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By means of extensive contact dynamics simulations, we investigate the mechanical equilibrium
and deformation of a granular material composed of irregular polyhedral particles confined between
two horizontal frictional planes. We show that, as a consequence of mobilized wall-particle friction
force at the top and bottom boundaries, the transient deformation induced by a constant vertical
load is controlled by the aspect ratio (thickness over width) of the packing as well as the stress ratio.
The transient deformation declines considerably for increasingly smaller aspect ratios and grows
with the stress ratio. From the simulation data for a large number of independent configurations,
we find that sample-to-sample fluctuations of the deformation have a broad distribution and they
scale with the average deformation. We also analyze the evolution of particle connectivity during
settlement and with the applied force. The face-face and edge-face contacts between polyhedral
particles concentrate strong force chains with a growing proportion as a function of the applied
force.

PACS numbers: 45.70.-n,61.43.-j,7.57.Gc

I. INTRODUCTION

Granular materials are widely used as filling materials
in various applications due to their original complemen-
tary properties of flowability, shear strength and porosity
[1]. Well-known examples are construction foundations,
earthworks (dams, embankments, . . . ) and transport in-
frastructures (railway ballast, asphalt). A major concern
in all such applications is the short- and long-term stabil-
ity of the granular fills under variable loading conditions.
Plastic deformations induced by static and dynamic over-
loads, such as train traffics in the case of railway ballast,
or material degradation as a result of weathering, may
lead to settlement and failure or damage to the structure
[2–5].

In absolute terms, a granular system is stable if small
stress increments can be accommodated by small strains
[6–9]. However, the particle-scale processes underlying
this transition between consecutive equilibrium states
are generally stochastic due to granular disorder [10–
14]. In constitutive modeling of the quasi-static behavior
of granular materials, it is assumed that the strain and
stress increments present a finite average and the fluc-
tuations can be neglected. Elastoplastic models of soil
behavior are based on this assumption with phenomeno-
logical internal variables or parameters pertaining to the
packing structure. The plastic threshold is character-
ized by an internal friction angle and the flow rule by
a dilatancy angle relating volume change to shear strain
[14–17]. In such models, the stability coincides with hard-
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ening behavior and the cumulative strains may be calcu-
lated from stress variations by means of the constitutive
tensor for a representative volume element undergoing
homogeneous deformation.

The stability and deformation of granular materials
under complex boundary conditions are in general far
less clear even when the rheological behavior is correctly
captured. Failure may happen as a result of strain lo-
calization in shear bands or compaction bands [18]. Due
to dilatancy, the material may also become unstable de-
pending on how the boundary conditions are controlled
[7, 8]. For example, if the volume change is prohibited, a
sufficiently loose sample will collapse when subjected to
shear. This failure mode, known as static liquefaction, is
homogeneous [6, 9].

Another important case is a granular material confined
by frictional boundaries. This is a common and crucial
part of the problem of stability in most applications and,
in contrast to the fore-cited examples, it has a stabilizing
effect on the granular assembly. The friction forces may
be only partially mobilized depending on the dynamic
processes and past deformations leading to the present
state of a granular assembly. The importance of bound-
ary friction is quite evident by remarking that a sand-
pile cannot be stable without friction at the basal plane.
In experiments on granular flow on an inclined plane, it
has been established that, due to friction with the plane,
the angle at which the particles start to flow depends on
the thickness of the granular bed [19, 20]. In the well-
known example of a silo, the wall friction governs stress
transmission by fully compensating stress gradients due
to particle weights [21–23]. A nontrivial effect of wall
friction is to make depend the stress field inside the con-
fined granular material on the width of the silo. Besides
the case of silo, most past studies of wall friction have
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focused on the uniaxial compaction of granular materials
in a mould [24–26], the effect of friction with a retaining
wall [27], friction mobilization along an array of particles
[28] and the effect of friction with side walls on granular
flow [29–32].

In this paper, we are interested in the equilibrium and
deformation of a granular material confined between two
horizontal frictional planes. The bottom plane is immo-
bile whereas the top plane is mobile and subjected to a
constant load. A uniform horizontal pressure is applied
over the lateral boundaries of the sample of nearly cylin-
drical shape. The granular material is squeezed under the
action of the imposed load and flows sideways by over-
coming both the lateral confining pressure and friction
forces with the top and bottom walls. As the deforma-
tion proceeds, the thickness of the packing declines and
friction forces at the top and bottom walls increase until
the deformation stops.

