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Abstract. This paper deals with the robust updating of stochastic computational models

of composite sandwich panels in the context of structural dynamics in the low- and medium-

frequency range, for which experimental results are available. The uncertain computational

model is constructed using the nonparametric probabilistic approach which takes into account

model and data uncertainties. The formulation of the robust updating problem includes the ef-

fects of uncertainties and consists in minimizing a cost function with respect to an admissible

set of updating parameters. Several cost functions are constructed, validated and compared us-

ing the experimental results. The results of the robust updating problem shows that the methods

proposed are efficient for updating the computational model in both low- and medium-frequency

range.
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1 INTRODUCTION

In general, the updating of a computational model using experiments is performed with de-

terministic models [1]. The main challenge consists in including the effects of uncertainties in

the updating process, that is called robust updating. In the context of structural engineering, the

robust updating leads to solve a nonlinear constrained optimization problem with respect to the

updating parameters which are the updating mean parameters of the mean computational model

and the updating dispersion parameters which allow the uncertainty level in the computational

model to be controlled. Until now, in the context of structural dynamics, most of the published

works concern robust updating in the low-frequency range with respect to data uncertainties

and not to model uncertainties [2]. In the present paper, several robust updating methodolo-

gies with respect to model and data uncertainties in the low- and medium- frequency range are

proposed. Model uncertainties are taken into account by using the nonparametric probabilistic

approach [3, 4]. The cost functions used to formulate the robust updating problem are defined

from an uncertain computational model using experiments and are a function of the updating

parameters. These methodologies are validated and compared in the context of the structural

dynamics of composite sandwich panels in the low- and medium-frequency range for which

experimental results issued from a set of 8 manufactured sandwich panels are available [5, 6].
In Section 2, the experimental results are summarized. Section 3 is devoted to the deterministic
updating of the computational model using cost functions defined from the modulus and the

phase of the experimental observations. This deterministic updating is viewed as a preliminary

step for robust updating and is numerically validated using the experimental results described in

Section 2. Section 4 proposes the construction of two cost functions defined from experiments

by using an uncertain computational model in order to formulate the robust updating problem

with respect to model and data uncertainties. The two methodologies are numerically validated

and compared.

2 EXPERIMENTS IN THE LOW ANDMEDIUM FREQUENCY RANGE

2.1 Description of the experimental data

Experimental data related to a set of nexp = 8 multilayered sandwich panels manufac-

tured from a designed composite sandwich panel [5, 6] is used. The designed composite sand-

wich panel is a free structure with rectangular shape and is made up of two thin carbon-resin

skins constituted of two unidirectional plies [60/-60] and of one high stiffness closed-cell foam

core. Dynamical experiments are conducted for each of the manufactured sandwich panels.

The detailed description of the designed sandwich panel and of its corresponding experimen-

tal protocol can be found in [5, 6]. The frequency response function corresponding to a given

out-plane point load is measured at nobs = 25 observation points in the frequency band of

analysis
 

= [100 , 4500] Hz. Let xj with j ∈ {1, . . . , nobs} be the location of the observation
point number j. Let W exp

j (ω, θk) be the the observation corresponding to the experimental fre-
quency response function of the manufactured composite sandwich panel number k, measured
at observation point xj, at a given frequency ω of frequency band

 
and expressed in terms of

acceleration.

2.2 Analysis of the experimental results

Most often, the moduli of the frequency response functions are only used to carry out analy-

sis of experiments and identification of the model. Presently, we propose to also use an average
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value of the phases (see below). The experimental complex-valued frequency response func-

tion W exp
j (ω, θk) can be written as W exp

j (ω, θk) = |W exp
j (ω, θk)| exp(−i Φexp

j (ω, θk)) in which
|W exp

j (ω, θk)| and Φexp
j (ω, θk) are the modulus and the unwrapped phase angle. In order to

analyze the experimental data, the following quantities corresponding to a spatial average of

moduli and of phases are introduced as:

dBexp
w (ω) = 10 log10

(

1

nobs nexp

nexp
∑

k =1

( nobs
∑

j=1

|W exp
j (ω, θk)|

2

)

)

, (1)

φexp

w
(ω) =

1

nobs nexp

nexp
∑

k =1

nobs
∑

j=1

Φexp
j (ω, θk) , (2)

Figure 1 displays the graph ν 7→ dBexp
w (ν) where ν = ω/(2 π) is the circular frequency in

Hz. Figure 2 displays the graph ν 7→ φexp

w
(ν).
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Figure 1: Graph of the experimental averaged modulus ν 7→ dBexp
w (ν) (thick line). Horizontal axis is frequency ν

in Hz.
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Figure 2: Graph of the experimental averaged phase ν 7→ φexp

w
(ν) (thick line). Horizontal axis is frequency ν in

Hz.

