
HAL Id: hal-00689727
https://hal.science/hal-00689727v1

Preprint submitted on 20 Apr 2012 (v1), last revised 26 Apr 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a novel analysis approach for collaborative
ubiquitous systems

Nesrine Khabou, Ismael Bouassida Rodriguez

To cite this version:
Nesrine Khabou, Ismael Bouassida Rodriguez. Towards a novel analysis approach for collaborative
ubiquitous systems. 2012. �hal-00689727v1�

https://hal.science/hal-00689727v1
https://hal.archives-ouvertes.fr


Towards a novel analysis approach for collaborative ubiquitous systems

Nesrine Khabou∗ and Ismail Bouassida Rodriguez†
∗ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia

Email: nesrine.khabou@redcad.org
†CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, LAAS, F-31400 Toulouse, France
ReDCAD, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia

Email: bouassida@redcad.org

Abstract—In ubiquitous computing systems, applications
must be able to respond to dynamic context changes in order to
maintain collaboration between entities. A promising solution
consists of developing context aware applications which auto-
matically change their behavior according to the user needs,
the available resources and the surrounding environment.
Furthermore, a context aware application is characterized by a
closed feed back loop with four phases: Monitoring, Analysis,
Planning and Execution. In this paper, we focus on the second
phase and we propose an analysis approach of collaborative
ubiquitous systems which aims at analyzing context informa-
tion and detecting significant abnormal changes. The proposed
approach relies on thresholds in order to track down context
changes. Once relevant context changes occur, the context
aware application will be notified to trigger its suitable process
dynamically in order to deal with the changes.

Keywords-Ubiquitous computing, context awareness, adapta-
tion, analysis techniques, tendency, peak.

I. INTRODUCTION

Nowadays, the tremendous development of wireless com-
munication technologies and the widespread of devices
such as laptops, sensors, RFID tags, etc, have led to the
appearance of ubiquitous computing that takes place as the
successor of mobile computing systems. This new paradigm
brings new challenges to the traditional applications. In fact,
the deployment of the heterogeneous devices will certainly
face an environment full of changes. These changes are
related for example to the availability of mobile devices
resources, the devices joining or leaving the network, the
network topology varying, the changing execution environ-
ment (temperature, pressure, noise, etc) and the application
execution context (user location, device screen size). Hence,
the application needs to be able to detect these changes in
order to adapt its behavior to these varieties according to
the corresponding context information. This ability to sense
and to detect the environment changes is called “context
awareness”. Moreover, context awareness [1] is considered
to be the key issue for making devices aware of the situation
of their users and their environment.

As a result, the design and the implementation of context
aware applications on top of ubiquitous environments is a
challenging task. First, these applications need to manage

context continuously, including the collection of a mul-
titude of context information from different sources such
as sensors, operating systems, etc. Second, a classification
of context information into different categories should be
performed in order to facilitate the context use. Then, the
context aware applications analyze and interpret context
information so that being able to detect the conditions under
which adaptation actions are required. Finally, the context
aware application triggers adaptation actions when noticing
context changes that can affect the application performance
or functionalities.

In this paper, we propose a novel resource context classi-
fication taking into account the resource evolution behavior.
Then, we introduce an approach that allows a collaborative
application to detect the context changes, trigger notifica-
tions when necessary and adapt its functionalities to the
current context. Our approach is based on thresholds in order
to track down context changes. Moreover, thresholds are
configured by domain experts or application designers and
notifications are then raised by the corresponding entities in
order to trigger appropriate reconfiguration actions.

The remainder of this paper is structured as follows:
In section II, we introduce the context classification in
ubiquitous environments followed by some research studies
treating methods used for context changes detection in such
environments. Section III presents the case study called
“Entreprise hardware monitoring” that aims at monitoring
resources state and raising appropriate notifications when
resource violations are detected. In section IV, we introduce
the proposed approach that allows for context classification
and context changes analysis in collaborative ubiquitous
systems using thresholds. In section V, we motivate and
illustrate the feasibility of our approach through an illus-
trative scenario. The last section concludes the paper and
gives some directions for future work.

II. RELATED WORK

We begin this section by introducing some research
studies dealing with context classification. Then, we give
an overview of studies which propose techniques to detect
context changes.