The stability and transient deformations are analyzed
by means of extensive contact dynamics simulations with
particles of irregular polyhedral shape for a large num-
ber of independent configurations, different thicknesses
and values of the imposed load. In particular, we show
that, due to wall friction, the total vertical settlement
induced by the applied load depends both on the load
and on the aspect ratio (thickness over width) of the
packing. However, sample-to-sample fluctuations occur
around the mean. From the data, we find that the dis-
tribution of transient deformations is broad and it scales
with the mean deformation.

In the following, we first introduce in section II the
numerical procedures including the simulation method,
particle properties and preparation protocol. In section
III, we illustrate the influence of various parameters such
as the applied load, aspect ratio, particle inertia and load-
ing history on the temporal behavior and total deforma-
tions. In section IV, a parametric investigation of total
deformations and their sample-to-sample fluctuations is
presented with aspect ratio and stress ratio as parame-
ters, and compared with a simple model based on the
analysis of the stresses inside the packing. Section V
is devoted to the microstructure and its evolution. We
conclude with a few remarks and summary of the most
salient results of this work.

II. NUMERICAL PROCEDURES

In this section, we briefly introduce the contact dynam-
ics (CD) method, as a discrete element method (DEM)
for the simulation of granular materials, with polyhedral
particles as well as the numerical procedures used for the
preparation of the numerical samples.

A. Contact dynamics method

The simulations were carried out by means of the con-
tact dynamics (CD) method with irregular polyhedral
particles [33–38]. The CD method is a discrete element
approach for the simulation of nonsmooth granular dy-
namics with contact laws expressing basically the mutual
exclusions and dry friction between particles without in-
troducing elastic or viscous regularization often used in
explicit methods such as molecular dynamics [39–42] or
the distinct element method introduced initially by Cun-
dall and Strack [43]. Hence, this method is particularly
adapted for the simulation of perfectly rigid particles.
The nonsmoothness refers to various degrees of disconti-
nuity in velocities arising in a system composed of rigid
particles. In this method, the equations of motion for
each particle are formulated as differential inclusions in
which velocity jumps replace accelerations [44, 45]. The
unilateral contact interactions and Coulomb friction law
are treated as complementarity relations or set-valued
contact laws.

The time-stepping scheme is implicit but requires ex-
plicit determination of the contact network at each time
step. At each time step, all kinematic constraints implied
by frictional contacts between particles are simultane-
ously taken into account, together with the equations of
dynamics, in order to determine all velocities and contact
forces in the system. This problem is solved by an itera-
tive procedure pertaining to the non-linear Gauss-Seidel
method. It consists of solving a single contact problem
with other contact forces being treated as known, and
iteratively updating the forces and velocities until a con-
vergence criterion is fulfilled. The iterations in a time
step are stopped when the calculated contact forces are
stable with respect to the update procedure. It should
be noted that, due to implicit time integration, the time-
stepping scheme is unconditionally stable.

The determination of the contact set for irregular poly-
hedral particles proceeds in three steps. First, a “bound-
ing box” method is used to sort a list of neighboring parti-
cle pairs. Then, for each pair, the overlaps are calculated
through a 3D extension of the “shadow overlap method”
[37, 46]. Several algorithms exist for overlap determina-
tion between convex polyhedra [47–50]. In the case of an
overlap, the contact plane is determined by means of the
intersection between the two particles. This detection
procedure is fairly rapid and allows us to simulate large
samples composed of polyhedral particles.

The contacts between polyhedral particles belong to
different categories, namely face-face, edge-face, vertex-
face, edge-edge, vertex-vertex, vertex-edge. Face-face
contacts are represented by three points, corresponding
to three geometrical constraints, and thus will be referred
below as triple contacts. The edge-face contacts are rep-
resented by two points and will be called double contacts.
The edge-edge and vertex-face contacts are simple con-
tacts and they are represented by a single point. The
vertex-vertex and vertex-edge contacts are rare, but do
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occur from time to time in the course of evolution of the
system. They are treated as a simple, double or triple
contact on the basis of secondary criteria. In the iterative
procedure of determination of the contact forces and ve-
locities, the points representing the contacts between two
particles are treated as independent points but the resul-
tant force of the calculated point forces are attributed
to the contact with its application point located on the
contact plane.

For our simulations, we used the LMGC90 which is a
multipurpose software developed in Montpellier, capable
of modeling a collection of deformable or undeformable
particles of various shapes by different algorithms [37],
see www.lmgc.univ-montp2.fr/ dubois/LMGC90. Video
samples of the simulations analyzed in this paper can be
found at www.cgp-gateway.org/ref014.