In Figure 2, it should be noted that the low-frequency range and the medium-frequency

range can be easily identified from each other. The low-frequency range is characterized by

the low-frequency band
 

L for which φexp

w
(ν) is a non monotonous function of the frequency
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ν, showing discontinuities when crossing an isolated resonance. Analyzing Figure 2 (but also
Figure 1) yields

 
L = [0 , 1200] Hz. As the frequency grows, the modal density increases and

the medium-frequency range corresponds to the medium-frequency band
 

M for which φexp

w
(ν)

is a smooth function of ν. In Figure 2, it can be seen that
 

M = [1200 , 4500] Hz.

3 UPDATING METHOD FOR THE MEAN MECHANICAL MODEL OF THE DY-

NAMICAL SYSTEM USING THE EXPERIMENTAL FREQUENCY RESPONSE

FUNCTIONS

3.1 Motivation and strategy

The mean computational model related to the designed sandwich panel is constructed by

the finite element method. The updating method has to be efficient both in the low-frequency

range and in the medium-frequency range. It is assumed that the conservatory part (mass and

stiffness) has been already updated [5, 6] and in this paper, we propose to update the damping

model in the medium-frequency range. In general, damping varies with the frequency in the

medium-frequency range. Consequently, the damping model used has to take into account this

phenomenon. In this Section, a damping model controlled by four updating parameters defined

on an admissible set of updating parameters is introduced in order to update the mean computa-

tional model with respect to the experimental data. For the updating of the mean computational

model with respect to the admissible set of the updating parameters, first, we present a usual up-

dating method consisting in minimizing the cost function defined as a distance between a spatial

average of moduli of the frequency response function and the corresponding experimental data.

Secondly, we present a new approach consisting in using for constructing the cost function, an

average value of the phases.

3.2 Description of the mean finite element model

The mean finite element model of the designed sandwich panel which has to be updated

is a laminated composite thin plate in bending mode. Its middle plane occupies the domain

[0 , 0.4] × [0 , 0.3] m in the plane (Ox, Oy) of a cartesian coordinate system (O xy z). The

out-plane displacements are only considered. The laminated composite thin plate is constituted

of five layers, each one made up of an orthotropic elastic material. The first two layers are

two unidirectional plies in a [−60/60] layup with width 0.00017 m, mass density 1600 kg.m−3

and whose elasticity constants expressed in the local coordinate system (0 X Y z) are given by
EX = 101 GPa, EY = 6.2 GPa, νXY = 0.32, GXY = GXZ = GY Z = 2.4 GPa. The
third layer is a closed-cell foam with thickness 0.01 m, mass density 80 Kg.m−3 and elasticity

constants Ex = Ey = 60 MPa, νxy = 0, Gxy = Gxz = Gyz = 30 MPa. The last two
layers are two unidirectional plies in a [60/− 60] lay-up with the same characteristic as the first
two layers. The laminated thin plate is a free structure. The finite element mesh is constituted

of 64× 64 rectangular four nodes elements and has n = 12 288 DOF. The mean finite element
model is submitted to a deterministic unit transverse load constant in frequency band

 
with

amplitude 1 and located at the node with coordinates (0.187, 0.103, 0). In the present case, the
updating concerns the model used for modeling the damping in the composite panel. Let r be

the vector of the updating parameters. Vector r belongs to an admissible set R corresponding

to a given family of damping models that is defined in the next Subsection. Assuming the

designed sandwich panel to be linear and slightly damped, for fixed r belonging to R and for

fixed ω belonging to
 
, the mean finite element matrix equation of the sandwich panel is written

as
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(−ω2 [M ] + i ω [D(r)] + [K]) u(r, ω) = f(ω) , (3)

in which u(r, ω) is the  n-vector of the n DOF and where f(ω) is the  n-vector induced by

the external forces. Since the sandwich panel has a free boundary, the mean mass matrix [M ]
is a positive-definite symmetric (n × n) real matrix and the mean damping and stiffness ma-
trices [D(r)] and [K] are positive semi-definite symmetric (n × n) real matrices. It should

be noted that the rank of mean matrices [D(r)] and [K] is n − 3 (presence of three rigid

body modes). For j belonging to {1, . . . , nobs}, the frequency response functions expressed

in terms of acceleration at point xj are denoted by wj(r, ω) and are stored in the  nobs-vector

w(r, ω) = (w1(r, ω), . . . , wnobs
(r, ω)) such that w(r, ω) = [T (ω)] u(r, ω), in which [T (ω)] is

the (nobs × n) observation matrix.