Figure 1. Context classification

A. Context and context classification

Dey et al [1] defined context as “any information that
can be used to characterize the situation of an entity. An
entity is a person, a place, or an object that is considered
relevant to the interaction between a user and applications
themselves”. Due to the wide density of contextual data,
many researchers have proposed several classifications of
context into categories that are most suitable to their appli-
cations domain. These classifications are proposed in order
to facilitate the context use. In fact, most of the studies made
a classification into two categories [2],[3],[4]. On the one
hand, Schmidt [3] partitions context into two classes, such
as “Physical environment” and “Human factors” as depicted
in the Figure 1. On the other hand, Mitchell [2] divides
the context into two categories, a “personal environment”
formed by the user’s interest, the user’s location and an
“environmental context” formed by the weather forecast.

Other studies classify context to several categories like
[5] and [6]. In fact, Schilit et al [6] define the context
as the constantly changing execution environment. In fact,
execution environment is the computing environment formed
by the available processors, the network capacity, and the
connectivity; the user environment which contains the user’s
location, its social situation. Finally, the physical environ-
ment. Brown et al [7] proposed to add a fourth context
category as the time context defined by the time of a day,
week, month and the season of the year.

B. Context changes detection techniques in ubiquitous envi-
ronments

In the context changes detection research direction, sev-
eral techniques and models are proposed in order to reveal
the context changes. In fact, in [8], Cioara et al propose
to use the context entropy concept for detecting the context
changes and determining the degree of fulfilling a predefined
set of policies. Moreover, context situation entropy defines
the level of the system’s self and execution envionment
disorder which is measured by evaluating the degree of
respecting a set of policies. Hence, once the context entropy
exceeds a fixed threshold, then the system is in a critical
state and it must execute adaptation actions. Although this
approach allows self adaptation following context changes,
it does not consider many context parameters to study as
it is restricted to external parameters such as temperature,
humidity and light etc.

In other studies, context changes are picked up by com-
paring a context value saved in a repository with a new
context value. In fact, in [9], Zheng et al have addressed the
issue of context change detection by proposing a context-
aware middleware which conforms to the CORBA com-
ponent model. The proposed middleware is composed of
context aware services such as a context collector, a context
interpreter, a context repository and a context analyzer. The
latter is in charge of filtering and analyzing context infor-
mation to determine relevant context changes and notifies
the application afterwards. Furthermore, context filtering is
based on a comparison of the context values saved in the
context repository with the new context value in order to



detect context changes.
The proposed middleware enables to save the scare re-

sources. In fact, the component deployment is performed
“just-in-time”. However, this middleware does not specify
context information to take into account. Another approach
for dynamic context management is proposed in [10]. In-
deed, Taconet et al [10] present CA3M, a context aware
middleware, which enables applications to adapt their be-
havior by dynamically taking into account context changes.

They model the application by “entities”, which represent
a physical or logical phenomenon (person, concept, etc.) and
“observable”, which defines something to observe. For in-
stance, a mobile device state is an example of an observable
which may take a finite number of values (e.g low battery,
Almost low Battery or Normal Battery). They consider that
the change of an “observable” state or even the observation
goes past a given threshold from the last notified value leads
to a different application behavior.

In [11], Bouassida et al proposed a model driven approach
for collaborative ubiquitous systems. In order to detect con-
text changes, they specify predefined thresholds. Then, once
context values remain below/under the threshold values, a
notification is raised. Although this approach enables to de-
tect instantly context changes, it may cause false detections
as well as missing alarms by using fixed thresholds.

III. CASE STUDY: ENTREPRISE HARDWARE MONITORING

In order to illustrate the usability of our approach, we
introduce an example of an M2M application named “En-
treprise hardware monitoring” denoted in the Figure 2 which
aims at enhancing security and detecting undesirable effects.
In this case study, we focus on some context parameters such
as battery level, available bandwidth and available memory
such as the RAM.

Figure 2. Entreprise monitoring use case

The application involves three kinds of participants as de-
noted in the Figure 2: Controlling M2M servers, M2MSrv1
and M2MSrv2, gateways such as GW1 and GW2, some

meters used for monitoring and devices connected to the
gateways. The M2M servers implement analysis algorithms,
and process monitored data received from meters in order to
analyze them. Once results are obtained, the corresponding
M2M servers notify the device and/or act to reconfigure the
architecture by switching or disabling the affected device(s).