B. Sample preparation

The numerical samples are composed of rigid polyhe-
dral particles taken from a library of 1000 digitalized bal-
last particles[63]. Each particle has at most 70 faces and
37 vertices and at least 12 faces and 8 vertices. Fig.
1(a) shows examples of the polyhedral particles used in
the simulations. The size of a particle is defined as two
times the largest distance between the barycenter and
the vertices of the particle, to which we will refer as the
“diameter” of the particle. The particle sizes vary be-
tween 25 mm and 50 mm with 50% of diameter 25 mm,
34% of diameter 37.5 mm and 16% of diameter 50 mm.
The mean particle diameter is 〈d〉 = 37.5 mm. The bulk
density of the particles is 2700 kg m−3. The coefficient of
friction between the particles is µ = 0.8 for all samples.
The normal and tangential coefficients of restitution are
set to zero. The value of coefficient of restitution has no
significant effect on the dynamics of dense granular sys-
tems where frictional dissipation prevails and collisions
are basically of multi-contact nature due to the presence
of a dense contact network.

The preparation protocol consists in pouring first the
particles into a cylindrical box with zero particle-wall
friction. A rigid wall of mass mw ' 16 kg is placed
on top of the sample. Then, the cylinder is removed
and replaced by a radial confining pressure of σR = 80
kPa applied by a uniform distribution of radial forces
over the outermost particles located on the periphery of
the cylinder while keeping the bottom wall fixed. The
sample obtained by this procedure is subjected to vibra-
tions of small amplitude by applying a vertical sinusoidal
displacement on the top wall. The vibrations last for
about 0.4 s with a frequency of 10 Hz. The vibrations re-
move the irregularities at the interface between the block
and the top layer of particles. Finally, the vibration is
stopped and the sample is allowed to relax to equilibrium.

We prepared different samples with the same radius
R ' 0.35 m but with different heights H depending on
the number of particles. By changing the number of par-

(a)

(b)

FIG. 1: (a) Four examples of polyhedral particles used in the
simulations. (b) Snapshot of a numerical sample.

ticles from Np = 1600 to Np = 3200, we get different
samples with aspect ratios α = H/(2R) varying from 0.4
to 0.7. As we shall see below, a detailed statistical analy-
sis is performed for the samples with α = 0.5 (containing
2700 particles) by generating 32 independent configura-
tions. The applied protocol results in packing fractions
ρ for the 32 samples varying in the range [0.610, 0.626].
Fig. 1(b) shows one snapshot of a numerical sample.

In a system prepared by the above procedure, there
is no lateral wall and the radial pressure is supported
by the outmost particles, which behave in this way as a
flexible “membrane” confining the sample. This is very
similar to the usual triaxial compression tests performed
on soil samples but with the major difference that in a
triaxial device the radial displacements of the particles
are strongly constrained by the presence of a real mem-
brane fixed to the top and bottom plates. In our system,
we impose a large friction coefficient µw = 1 at the con-
tact with the top and bottom walls. This corresponds
to the condition of “rough walls” that prevents the par-
ticles in contact with the top and bottom walls to slide
[27]. Hence, the stability of the sample is controlled both
by the bulk friction and the friction with the top and
bottom walls.

The transient deformations of the numerical samples
are studied by applying an force F on the top wall. 500
different values of F varying from 1 kN to 120 kN are
applied to each sample in order to obtain both the mean
value and variability of the deformation. Given the ini-
tial area of the sample S = πR2 ' 0.38 m2, the vertical
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FIG. 2: Settlement of a sample of aspect ratio α = 0.5 sub-
jected to different values of the vertical force F as a function
of time.

stress σH = F/S supported by the sample varies in the
range [2, 315] kPa. The time step was 4.10−4s in all sim-
ulations and at most 150 time steps were needed for a
full stabilization in the case of the longest transient. The
CPU time was 2.10−3s per particle and per time step on
a Dell computer of speed 3.16 GHz.

III. TRANSIENT DEFORMATIONS

In this section, we would like to illustrate the sensitiv-
ity of the vertical deformation to different system param-
eters. This will allow us to define the relevant parameters
for a quantitative description of the behavior in the fol-
lowing sections. The downward cumulative displacement
of the top wall is denoted by δH and normalized by the
mean particle diameter 〈d〉.

Figure 2 displays δH as a function of time in a sam-
ple of aspect ratio α = 0.5 corresponding to a height
H = 2αR ' 0.35 m, subjected to different values of
the force F . The evolution seems to occur in three
stages with a fast increase of δH at the beginning and
a slower evolution at intermediate times followed by a
longer phase with small change of δH. As expected, the
total settlement ∆H =

∫∞
0
δH(t)dt increases with F .

