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Poroelasticity of a micro-heterogeneous material saturated by two immiscible fluids

Keywords: Poroelasticity, two phase fluid, constitutive relations, unsaturated, anisotropy

The anisotropic poroelasticity framework presented by Aichi and Tokunaga (Int. J. Rock Mech. Min. Sci. 48(4) (2011) 580-584) for a porous material saturated by two immiscible fluids is generalized for micro-heterogeneous materials by introducing one additional poroelastic parameter. This framework is based on Coussy's thermodynamic framework, but is re-written using material parameters that are easier to evaluate experimentally. The presented generalization permits using the constitutive relations for modelling the behaviour of geomaterials with a heterogeneous solid phase composed of several constituents. The constitutive relations are given also for special cases of isotropic porous material saturated by two immiscible fluids or by one fluid.

Introduction

The modelling of the mechanical behaviour of unsaturated porous materials is important for various applications in geotechnical engineering, petroleum geomechanics, biomechanics, etc. Based on the thermodynamics theory and Lagrangian saturation concept, Coussy [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF][START_REF] Coussy | Mechanics and physics of porous solids[END_REF] presented a solid framework for modelling the elastoplastic behaviour of unsaturated porous media. This framework is presented based on material properties that are very difficult to evaluate experimentally. Aichi and Tokunga [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] represented this theoretical framework for a more general case of anisotropic poroelasticity using material properties that are easier to evaluate experimentally. By means of a series of thought experiments, these authors established relationships for the unsaturated poroelasticity material parameters used in Coussy's framework as functions of porosity, saturated poroelasticity material parameters (drained stiffness and Biot effective stress coefficient tensors), Bishop effective stress coefficient and degree of saturation. But these relationships are limited to micro-homogeneous porous materials for which the solid phase is made up of one single constituent. It is well-known that this is not the case for many geomaterials constituted by a heterogeneous solid phase. The aim of this work is to generalize the presented constitutive relations in [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] by taking into account the heterogeneity of the solid phase of the porous material. This is done by introducing an additional poroelastic parameter into the formulations.

Poroelastic constitutive relations for unsaturated media

The poroelastic constitutive relations presented in the following are written considering an infinitesimal representative element of porous material. The material with total volume V is composed of a solid phase with volume V s and a connected pore volume with volume V φ . The occluded pore volume and the fluid filling it are considered to be a part of the solid phase. The solid phase itself may be composed of one or several constituents. The Lagrangian porosity is defined as φ = V φ /V 0 and its variation is expressed by ϕ = φφ 0 , where the subscript 0 is for referring to the initial state. It is assumed that the pore volume is composed of two parts, each one fully saturated by a fluid. These pore volumes are referred to in the following by subscripts wF and nwF, respectively for wetting fluid and non-wetting fluid, so that φ = φ wF + φ nwF . From this relation one obtains

ϕ = φ -φ 0 = ϕ wF + ϕ nwF (1) 
The Lagrangian partial saturations for wetting and non-wetting fluids represent the fraction of the pore volume occupied by each fluid:

S wF = φ wF φ 0 ; S nwF = φ nwF φ 0 ; S wF + S nwF = 1 (2) 
The poroelastic constitutive relations for a general case of a fully anisotropic unsaturated material are given below [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF][START_REF] Coussy | Mechanics and physics of porous solids[END_REF][START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF]:

σ i j = C i jkl ε kl -α wFi j p wF -α nwFi j p nwF (3) 
ϕ wF = α wFi j ε i j + 1 N wF-wF p wF + 1 N wF-nwF p nwF (4) 
ϕ nwF = α nwFi j ε i j + 1 N wF-nwF p wF + 1 N nwF-nwF p nwF (5) 
where C i jkl is the stiffness tensor and α wFi j , α nwFi j , N wF-wF , N wF-nwF , N nwF-nwF are material constants that are equivalent to Biot effective stress coefficient tensor α i j and Biot modulus N in saturated conditions. As mentioned by Aichi and Tokunga [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF], these material parameters defined for unsaturated poroelasticity are not directly relevant to those which can be measured by laboratory experiments. In other words, an experimental evaluation of these parameters is very difficult, if not impossible. To overcome this difficulty, Aichi and Tokunga [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] propose an interesting method, by means of a series of thought experiments, to establish relations among these unsaturated poroelasticity material properties with other parameters that are easier to evaluate experimentally. These relations which are presented in [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] for the case of a micro-homogeneous porous material, are generalized in the following section for the case of a micro-heterogeneous porous material for which the solid phase is composed of several constituents. The derivation of these relations is done using the same method as in [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] and for this reason the structure of the following section is chosen similar to section (3) of [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF].