For example, the M2M servers send requests to the power
meter connected to the gateway GW1 in order to monitor the
available battery level of some devices. Another bandwidth
meter is used to calculate the connection speed between the
different devices. In fact, the bandwidth meter is able to
perform the bandwidth measurement. On the other hand, at
the operating system level, a probe can measure the state of
hardware resources such as the available RAM. Thus, the
corresponding device can send a report to the appropriate
M2M controlling server in order to notify it about its current
state as well as its emergency degree.

IV. THE PROPOSED APPROACH

We propose a distributed approach which aims at detect-
ing context changes and raising notifications when context
changes occur in order to adapt the application behavior
accordingly.

Furthermore, in order to adapt an application to the chang-
ing context, the application should perform the following
steps. It should collect information, analyzes contextual data
and finally triggers the decided adaptation actions. Our
approach depicted in Figure 3 is structured around this issue.
In fact, it involves two main components: a component

Figure 3. The proposed approach

named “Context Provider” responsible for providing context
information. A second component, a “Context Manager”
is in charge of managing context information. The activity
of the “Context Manager” is divided into four large tasks.
First, the context collecting from different sources. This
task is performed by the “Context Collector”. Second, the
context interpretation which aims at processing context
information and computing high level observations. Once
achieved, processed context information are stored in a



“Context Database” which is used finally by the “Context
Analyzer” in order to analyze stored context information and
detect context changes.

In this paper, we focus on context information analy-
sis performed by the “Context Analyzer”. The “Context
Analyzer” retrieves context information from the context
database, analyzes it and tracks down the context changes us-
ing thresholds. Afterwards, the “Context Analyzer” notifies
the application in order to execute the appropriate adaptation
actions.

In our work, we consider computing context called re-
source context. Resource context constitutes the constraints
imposed by the surrounding environment. For instance,
the battery level, the available memory, the CPU load are
examples of resource context.

A. Resource context classification

The diversity and the heterogeneity of devices and the
network connectivity that ubiquitous environments provide,
open the door to different resource context classification
methods where context resources are combined in different
ways to exploit.

A first classification divides resource context into two
categories: Resource context related to the devices and
resource context related to the network communication.

• Resource context related to the device
This category corresponds to the resources which char-
acterize the device such as the available memory, the
CPU frequency, the CPU load and the battery level.

• Resource context related to the network communica-
tion
This category deals with the resources that characterize
the network communications as the network bandwidth,
the network connectivity, the communication link load
, the loss rate and the latency.

Despite the simplicity and the ease of this classification,
it remains inappropriate to use. In fact, this classification
doesn’t take into account the resource behavior which is
necessary especially in such systems that are characterized
by an important evolution of the resource behavior. Second,
we recall that our purpose is to define an approach that aims
to detect context changes based on thresholds.

As a result, our idea consists on classifying resource
context according to the resource evolution behavior.

This classification divides the resource context into two
families: Resources whose behavior is characterized by a
tendency and resources whose behavior is characterized by
peaks. In the following, we present each family separately.

1) Resources with behavior characterized by a tendency:
This family concerns resources whose model roughly co-
incides to a trendline as denoted in the Figure 4. In this
class, we are interested to the tendency. This class includes
resources whose behavior evolves (increase, decrease) in a
constant way within time.

The battery level mentioned in the case study detailed
previously is an example of this category. The available
memory, the latency belong also to this class resource
context classification.

Figure 4. Battery level evolution within time

2) Resources with behavior characterized by peaks:
In this category described by the Figure 5 the resource
evolution behavior is characterized by abrupt changes called
also peaks such as CPU load, link load, etc. The available
bandwidth mentioned in the case study detailed before
belongs to this family.

Figure 5. Latency evolution within time

B. Threshold calculation

We have proposed a resource context classification which
takes into account the resource evolution behavior.

Since we base our approach on thresholds for detecting
context changes, we present the threshold calculation for
each resource class.

We propose to attribute for each resource parameter
belonging to a category, n thresholds and for each threshold,
we assign a notification or a signal. This notification, defined
by an expert, corresponds to an emergency degree or a need
for adaptation that depends on the need of the expert or the
application itself. The thresholds can be either predefined or
adaptive ones.

Afterwards, we give some elements about threshold cal-
culation for each category detailed previously.