The displacements are typically below one particle diam-
eter. The vertical deformation for a displacement of one
mean particle diameter is 〈d〉/H ' 0.11.

The time evolution of δH reflects the dynamic parti-
cle rearrangements induced by sudden application of the
load. As a result of particle inertia and collisions, the
normal force Fb at the basal plane increases largely be-
yond the applied force F as shown in Fig. 3. Fb grows in
a short time lag to a peak two times above F . This time
interval coincides with the initial rapid increase of δH.
The kinetic energy gained by the particles is not fully
dissipated by this collective shock of the sample with the
bottom wall since Fb takes much more time to relax from
its peak value towards the force F , where the particles

0 0.01 0.02 0.03 0.04
0

0.5

1.0

1.5

2.0

2.5

t (s)

F
  

/ 
F

b

FIG. 3: Time evolution of the normal force Fb at the basal
plane following the application of a constant force F = 60kN
on the top plane.

jam in a new state of static equilibrium. Comparing the
times series of δH and Fb, we observe that the particle
rearrangements from the peak to the end of relaxation
contribute as much to the settlement of the packing as
the highly dynamic evolution from the application of the
force to the peak.

The characteristic time ∆t of the dynamic transient is
obtained by dimensional analysis from the natural units
of the system: particle mass m, average pressure p and
particle size 〈d〉. We get

∆t =

(
m

p〈d〉

)1/2

(1)

This time may be interpreted as the time for a particle of
mass m to fall a distance equal to its own diameter under
the action of a force equal to pd2 [20]. For an average
pressure of the order of the lateral pressure σR = 80
kPa, we get ∆t ' 0.005 s, which is the right order of
magnitude of the observed relaxation time according to
Figs. 2 and 3.

Clearly, as a consequence of the application of a finite
force on an initially stable packing, the dynamics plays
an essential role in the total settlement ∆H. In order
to illustrate this effect, we applied the same total force
F = 60 kN on a sample in a single step, in two successive
steps of 30 kN, in three steps of 20 kN or in six steps
of 10 kN by allowing the sample to relax to equilibrium
in each step. The time evolution of δH is shown in Fig.
4 for these four simulations. The largest settlement is
reached for the application of the total force in a single
step, and the total settlement declines when the number
of intermediate steps increases. The lowest settlement is
obtained by quasi-static compression, which corresponds
to a large number of small force increments.

An important feature of step-wise compression test,
as observed in Fig. 4, is that most of deformation oc-
curs in the first step. The partial settlement in the next
steps is smaller and keeps nearly the same magnitude in
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FIG. 4: Settlement of a sample subjected to a total vertical
force of 60 kN applied in a single step, two steps, three steps
or six steps.
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FIG. 5: Settlement of a sample subjected to a total vertical
force of 60 kN in two samples with and without consolidation.

each step. This means that the microstructure is mod-
ified by the application of the first load. This effect of
preloading is illustrated in Fig. 5 where the time evolu-
tion of δH is plotted for F = 60 kN in a sample without
preloading and in the same sample preloaded by the ap-
plication of a force F = 3.6 kN and allowed to relax. The
preload is removed after the relaxation. We see that the
evolution is smoother in a sample consolidated by the
application of the preload and the settlement is consider-
ably lower. The effect of preloading is similar to that of
primary consolidation in soils [15]. Although the bound-
ary conditions are very different here from those used
for the compaction of soils, in both cases the application
of a preload leads to irreversible reorganization of the
contact network enhancing its strength in response to a
secondary compression in the same direction [50, 51].

Due to friction with the top and bottom walls, the
settlement for a given applied load crucially depends on
the aspect ratio α. Fig. 6 shows the time evolution of δH
in response to the application of a force F = 60 kN for
several samples of different aspect ratios. We see that
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FIG. 6: Time evolution of vertical deformation for different
samples of different aspect ratios α but the same applied load
F = 60kN .

larger aspect ratios imply larger settlement. The total
settlement is negligibly small for α = 0.32.

To analyze the role of aspect ratio, let us consider the
condition of mechanical equilibrium by assuming perfect
axial symmetry of the sample and friction at the top and
bottom walls. The axial symmetry implies σrθ = 0. It
is obvious that, as a result of cylindrical geometry and
radial friction, the stress state is not homogeneous. As
a simplifying approximation, we assume that the radial
stress component σrr depends only on the radial distance
r from the axis of the sample; see Fig. 7. Therefore the
condition of force balance for a volume element enclosed
between two cylindrical surfaces of radii r and r + δr
reads

2T (r) + 2π(r+ δr)H σrr(r+ δr)− 2πrH σrr(r) = 0 (2)

where T (r) is the friction force exerted by the top and
bottom walls against a radial deformation of the sample.

