribes its aggregator(s)
to HCM, HCM also finds the matched MR and subscribes
the MR to Aggregator(s). Then, HCM subscribes these
aggregators to the MR. After this, the consumer can query
its model, or when the instance is updated, the MR will
notify it to the consumer. (See figure 5a)

(a) HCM Subscription Sequence

(b) HCM Cleaning Sequence

Figure 5: HCM works sequence

When context consumer is offline or stop, the HCM also
handles the cleaning work. HCM will stop its aggregator(s),
delete its model in model repository, and notify LCM to
unsubscribe aggregator(s) from all context collector(s). (See
figure 5b)

3) Reconfiguration Manager (RM): The Reconfiguration
Manager works with Adaptation System. The Adaptation
System sends a reconfiguration plan to RM before adap-
tation. This plan indicates which component will be mi-
grated. RM will change their status as waiting for migrate’.
When Adaptation System finish adaptation process, it will
notify RM with all status and communication addresses of
components. RM will update their information and notify
component, which already corporate with it, to continue to
work. (See figure 7)

E. Works with context consumer
The context consumer means applications and adaptation

system. There is some differences to work with applica-
tion and adaptation system. Context consumers use context
middleware to build its context model instance. In addition,
adaptation system adapts context middleware by migrating
its components. Thus, how to build high-level context model
with context middleware (see figure 6). Context consumers
needs to implement their Aggregator(s) and or Interpreter(s)
depend on what their needs. Then, subscribes them to
context middleware.

Figure 6: To build high-level context model.

To adapts context middleware, adaptation system needs to
contact context middleware’s Reconfiguration Manager to
be sure that the adaptation will do it correctly. adaptation
system prevents context middleware adaptation plan and
sends adaptation results information to context middleware.
(See figure 7)

Figure 7: To adapts context middleware with adaptation
system.

F. Summary
In this section, we introduced the high-level context model

building process and three main services. Each main service
is detailed with their components. At the end of this section,
we also presented how an application works with our context
middleware and how an adaptation system can work with it
and adapt it. Next we will present some related works and
compare them with our architecture model.



Distributable Support high-level model Reconfigurable Adaptable Multi-model types Multi-domain Interpretation
Context Toolkit X X X

SOCAM X X X X
SPACES X X

WaterCOM X X X X X X

Table I: Related works comparing table

IV. RELATED WORKS

In this section, we present works directly related to our
proposal and point out the differences with our model.

Context Toolkit [12] is a framework that aims at devel-
oping reusable solutions to simplify the design and imple-
mentation of context-enabled applications. Context Toolkit
adopts the widget concept from GUI (Graphic User In-
terface) toolkit that it is called Context Widget. Context
Widgets are software components that is responsible for
acquiring context information from sensors and they provide
applications with access to context information from their
operation environment. Context Widgets can be distributed
across different machines. It can be composed to provide
richer context information. Context Toolkit does not support
Hot-reconfiguration and adaptation. However, we interest the
idea of Widget. Our Context Collection Service has a similar
design.

SOCAM [13] is a service-oriented middleware that uses
ontology context model based on OWL. It has been de-
signed to support the building of context-aware services.
SOCAM proposes and uses CONON [14] ontology model
that has two layers design that supports separation of con-
cepts considering generality and specificity. SOCAM has
a layered architecture that aims to provide an efficient
infrastructure and it is a distributed middleware. It consists
in different components such as: Context Providers abstract
context sources, Context Interpreter provides logic reasoning
service, Context Database stores context ontologies, and
Service Locating service provides middleware components
and context consumers to locate these services and their
presence. We have a similar context processing process and
similar services. Furthermore, our approach aims to provide
a generic solution for context consumers and supporting
consumers to use their own context model.

SPACES [15] is a lightweight middleware solution en-
abling the versatile and efficient mediation of context infor-
mation. SPACES adopts COSMOS [16] framework as a scal-
able model for processing context information. COSMOS is
a policy-based context processing framework. It processes
context information by a composition of context nodes.
Context node is a software component that responsible for
acquire context information and interpretation of context.
SPACES use REpresentational State Transfer (REST) to dis-
tribute COSMOS into ubiquitous environment. It is a part of
CAPPUCINO [15] platform. We interest the composition of
context nodes to provide the context processing. Aggregator

can composites interpreters like their context nodes to pro-
cessing context information. Our model allows composing
aggregator to do more complex context processing.

Finally, all the above described middleware provide mech-
anism for dealing with inherent heterogeneity and complex-
ity of ubiquitous environment. Hence, to compare to our
proposal (see Table I), they do not: i) provide dynamic adapt-
ability with ubiquitous environment (it can be adapted while
working with adaptation systems), ii) provide multi-types
model supporting, and iii) provide different domain specific
context models interpretation. In ubiquitous environment,
context consumers may have different emphases to select
their context models, and that will lead to interpret these con-
text models to use different interpretation algorithms. Our
approach deals with accessing different context models in a
transparent and uniform way, allowing context consumers to
best use context resources, and simplifying application code
and reusing interpretation algorithms.