1) Threshold calculation for the resources whose evo-
lution behavior is characterized by a tendency: For this
category, we remind that the resource evolution behavior is



(a) Fixed Threshold (b) Adaptive Threshold (c) Step Function Threshold

Figure 6. Threshold calculation for the resource whose evolution behavior is characterized by a tendency

described by a tendency. In order to avoid false detections as
well as missing alarms, we need to define thresholds which
are uncorrelated with the resource tendency evolution be-
havior. Thus, a notification is raised whenever the tendency
curve crosses the threshold one.

Different kinds of thresholds can be applied for this
class, such as fixed thresholds, adaptive thresholds and step
function thresholds.

For instance, fixed thresholds may be defined by the
application designer according to the resource characteristic.
Then, a notification is raised once the resource crosses the
threshold as depicted in the Figure 6(a).

For the adaptive threshold denoted in the Figure 6(b),
mathematical methods can be applied in order to up-
date threshold values at runtime such as the Exponential
Weighted Moving Average technique used in [12]. However,
for this kind of resource context characterized by a tendency,
adaptive threshold must be uncorrelated with the resource
evolution behavior in order to avoid false detections and
missing alarms. Finally, for the step function threshold de-
scribed in the Figure 6(c), thresholds are defined per period
and notifications are raised when the resource behavior
crosses the thresholds.

Let’s consider the example of the battery level depicted in
the previous section. In this example, whenever the battery
level values remain under the threshold, a notification is
raised. In the Figure 6(c), we use the thresholds modeled as
a step function. Hence, we raise different level depending on
the battery state. For example, in Figure 6(a), Figure 6(b),
when the battery level values decrease until reaching a
critical value under the threshold, an alarm is forwarded to
the M2M server in order to switch the corresponding device.

2) Threshold calculation for the resources whose evo-
lution behavior is characterized by peaks: In the second
category of resource context whose evolution behavior is
characterized by abrupt changes, specifying adaptive thresh-
olds that are correlated with the resource evolution behavior
tendency is an appropriate method for setting thresholds.
Indeed, in this family, peaks characterize sudden changes
form a normal behavior to an abnormal one. For that reason,
adaptive thresholds correlated with the resource evolution

behavior remain under the resource shape. Furthermore, a
violation of the threshold reveals a context change.

Figure 7. Threshold calculation for the resources whose evolution behavior
is characterized by a peak

V. ILLUSTRATIVE SCENARIO

We illustrate the feasibility of our approach through a
remote hardware maintenance application. This scenario
shows how the application behavior is updated according
to context changes and highlights the need for context
modification at runtime. A computer company buys new
devices such as laptops, desktop computers, PDAs, routers,
etc. Furthermore, each new device embeds an analysis entity
that implements our approach in order to detect resource
context changes such as Battery level, available bandwidth,
etc. Eric, the manager of the company decides to control
daily the devices state as well as the communication links
reliability. Bob is the employee selected to perform this
work. To achieve this task, every day, Bob brings his PDA
which contains a notebook application, equipped with a
logical sensor, running a sender and a receiver program and
connected to a power meter enabling him to monitor the
battery state of his device as well as the other devices in the
company. He starts then supervising the company hardware
state. First of all, Bob broadcasts periodic messages through
the network to monitor the devices state (ON, OFF), but
also to check the network connectivity. Once a timestamp
is elapsed without receiving a signal from the devices, in
that case, Bob is notified that there is either lossy links or
faulty devices or both. The bandwidth meter connected to
Bob’s PDA as depicted in the Figure 2 starts monitoring



the communication links. At each moment, Bob notes in
its mobile device the message number through the corre-
sponding link. By using the analysis approach, Bob decides
that the link is overloaded, so that the bandwidth is in a
critical state which engenders lossy links. Afterwards, Bob
decides to monitor his mobile device state. So he starts by
supervising the battery level and he initiates this task by
applying threshold for this resource. In fact, since the battery
level belongs to the first category detailed in section IV,
Bob chooses three thresholds. Each one corresponds to an
emergency degree: “Normal Battery”, “Almost Low Battery”
and “Low Battery”. So when the power meter attached to
his mobile device detects that the battery level of his mobile
device reaches the “Low Battery” state, hence, the PDA
switches to a poor mode omitting pictures and reducing
contrast. After plugging his device, the PDA returns to its
normal mode.