To solve equation (2), we further assume a linear rela-
tion every where inside the packing between the vertical
and radial stress components:

σzz = kσrr. (3)

This assumption underlies also the Janssen model and
yields a correct prediction of stress transmission in a silo
[22, 52]. The values of the coefficient k are bounded be-
tween kp and ka = k−1p , corresponding to the so-called
limit Rankine passive and active states, with [27]

ka =
1 + sinϕ

1− sinϕ
, (4)

where ϕ is the internal angle of friction. We recall that
the major principal stress σ1 coincides with vertical stress
σH in the active state and with radial stress σR in the
passive state.

Assuming that, at incipient flow, the friction force T (r)
at the walls is fully mobilized, we have

T (r) = 2πr δr τ(r) = 2πr δr µw σzz(r), (5)
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FIG. 7: Geometry and boundary conditions of the granular
system in the presence of wall friction forces T .

1

0

FIG. 8: A snapshot of particle stresses in a vertical section of
the sample passing through the axis of symmetry.

where µw is the coefficient of friction at the walls. For a
nearly rough wall, which is the case in our system with
µw = 1, the particles do not slide at the walls and the
friction mobilization is bounded by the internal friction
coefficient, so that it is physically plausible to set µw =
tanϕ.

Equations (2), (3) and (5), together with the boundary
condition σrr(r = R) = σR, yield

σrr(r)

σR
=
R

r
exp

{
µwk

α

(
1− r

R

)}
. (6)

According to this equation, the stresses diverge at the
center as 1/r and decline exponentially to σR at the
approach of the periphery of the sample. In practice,
it is more convenient to consider the resultant force
fr(r) = 2πrH σrr(r), which is not singular at the center
and varies as

fr(r) = fR exp

{
µwk

α

(
1− r

R

)}
, (7)

where fR = 2πRHσR.
For the friction mobilization at the walls, we should

distinguish the active state where the particles tend to
flow outward and therefore the radial friction forces ex-
erted by the top and bottom walls on the sample are ori-
ented radially inward, from the passive state where the

particles tend to flow inward (due to the action of the
lateral stress) and therefore the radial friction forces are
oriented radially outward. With our sign conventions,
the inward friction force behaves as a compressive force
and should be counted positive whereas the outward fric-
tion force is negative and we should replace µw by −µw
in equations (7) and (6). Hence, the radial force declines
in the active state from the center (r = 0) towards the

periphery with fr(0) = fR exp
(
µwka
α

)
and it declines in

the passive state from the periphery (r = R) towards the

center with fr(0) = fR exp
(
−µwkp

α

)
. Fig. 8 displays a

map of “particle stresses”, i.e. the average stresses sup-
ported by the particles due to the forces exerted by their
contact neighbors, for a packing in the active state. As
expected, the strongest force chains occur at the center
of the sample and decline in intensity towards the pe-
riphery.

Equation (6) can now be used with the condition∫ R
0
σzz(r)(2πr) dr = πR2σH , to relate the stress ratio

to the aspect ratio. We get

η ≡ σH
σR

= 2
α

µw

{
exp

(µw
α
k
)
− 1
}
. (8)

This is an interesting relationship as it shows that, un-
der the assumption of friction mobilization at the walls,
the stress ratio η is the relevant parameter for the stress
state and its limit values depend on the aspect ratio α.
η tends to 2k in the limits of µw/α → 0 and increases
without bound when µw/α → ∞. The effect of friction
is amplified by the exponential factor and it leads to in-
creasingly large values of η. In the limit active state,
k should be replaced by ka whereas in the limit passive
state one should set k = kp and µw should be replaced
by −µw:

ηactive = 2
α

µw

{
exp

(µw
α
ka

)
− 1
}

(9)

ηpassive = 2
α

µw

{
1− exp

(
−µw
α
kp

)}
(10)

For a system of aspect ratio α = 0.5 and internal fric-
tion angle 34◦, which is the case of the ballast mate-
rial used in our simulations [50], we get ηactive ' 160,
which is far higher than 2ka ' 7 for non-frictional walls,
and ηpassive ' 0.47, which is slightly below 2kp ' 0.57.
The reason is that the effective values of k and µw start-
ing from an initial state prepared by vibrations or con-
solidated by the application of an preload, reflect the
mobilization of internal friction (for k) and wall friction
(for µw). The packing has a hardening behavior due to
the evolution of the microstructure as increasingly larger
loads are applied, and in our simple model of stress trans-
mission the hardening is basically represented by the in-
crease of the effective values of k and µw. On the other
hand, the plastic deformation of our system is also par-
tially governed by finite size effects that, given the limited
number of particles, can not be avoided in 3D simulations
with particles of complex shape.
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FIG. 9: Time evolution of vertical deformation in four samples
for the same value of η and aspect ratio α but different initial
configurations.