3.3 Description of the mean reduced matrix model

The mean reduced matrix model of the sandwich panel is constructed by modal analysis.

Since we are interested in the elastic motion of the structure, we introduce the (n × N) real
matrix [Φ] whose columns are the N ≪ n eigenvectors !

j
related to the N positive lowest

eigenfrequencies λj = ω2
j . The mean reduced matrix model is then written as w(r, ω) =

[T (ω)] [Φ] q(r, ω) in which q(r, ω) is the  N -vector of the generalized coordinates which is

solution of the matrix equation

(

− ω2 [M] + i ω [D(r)] + [K]
)

q(r, ω) = F(ω) (4)

In Eq. (4), the  N -vector F(ω) is written as F(ω) = [Φ]T f(ω) and the matrices [M] and
[K] are the positive-definite symmetric (N × N) real diagonal matrices such that [M]jk =
µj δjk and [K]jk = µ

j
ω2

j δjk in which µ
j
is the generalized mass related to eigenmode !

j
and

where δjk denotes the Kronecker symbol. The mean reduced damping matrix [D(r)] (which
is a positive-definite symmetric (N × N) real matrix) is then introduced such that [D(r)]jk =
2 µ

j
ωj ξ

j
(r) δjk in which ξ

j
(r) is the mean modal damping rate related to eigenmode !

j
defined

as ξ
j
(r) = f(ωj , r).

0

ξ
0

ξ
1

f(b,     ) r

b

Figure 3: Graph of function b 7→ f(b, r)

Let r = {ξ0, ξ1, α, β} be the  4-vector of the updating parameters belonging to the admis-

sible set R defined as R =
{

{ξ0, ξ1, α, β}, ξ1 ≥ ξ0 > 0; α > 0; β > 0
}

. For r fixed in R, the

function b 7→ f(b, r) from " + into " + is defined by
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f(b, r) = ξ0 + (ξ1 − ξ0)
bα

bα + 10β
, (5)

and its graph is displayed in Figure 3.

3.4 Updating the mean computational model of the designed sandwich panel with exper-

iments.

In this Section, two formulations are proposed to update the mean computational model of

the sandwich panel with respect to the experiments. Similarly to Eqs. (6) and (7), the following

observations are introduced

dBw(r, ω) = 10 log10

(

1

nobs

( nobs
∑

j=1

|wj(r, ω)|2
)

)

, (6)

φ
w
(r, ω) =

1

nobs

nobs
∑

j=1

φ
j
(r, ω) , (7)

in which |wj(r, ω)| and φ
j
(r, ω) are the modulus and the unwrapped phase angle of wj(r, ω).

Two formulations are then proposed to update the mean computational model of the sandwich

panel with respect to parameter r. The first cost function is written as

j
mod

(r) =
||dBw(r, .) − dBexp

w ||2 

||dBexp
w ||2 

, (8)

in which ||g||2 =
∫

 |g(ω)|2 dω. The second cost function is written as

j
pha

(r) =
||φ

w
(r, .) − φexp

w
||2 

||φexp

w
||2 

. (9)

The updating of themean computational model is then performed by solving the optimization

problem:

find rmod ∈ R such that j
mod

(rmod) ≤ j
mod

(r) for all r ∈ R ,

for the first cost function or the following one for the second cost function

find rpha ∈ R such that j
pha

(rpha) ≤ j
pha

(r) for all r ∈ R .

Each constrained optimization problem can be solved numerically by using the sequential

quadratic optimization algorithm [8, 9]. Moreover, it should be noted that the gradient and the

Hessian of cost functions j
mod

(r) and j
pha

(r) can be easily algebraically constructed.