The scenario justifies the context awareness of the appli-
cation in order to cope with different resources constraints
and to adapt its behavior accordingly.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an approach for the
context changes detection in collaborative ubiquitous envi-
ronments. Our approach is composed of two major compo-
nents. A “Context Provider” and a “Context Manager”. The
“Context Provider” is out of the scope of this paper. In fact,
we focus on the “Context Manager”. The latter is divided
into four components such as a “Context Collector”, a
“Context Interpreter”, a “Context Database” and a “Context
Analyzer”. The “Context Analyzer” is the key component of
our approach. Indeed, it is responsible for analyzing context
information, detecting the context changes and forwarding
notifications to the application when necessary. The “Context
Analyzer” relies on thresholds in order to detect context
changes. In our work, we have considered computing context
to deal with as we have focused on resource context. Fur-
thermore, we have presented a bi-classification of resource
context according to the resource evolution behavior. A first
category deals with resources whose behavior is modeled
by a trendline. A second category concerns resources whose
behavior is characterized by abrupt changes.

As future work, we plan to implement our analysis
approach and to integrate it into the framework FACUS [13].
Then we intend to use ontologies in order to model context
information.

ACKNOWLEDGMENT

This research is supported by the ITEA2’s A2NETS
(Autonomic Services in M2M Networks) project 1.

1https://a2nets.erve.vtt.fi/

REFERENCES

[1] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a better understanding of context
and context-awareness,” in Proceedings of the 1st interna-
tional symposium on Handheld and Ubiquitous Computing,
ser. HUC ’99, 1999, pp. 304–307.

[2] K. Mitchell, “Supporting the development of mobile context-
aware computing,” Ph.D. dissertation, Lancaster University,
2002.

[3] A. Schmidt, “Ubiquitous computing - computing in context,”
PhD thesis, Doctor of Philosophy, Computing Department,
Lancaster University,England, U.K., November, 2002.

[4] P. Prekop, “Activities, context and ubiquitous computing,”
Computer Communications, Mar. 2003. [Online]. Available:
http://dx.doi.org/10.1016/S0140-3664(02)00251-7

[5] T. Rodden, K. Chervest, N. Davies, and A. Dix, “Exploiting
context in hci design for mobile systems,” in in Workshop on
Human Computer Interaction with Mobile Devices, 1998.

[6] B. Schilit, N. Adams, and R. Want, “Context-aware com-
puting applications,” in In Proceedings of the Workshop on
Mobile Computing Systems and Applications, pp. 85–90.

[7] P. J. Brown, J. D. Bovey, and X. Chen, “Context-aware ap-
plications: from the laboratory to the marketplace,” Personal
Communications, IEEE [see also IEEE Wireless Communi-
cations], no. 5, pp. 58–64.

[8] T. Cioara, I. Anghel, I. Salomie, M. Dinsoreanu, G. Copil, and
D. Moldovan, “A self-adapting algorithm for context aware
systems,” in Roedunet International Conference (RoEduNet),
2010 9th, june 2010, pp. 374 –379.

[9] D. Zheng, J. Wang, W. Han, Y. Jia, and P. Zou, “Towards
a context-aware middleware for deploying component-based
applications in pervasive computing,” in Proceedings of the
Fifth International Conference on Grid and Cooperative
Computing, ser. GCC ’06, 2006, pp. 454–457.

[10] C. Taconet, Z. Kazi-Aoul, M. Zaier, and D. Conan, “Ca3m: A
runtime model and a middleware for dynamic context man-
agement,” in Proceedings of the Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009 on On
the Move to Meaningful Internet Systems: Part I, ser. OTM
’09, 2009, pp. 513–530.

[11] I. Bouassida Rodriguez, G. Sancho, T. Villemur, S. Tazi, and
K. Drira, “A model-driven adaptive approach for collaborative
ubiquitous systems,” in Proceedings of the 3rd workshop on
Agent-oriented software engineering challenges for ubiqui-
tous and pervasive computing, ser. AUPC 09, 2009, pp. 15–
20.

[12] I. Lahyani, N. Khabou, and M. Jmaiel, “Qos monitoring and
analysis approach for publish/subscribe systems deployed on
manet,” Parallel, Distributed, and Network-Based Processing,
Euromicro Conference on, vol. 0, pp. 120–124, 2012.

[13] G.SANCHO, “Adaptation d’architectures logicielles collab-
oratives dans les environnements ubiquitaires. contribution
l’interoprabilit par la smantique,” LAAS, 138p., LAAS Re-
ports 10779, 2010-12-14.