Another consequence of finite size effects for our system
is the fluctuation of deformations in independent samples
prepared identically. Fig. 9 displays the time evolution
of δH for five different samples of the same aspect ratio α
prepared independently, but according to the same pro-
tocol, and subjected to the same vertical load or stress
ratio η applied in a single step. We see that the tran-
sient deformations take nearly the same time but lead
to different settlements. This rather large variability in
the settlement reflects the stochastic nature of the defor-
mation process which amplifies small differences in the
initial packing fraction as well as subtle details of the
contact network.

In the next section, we present a parametric study of
the total vertical deformation ∆H and its statistical fluc-
tuations as a function of α and η for an ensemble of iden-
tically prepared and consolidated samples.

IV. TOTAL DEFORMATION AND ITS
VARIABILITY

Because of sample-to-sample fluctuations and the in-
fluence of consolidation and particle inertia, we need a
large number of simulations in order to be able to quan-
tify the dependence of the total deformation ∆H with
respect to the applied stress ratio η and aspect ratio α.
The simulations are performed for 9 different aspect ra-
tios varying from α = 0.36 to α = 0.64. For each value of
α, we generate 32 independent samples by the procedure
described in section II. A consolidation stress σH = 40
kPa (corresponding to η = 0.5) is applied to all samples
and removed after relaxation. Each sample is subjected
to 500 different values of the vertical force with η varying
in the range [2, 315]. The vertical force in all simulations
is applied in a single step so that the dynamic effects are
systematically present in the resulting settlement. The
data are analyzed by considering both the ensemble av-
erage of the vertical deformation over the 32 independent
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FIG. 10: Total settlement as a function of η in a sample
of aspect ratio α = 0.5 for the initial configuration (before
preloading) and preloaded configuration.

samples for given η and α and the variability around the
average deformation.

The consolidation stress is large enough to predispose
the granular packing to stress increments applied in the
same direction. As shown in section III, the dynamic
effects are reduced by preloading, and consecutive loads
of the same magnitude produce equal settlements. Due
to the plastification of the packing in the consolidation
step, the application of a stress ratio η below 0.5 will pro-
duce tiny deformations, as shown in Fig. 10 for a packing
with aspect ratio α = 0.5. In the whole range, the consol-
idated packing undergoes lower settlement ∆H, but the
difference is most remarkable for η < 0.5. ∆H increases
with η at a lower rate in the consolidated samples than
unconsolidated ones. All the data presented in the fol-
lowing concern only the consolidated samples.

Figure 11 shows the total averaged settlement ∆H as
a function of η for all aspect ratios. ∆H is an increasing
function of η at a rate that increases with α. Apart from
the weak values of η (close to the consolidation stress
ratio 0.5), where the deformation is equally low for all
aspect ratios, and largest value of η where the data seem
to curve slightly down, ∆H is nearly linear as a function
of η. The same settlement data are represented in Fig. 12
as a grey level map in the parameter space [α, η]. The iso-
value lines of ∆H/〈d〉 are plotted for the data smoothed
out over the close neighborhood of each data point. The
map shows how the same amount of settlement may occur
for a combination of different aspect ratios and stress
ratios. The settlement is negligibly small for α < 0.4 and
η < 0.5 unless for very high stress ratios or large aspect
ratios, respectively.

Since α is a control parameter for deformation, it is
also interesting to use the variations δα of the aspect
ratio as strain variable. Fig. 11 indicates that the rate
δα/δη ' (1/2R)(−δH/δη) is a well-defined quantity that
can be extracted from the data by taking the mean slope
of each plot. Fig. 13 shows the rate −δα/δη as a function
of α. It increases from 0.003 for α ' 0.35 to 0.015 for
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FIG. 12: Grey-level map of settlements as a function of aspect
ratio α and stress ratio η. The full lines represent iso-values
of the total settlement ∆H/〈d〉.