V. CONCLUSION

This paper presents a conceptual generic architecture
model for context-oriented middleware. It provides a context
communication service for dynamic and mobile distributed
environment. It allows context consumers to get/retrieve and
act on its high-level context information locally or remotely.
The high-level context information is provided by context
model building service. Context consumer can search con-
text resources by using context middleware management
service and subscribe as low-level context information con-
sumer to directly get low-level information by context col-
lection service. Context collectors are distributed and support
dynamic reconfiguration. It hides software and/or hardware
complexity and heterogeneity. We already implemented low-
level context manager, context collector and reconfiguration
manager on Kalimucho1 and we will continue to develop
the missing items.

As future work, we plan further context model history
service, which is called Context History Manager. Con-
text History Manager will persistence context models into
database (local/ remote/ cloud). It can restore any release
of context model, i.e. a complete history context model
restoration.

It provides a blackboard mechanism to store context
information, which will be used to context reasoning such

1Kalimucho OW2: http://www.ow2.org/view/ActivitiesDashboard/Kalimucho



as probabilistic reasoning or leaning based context reason-
ing. This kind of information directly comes from context
collection service. It provides a context history management
interface to high-level application to manage their context
model.

REFERENCES

[1] M. Weiser, “Some computer science issues in ubiquitous
computing,” SIGMOBILE Mob. Comput. Commun. Rev.,
vol. 3, no. 3, Jul. 1999. [Online]. Available:
http://dx.doi.org/10.1145/329124.329127

[2] C. Cassagnes, P. Roose, M. Dalmau, and C. Louberry,
“Kalimucho : software architecture for limited mobile de-
vices,” ACM SIGBED Review, Special Issue on the - 2nd
Workshop on Adaptive and Reconfigurable Embedded System,
2009.

[3] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf, “An Architecture-Based approach
to Self-Adaptive software,” 1999. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.4060

[4] J. Ye, L. Coyle, S. Dobson, and P. Nixon, “Using situation lat-
tices to model and reason about context,” Fourth International
Workshop on Modeling and Reasoning in Context, 2007.

[5] E. Bouix, M. Dalmau, P. Roose, and F. Luthon, “A multimedia
oriented component model,” AINA 2005 - The IEEE 19th In-
ternational Conference on Advanced Information Networking
and Applications, 2005.

[6] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,”
Fuzzy Sets and Systems, vol. 100, no. Supplement 1, pp. 9–34,
1999.

[7] P. D. Haghighi, S. Krishnaswamy, A. Zaslavsky, and
M. M. Gaber, “Reasoning about context in uncertain
pervasive computing environments,” in Proceedings of the
3rd European Conference on Smart Sensing and Context, ser.
EuroSSC ’08. Berlin, Heidelberg: Springer-Verlag, 2008, p.
112–125. [Online].

[8] T. Gu, H. K. Pung, D. Q. Zhang, H. K. Pung,
and D. Q. Zhang, “A bayesian approach for
dealing with uncertain contexts,” 2004. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6.3509

[9] C. Wojek, K. Nickel, and R. Stiefelhagen, “Activity recogni-
tion and Room-Level tracking in an office environment,” in
Multisensor Fusion and Integration for Intelligent Systems,
2006 IEEE International Conference on, 2006, p. 25–30.

[10] K. Hasan, H. A. Rubaiyeat, Y. Lee, and S. Lee, “A reconfig-
urable HMM for activity recognition,” 2008.

[11] P. Diaconis, “[A mathematical theory of evidence. (Glenn
shafer)],” Journal of the American Statistical Association,
vol. 73, no. 363, pp. 677–678, 1978. [Online]. Available:
http://www.jstor.org/stable/2286624

[12] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit:
aiding the development of context-enabled applications,” in
Proceedings of the SIGCHI conference on Human factors
in computing systems: the CHI is the limit, ser. CHI ’99.
New York, NY, USA: ACM, 1999, pp. 434–441. [Online].
Available: http://doi.acm.org/10.1145/302979.303126

[13] T. Gu, H. K. Pung, and D. Q. Zhang, “A service-oriented
middleware for building context-aware services,” J. Netw.
Comput. Appl., vol. 28, p. 1–18, Jan. 2005. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=1053030.1053031

[14] D. Zhang, T. Gu, and X. Wang, “Enabling context-aware
smart home with semantic web technologies,” International
Journal of Humanfriendly Welfare Robotic Systems, vol. 6,
no. 4, p. 12–20, 2005.

[15] D. Romero, R. Rouvoy, L. Seinturier, S. Chabridon,
D. Conan, and N. Pessemier, “Enabling Context-Aware
web services: A middleware approach for ubiquitous
environments,” in Enabling Context-Aware Web Services:
Methods, Architectures, and Technologies, M. Sheng, J. Yu,
and S. Dustdar, Eds. Chapman and Hall/CRC, 2010,
pp. 113–135. [Online]. Available: http://hal.inria.fr/inria-
00414070/PDF/chapitre.pdf

[16] A. Bouzeghoub, C. Taconet, A. Jarraya, N. Do, and D. Conan,
“Complementarity of process-oriented and ontology-based
context managers to identify situations,” in ICDIM, 2010, pp.
222–229.