Theoretical relationships among poroelastic coefficients

Uniform pore pressure build-up

When the pressure increments in wetting and non-wetting fluid are the same, equations 3 to 5 must be reduced to the saturated poroelasticity equations, σ i j = C i jkl ε kl -α i j p and ϕ = α i j ε i j + p/N [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF][START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF]. In these equations C i jkl is the drained stiffness tensor, α i j in Biot effective stress coefficient tensor and N is Biot modulus. By assuming p wF = p nwF = p in equation 3 and comparing with σ i j = C i jkl ε kl -α i j p one finds C i jkl = C i jkl and α wFi j + α nwFi j = α i j .

This latter equation permits writing

α wFi j = χα i j ; α nwFi j = (1 -χ) α i j ( 6 
)
where χ is a constant depending on the Lagrangian saturation of wetting fluid. Replacing these relations in the constitutive relation 3 gives

σ i j = C i jkl ε kl -α i j χp wF + (1 -χ) p nwF (7) 
which shows that the parameter χ is equivalent to Bishop [START_REF] Bishop | The principle of effective stress[END_REF] effective stress coefficient. Inserting equations 4 and 5 and p wF = p nwF = p in equation 1 and comparing with the saturated poroelasticity equation ϕ = α i j ε i j + p/N, results in the following relation between the unsaturated poroelasticity constants and Biot modulus N for the saturated case [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF]:

1 N wF-wF + 2 N wF-nwF + 1 N nwF-nwF = 1 N (8)

Unjacketed condition

The unjacketed condition is defined as p wF = p nwF = p and σ i j = -pδ i j . Under this condition, equal increments of confining pressure and pore pressure are simultaneously applied to the sample, as if the sample was submerged, without a jacket, into a fluid under the pressure p. Terzaghi effective stress σ i j = σ i j + pδ i j in this condition remains constant. In the unjacketed condition a micro-homogeneous porous material would deform as if all the pores were filled with the solid component. The skeleton and the solid component experience a uniform volumetric strain dV/V 0 = dV s /V s0 = dV φ /V φ0 , so that we can write [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF]:

ε kk = ϕ wF φ 0 S wF = ϕ nwF φ 0 S nwF (9) 
When the solid phase is heterogeneous the skeleton and the solid component will experience different volumetric strains and the above relation is modified as following:

βε kk = ϕ wF φ 0 S wF = ϕ nwF φ 0 S nwF (10) 
where the parameter β is a poroelastic parameter defined as the ratio of the volumetric strain of the pore volume to the one of the solid skeleton in unjacketed condition.

β = dV φ /V φ0 dV/V 0 p wF =p nwF =p σ i j =-pδ i j (11) 
In poroelasticity theory, two elastic moduli K s and K φ are classically defined for unjacketed condition [START_REF] Brown | On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[END_REF][START_REF] Rice | Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[END_REF][START_REF] Berryman | Effective stress for transport properties of inhomogeneous porous rock[END_REF]].

1 K s = - 1 V 0 ∂V ∂p p wF =p nwF =p σ i j =-pδ i j ; 1 K φ = - 1 V φ0
∂V φ ∂p p wF =p nwF =p

σ i j =-pδ i j (12) 
The poroelastic parameter β can thus be identified as:

β = K s K φ (13) 
The parameters K s and K φ are equivalent respectively to κ M and κ φ defined by Brown and Korringa [START_REF] Brown | On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid[END_REF] and K s and K s defined by Rice and Cleary [START_REF] Rice | Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents[END_REF]. For a micro-homogeneous porous material K s = K φ = K m where K m is the bulk modulus of the single solid constituent of the porous material. In the case of a porous material which is composed of two or more solids and therefore is heterogeneous at the micro-scale, the unjacketed modulus K s is some weighted average of the bulk moduli of solid constituents [START_REF] Berryman | Effective stress for transport properties of inhomogeneous porous rock[END_REF]. What this average should be is generally unknown, however, Ghabezloo and Sulem [START_REF] Ghabezloo | Stress dependent thermal pressurization of a fluid-saturated rock[END_REF] evaluated the unjacketed modulus of Rothbach sandstone using Hill's [START_REF] Hill | The Elastic Behaviour of a Crystalline Aggregate[END_REF] average formula and found a good accordance with the experimentally evaluated modulus. The modulus K φ for such a material has a complicated dependence on the material properties. Generally it is not bounded by the elastic moduli of the solid components and can even have a negative sign if the bulk moduli of the individual solid components are greatly different one from another [START_REF] Berge | Realizability of negative pore compressibility in poroelastic composites[END_REF]. The modulus K s can be easily evaluated in an unjacketed test by measurement of the variations of the total volume of the tested sample. The variation of the pore volume of the sample in this test, evaluated from the quantity of fluids exchanged between the sample and the pore pressure generators could in principle give the modulus K φ . However experimental evaluation of this parameter is very difficult as the volume of the exchanged fluid has to be corrected for the effect of fluid compressibility, and also for the effect of the deformations of the pore pressure generator and drainage system in order to access to the variation of the pore volume of the sample [START_REF] Ghabezloo | Poromechanical behaviour of hardened cement paste under isotropic loading[END_REF][START_REF] Ghabezloo | Effect of the volume of the drainage system on the measurement of undrained thermo-poro-elastic parameters[END_REF]. However this parameter can be evaluated indirectly as a function of the other poroelastic parameters which can be measured independently, as presented in [START_REF] Ghabezloo | Poromechanical behaviour of hardened cement paste under isotropic loading[END_REF][START_REF] Hart | Variation of unjacketed pore compressibility using gassmann's equation and an overdetermined set of volumetric poroelastic measurements[END_REF]. It is also possible to evaluate this parameter using the homogenization method [START_REF] Ghabezloo | Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste[END_REF][START_REF] Ghabezloo | Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste[END_REF]. The parameter β for a hardened cement paste is evaluated equal to 1.24 from the analysis of poromechanics tests [START_REF] Ghabezloo | Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste[END_REF] (K s = 21.0 GPa, K φ = 16.9 GPa) and equal to 1.1 using the homogenization method [START_REF] Ghabezloo | Poromechanical behaviour of hardened cement paste under isotropic loading[END_REF]. From the experimental results of Hart and Wang [START_REF] Hart | Variation of unjacketed pore compressibility using gassmann's equation and an overdetermined set of volumetric poroelastic measurements[END_REF] the parameter β can be evaluated equal to 6.6 for Berea sandstone (K s = 28.9 GPa, K φ = 4.4 GPa) and 9.7 for Indiana limestone (K s = 72.6 GPa, K φ = 7.5 GPa).

Based on the experimental results of Laurent et al. [START_REF] Laurent | Pore-Pressure Influence in the Poroelastic Behavior of Rocks: Experimental Studies and Results[END_REF] cited in [START_REF] Hart | Variation of unjacketed pore compressibility using gassmann's equation and an overdetermined set of volumetric poroelastic measurements[END_REF], the parameter β can be evaluated between 0.33 and 0.56 for Vilhonneur limestone (K s = 41 and 56 GPa from two independent measurements, K φ between 100 and 125 GPa).

By re-writing equations 3, 4 and 5 for the unjacketed condition (p wF = p nwF = p and σ i j = -pδ i j ) and using equations 10 and 6 the following relations are found between the Biot moduli for undsaturated condition and the other poroelastic parameters:

1 N wF-wF + 1 N wF-nwF = α i j χ -φ 0 βS wF δ i j C -1 i jkl (δ kl -α kl ) (14) 
1

N wF-wF + 1 N nwF-nwF = α i j (1 -χ) -φ 0 β (1 -S wF ) δ i j C -1 i jkl (δ kl -α kl ) (15) 
3.3. Build-up of the pressure of the wetting phase fluid under constant Lagrangian partial porosity of the non-wetting phase fluid and no deformation of the solid constituent

In this thought experiment the build-up of the pressure of the wetting phase fluid under constant Lagrangian partial porosity of the non-wetting phase fluid are considered as follows:

p wF = p; ϕ nwF = 0; S wF = const. ( 16 
)
Schematic representations of these conditions are presented in [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF]. In addition to these conditions, the total stress is supposed to be:

σ i j = -βφ 0 S wF p + (1 -S nwF ) p nwF δ i j (17) 
By assuming β = 1 the above equation is reduced to the one presented in [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF]. Using equation ( 17), following the same way as presented in section 3.3 of [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF], one can show that ϕ wF + ϕ nwF = ε kk and the strain of the solid constituent is zero. Finally, the following relations are obtained for the three Biot moduli (see [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] for more details on derivation):

1 N wF-nwF = α i j χ -φ 0 βS wF δ i j C -1 i jkl (δ kl -α kl ) × α mn (1 -χ) -φ 0 β (1 -S wF ) δ mn (α mn -φ 0 βδ mn ) -1 (18) 
1 N wF-wF = α i j χφ 0 βS wF δ i j C -1 i jkl (δ kl -α kl )

× (α mn χφ 0 βS wF δ mn ) (α mn -φ 0 βδ mn ) -1

(19) 1 N nwF-nwF = α i j (1 -χ) -φ 0 β (1 -S wF ) δ i j C -1 i jkl (δ kl -α kl ) × α mn (1 -χ) -φ 0 β (1 -S wF ) δ mn (α mn -φ 0 βδ mn ) -1 (20) 
Equations 6, 18, 19 and 20 give relationships for unsaturated poroelasticity material parameters as functions of other parameters which are easier to evaluate experimentally.