α ' 0.65 with a change of trend around α = 0.5.
A theoretical dependence of δα/δη on α may also be

obtained by deriving equation (8) for the active states
with respect to α. We get

−δα
δη

=
µw
2

{
1 +

(
µwk

α
− 1

)
exp

(
µwk

α

)}−1
. (11)

This equation yields an exponential increase as a func-
tion of α with the right order of magnitude of the rate by
setting k = 2.2 and µw = tanϕ ' 0.67, as shown in Fig.
13. This model can not fully capture the observed behav-
ior. However, it remains an interesting point of departure
as it coveys an interesting physical picture of the mech-
anism of settlement: The settlement is triggered by an
increment of stress ratio δη. The friction at the top and
bottom walls increases due to the increase of the contact
surface πR2 with the decrease of aspect ratio. The set-
tlement stops when δη is balanced by the friction force.
This frictional feedback implies an exponential decrease

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
0

0.005

0.010

0.015

0.020

α

−
δ

α
/δ

η

 

 

data

model

FIG. 13: Rate of change of the aspect ratio α with respect
to stress ratio η as a function of α from the simulation data
(symbols) and as predicted by equation (11) (dashed line).

of the settlement rate for decreasing α. Since the sug-
gested value of k is below the theoretical value ka = 3.53
for the limit active state, the process seems to be gov-
erned by a partial mobilization of the internal friction.

We turn now to the fluctuations around the average
values of the settlements as a function of η. Fig. 14(a)
shows the standard deviation S of the settlement nor-
malized by the mean particle diameter calculated from
32 independent samples of aspect ratio α = 0.5 for each
value of η with and without a consolidation step. We
see that without consolidation S rises with η at a rate
that is much faster in the range η < 0.5 whereas with
consolidation a negligibly weak variation occurs in this
range. Its order of magnitude for larger values of η be-
comes comparable to the average settlement. To compare
S with the average deformation, we have plotted the co-
efficient of variation, defined by the ratio Cv = S/∆H of
S and the average settlement ∆H, as a function of η in
Fig. 14(b). The coefficient of variation is high at low val-
ues of η but declines rapidly in the range η ∈ [0, 0.1] and
then continues to decrease at a lower rate. This high vari-
ability at low stress ratios represents a ratio of two small
numbers (both the settlement and its standard variation)
but it is a signature of the stochastic processes governing
the particle displacements when the external forcing is
too weak to impose collective deformations compared to
single-particle events.

Figure 15 shows the probability density function of the
settlements ∆H for all samples where the settlements are
simply normalized by the mean settlement 〈∆H〉 for each
value of η. Remarkably, in spite of the high dispersion
of the values of ∆H, the data collapse on a single dis-
tribution due to normalization by the mean settlement.
The distribution can be approximately fit to a decreasing
exponential function

P (∆H) ∝ exp

(
−γ ∆H

〈∆H〉

)
(12)

with γ ' 0.8. Although small settlements are most fre-
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FIG. 14: (a) Standard deviation S of settlements calculated
for 32 independent samples for each value of stress ratio η
with and without preloading; (b) Coefficient of variation as a
function of η.

quent, the exponential fall-off indicates that large set-
tlements may occur with a significant probability. An
exponential distribution of settlements means that the
fluctuations are an intrinsic part of the deformation pro-
cess and controlled by the granular disorder for all lev-
els of loading. Equation (12) together with the map of
average settlements in Fig. 12 provide a detailed infor-
mation both on the mean dependence of settlement with
respect to aspect ratio and stress ratio and on its sample-
to-sample variability.

V. FABRIC VARIABLES

The fabric, i.e. the spatial organization of particles
and the topology of the force-bearing contact network,
encodes most of the past history of loading [50, 53–56]. In
this section, we briefly investigate the evolution of several
fabric variables during the settlement as a function of the
applied stress. These are the mean coordination number
z, the proportions Ks, Kd and Kt of simple, double and
triple contacts, respectively, as well as the mean force
carried by each type of contact.

Figure 16(a) displays a typical example of the evolution

0 0.5 1 1.5 2 2.5 3

0.05

0.10

0.15

0.20

0.25

∆H/<∆H>

P
D

F

FIG. 15: Probability density function of settlements ∆H in all
samples of aspect ratio α = 0.5 normalized by the mean set-
tlement for each value of stress ratio (symbols). The full line is
an approximate exponential fit P (∆H) ∝ exp(−γ∆H/〈∆H〉)
with γ ' 0.8.

of z as a function of time in a sample after the applica-
tion of a stress ratio η = 2.5. The initial fast drop of
z reflects the opening of a large number of contacts be-
longing to the weak contact network as a result of particle
displacements, a feature usually observed at the begin-
ning of plastic deformation [14, 57, 58]. The second peak
is the signature of collective dynamic compaction of the
sample corresponding to the first peak of the force ob-
served in Fig. 3 followed by a slight decompation and
decrease of z. The relaxation continues afterwards at a
lower rate with a gradual increase of z towards a constant
level comparable to its initial value.

The time evolution is shown in Fig. 16(b) separately
for Ks, Kd and Kt in the same sample. We observe the
same dynamic effects as for z. But, the main effect of
settlement is to reduce the fraction of simple contacts
and to increase considerably that of double and triple
contacts. The edge-face and face-face contacts allow for
stable column-like structures, and their growth in the
sample is a signature of hardening and enhanced stability
of the packing although the proportion of simple contacts
prevails at all times. The double and triple contacts cap-
ture strong force chains and concentrate stresses. Fig.
16(c) shows the mean normal forces fs, fd and ft carried
by simple, double and triple contacts as a function of
time. The triple contacts, despite their weak presence in
the packing, carry the largest forces, with a mean value
of nearly 1.5 times the mean force whereas the simple
contacts carry the lowest forces with an average below
the mean. The double contacts carry a mean force of the
order of the mean force in the packing.

The above trends of fabric evolution are increasingly
reinforced as the stress ratio increases. For example, Fig.
17 shows the evolution of the proportions of different
types of contact at the end of settlement as a function
of η. Ks declines systematically with η whereas Kd and
Kt increase. We also find that the mean forces carried
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FIG. 16: Evolution of the coordination number (a), propor-
tions of simple, double and tripe contacts (b) and mean force
carried by each type of contact (c) with time during settle-
ment for η = 2.5. The forces are normalized by the mean
force of all contacts.

by different types of contact follow the same trend. This
evolution naturally underlies the growing aptitude of the
packing to support larger stresses.

The analysis of the fabric may be pushed further to in-
clude the contact and force anisotropies, which underly
the shear strength of granular materials [59–62]. These
aspects and the local stresses in our simulated packings
with frictional walls will be reported elsewhere. In fact,
the evolution of contact types and their role in force
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FIG. 17: Proportions of simple, double and triple contacts as
a function of stress ratio.

transmission as presented above are the most intuitive
features of the evolution of packings of polyhedral parti-
cles. But it can be shown that their effect is to reinforce
the force anisotropy and more specifically the nearly rigid
columns that are formed at the center of the packings as
those observed in Fig. 8.

VI. CONCLUDING REMARKS

In this paper, we analyzed the transient deformations
of a granular material composed of polyhedral particles
confined between two frictional walls, under the action
of a constant vertical force applied in a single step. The
polyhedral shape of the particles is representative of an-
gular particles often found in nature and civil engineering
applications. The friction at the top and bottom walls
is also a realistic feature of granular fills used to sustain
large external loads. In practice, the stability and settle-
ment of granular materials under variable loading condi-
tions cannot be predicted with confidence from classical
elasto-plastic models of soil behavior based on a mean-
field approximation of the kinematics and stresses. The
role of the microstructural details, when a low number of
particles is involved, is fundamental in the application of
such models. The effect of dynamics when the load is not
increased in a quasi-static fashion, as often assumed in
models, is a fundamental concern for such systems. Fi-
nally, the stress gradients induced by wall friction compli-
cate considerably the analysis since the wall friction and
internal friction are intricately coupled. It is also obvious
that the deformations are controlled to a large extent by
the present state of the material and it is important to
account carefully for the loading history.

For all these reasons, a quantitative description of tran-
sient deformations even in a model system with con-
trolled geometry and material parameters appears to be
a challenging task. The primary aim of this work was to
show the feasibility of such a description by appropriate
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simulations and analysis. The sample-to-sample fluctu-
ations led us to perform a large number of simulations
with independent configurations. In order to ensure a
reasonable reproducibility of the average settlements, we
also added a preloading step to the simulations.

The results presented in this paper seem to indicate
that the average deformation has a well-defined depen-
dence with respect to the applied stress. But we also
showed that the fluctuations, arising from the microstruc-
tural disorder varying among independent configurations,
are large and scale with the average deformation. An-

other important feature investigated in detail was the
dependence of transient deformations on the aspect ratio
as a result of the frictional feedback at the boundaries.
This effect is captured by a simple model based on stress
analysis and suggests that the increment of the aspect
ratio is a relevant strain variable for a system with fric-
tional walls. It shows that the settlement caused by a
vertical load applied on a granular material does not de-
pend only on the horizontal pressures acting on the ma-
terial but also crucially on the surface area and friction
coefficient of the support.
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