Poroelastic constitutive relations for micro-heterogeneous materials

General case of anisotropic material

Substituting equations 6, 18, 19 and 20 in the constitutive relations 3, 4 and 5 permit writing the poroelastic constitutive relations for an anisotropic micro-heterogeneous material:

σ i j = C i jkl ε kl -α i j χp wF + (1 -χ) p nwF (21) 
ϕ wF = α i j χε i j + α i j χφ 0 βS wF δ i j C -1 i jkl (δ kl -α kl ) (α mn χφ 0 βS wF δ mn ) × (α mn -φ 0 βδ mn ) -1 p wF + α i j χφ 0 βS wF δ i j C -1 i jkl (δ kl -α kl ) × α mn (1 -χ) -φ 0 β (1 -S wF ) δ mn (α mn -φ 0 βδ mn ) -1 p nwF (22)

ϕ nwF = α i j (1 -χ) ε i j + α i j χ -φ 0 βS wF δ i j C -1 i jkl (δ kl -α kl ) × α mn (1 -χ) -φ 0 β (1 -S wF ) δ mn (α mn -φ 0 βδ mn ) -1 p wF + α i j (1 -χ) -φ 0 β (1 -S wF ) δ i j C -1 i jkl (δ kl -α kl ) × α mn (1 -χ) -φ 0 β (1 -S wF ) δ mn (α mn -φ 0 βδ mn ) -1 p nwF (23) 
By assuming β = 1 the above equations are reduced to the ones presented in [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF].

Special case of isotropy

In the case of isotropy the constitutive relations are reduced to:

σ i j + α χp wF + (1 -χ) p nwF = 2Gε i j + K - 2G 3 ε kk δ i j (24) 
ϕ wF = αχε kk + (αχ -φ 0 βS wF ) 2 (1 -α) K (α -φ 0 β) p wF + (αχ -φ 0 βS wF ) α (1 -χ) -φ 0 β (1 -S wF ) (1 -α) K (α -φ 0 β) p nwF (25) 
ϕ nwF = α (1 -χ) ε kk + (αχ -φ 0 βS wF ) α (1 -χ) -φ 0 β (1 -S wF ) (1 -α) K (α -φ 0 β) p wF + α (1 -χ) -φ 0 β (1 -S wF ) 2 (1 -α) K (α -φ 0 β) p nwF (26) 

Special case of isotropy and saturation by one fluid

For an isotropic porous material saturated by one fluid we have χ = 1 and S wF = 1. The constitutive relations in this case are reduced to:

σ i j + αp = 2Gε i j + K - 2G 3 ε kk δ i j (27) ϕ = αε kk + (α -φ 0 β) (1 -α) K p (28) 
The term (αφ 0 β) (1 -α) /K in equation ( 28) is equal to 1/N where N is Biot modulus. Replacing α = 1 -K/K s and β = K s /K φ in this relation the expression of Biot modulus presented in [START_REF] Berryman | Exact results for generalized gassmann's equations in composite porous media with two constituents[END_REF][START_REF] Ghabezloo | Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste[END_REF] is retrieved:

1 N = α K s - φ 0 K φ (29) 
In the case of a micro-homogeneous porous material composed of one single solid constituent we have K s = K φ and equation 29 is reduced to the well-known relation 1/N = (αφ 0 ) /K s [START_REF] Berryman | Exact results for generalized gassmann's equations in composite porous media with two constituents[END_REF]18].

Conclusions

The anisotropic poroelasticity framework presented by Aichi and Tokunaga [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] for a porous material saturated by two immiscible fluids is generalized by taking into account the heterogeneity of the solid phase of the material. This is done by introducing one additional poroelastic parameter β into the formulations. The parameter β is defined as the ratio of the volumetric strain of the pore volume to the one of the solid skeleton in unjacketed condition. The assumption of a homogeneous solid phase is introduced in [START_REF] Aichi | Thermodynamically consistent anisotropic constitutive relations for a poroelastic material saturated by two immiscible fluids[END_REF] and also in [START_REF] Coussy | Revisiting the constitutive equations of unsaturated porous solids using a lagrangian saturation concept[END_REF] to obtain the relationships between Biot modulus N and the other poroelastic parameters. The presented generalization permits using the unsaturated poroelasticity constitutive relations for modelling the behaviour of anisotropic geomaterials with a heterogeneous solid phase. The constitutive relations are presented also for special cases of isotropic porous material saturated by two immiscible fluids as well as isotropic porous material saturated by one fluid.