3.5 Numerical Results

First, a convergence analysis is performed with respect to the reduced order model N . The

convergence analysis is performed by analyzing the function N 7→ 10 log10 (||w||2 ). Since

updating parameters only concern damping, convergence with respect to N weakly depends on

r and can be neglected in the convergence analysis. It has been verified that convergence is

reached for N = 120 [5]. We are interested in comparing the two updated mean computational

models. The optimization of cost function j
mod

(r) yields optimal updating parameters rmod =

6
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Figure 4: (Graph of function ν 7→ f(ν, rmod) (thick dark gray line) and ν 7→ f(ν, rpha) (thick light gray line)
corresponding to the updated mean damping model. Horizontal axis is frequency ν in Hz.
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Figure 5: (a) Graph of function ν 7→ dBw(ν, rini) (thick dark gray line) and ν 7→ dBexp
w (ν) (thick black line),

(b) Graph of function ν 7→ dBw(ν, rmod) (thick dark gray line) and ν 7→ dBexp
w (ν) (thick black line). Horizontal

axis is frequency ν in Hz.

{0.0091, 0.1206, 10.6856, 46.2361} whereas the optimization of cost function j
pha

(r) yields

optimal updating parameters rpha = {0.0099, 0.08495, 10.5867, 46.6657}.
Figure 4 shows the graph ν 7→ f(ν, rmod) and ν 7→ f(ν, rpha) related to the two updated

dampingmodels. It is seen that the two cost functions yield similar function f in [100 , 2000] Hz
but are different for higher frequencies. In particular, it can be seen that the updated mean model

solution with cost function j
mod

(r) is more damped than the updated mean model solution with
cost function j

pha
(r). Let rini = {0.01, 0.01, α, β} be the value of the updating parameter

corresponding to the computational model obtained by updating the conservative part [5, 6].

Figure 5 compares (a) the graphs ν 7→ dBw(ν, rini) and ν 7→ dBexp
w (ν) with (b) the graphs

ν 7→ dBw(ν, rmod) and ν 7→ dBexp
w (ν) related to the optimization of cost function j

mod
(r). Fig-

ure 6 shows (a) the graph ν 7→ φ
w
(ν, rini) and ν 7→ φexp

w
(ν) with (b) the graph ν 7→ φ

w
(ν, rpha)

and ν 7→ φexp

w
(ν) related to the optimization of cost function j

pha
(r).

In figure 5 and 6, it can be seen that both cost functions used yield a computational model

which improves the updating in the medium-frequency range. In Figure 5, it can be seen

that the optimization of cost function j
mod

(r) yields an updated computational model which

7
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Figure 6: (a) Graph of function ν 7→ φ
w

(ν, rini) (thick light gray line) and ν 7→ φexp

w
(ν) (thick black line), (b)

Graph of function ν 7→ φ
w
(ν, rpha) (thick light gray line) and ν 7→ φexp

w
(ν) (thick black line). Horizontal axis is

frequency ν in Hz.

matches relatively well with the experiment. Nevertheless, it should be noted that the dynam-

ical behaviour of the sandwich panel is not well represented in [3000 , 4500] Hz because the

computational model does not yield any resonance peakings in this frequency range. In Fig-

ure 6, it can be seen that the optimization of cost function j
pha

(r) yields an updated mean

computational model for which there is a good agreement with respect to the experiments in

both low and medium-frequency range. We are then interested by comparing the frequency

response functions obtained by the two updating methods with respect to the experimental fre-

quency response functions. Let mexp (ω) = (mexp 
,1(ω)), . . . , mexp 

,nobs
(ω)) be the  nobs-vector

such that mexp 
,j (ω) = 1

nexp

∑nexp

k=1

! exp
j (ω, θk) where

! exp
j (ω, θk) = 20 log10(|W

exp
j (ω, θk)|).

Let " j(r, ω) = 20 log10(|wj(r, ω)|). Figure 7 shows the graph of functions ν 7→ " 1(ν, r
mod),

ν 7→ " 1(ν, r
pha) and ν 7→ mexp 

,1(ν) in which subscript 1 corresponds to observation point

number 1 located at x1 = (0.337, 0.103, 0). In Figure 7, it can be seen that both updating

methods are efficient in the low-frequency band [100 , 1200]Hz and give satisfactory results in
[1200 , 3000]Hz. In [3000 , 4500] Hz, it is clearly seen that the updated mean model obtained
from cost function j

pha
(r) yields a better agreement with respect to the experiment than the

updated mean model obtained from cost function j
mod

(r). Based on this observation, it can

be deduced that the information contained in cost function j
pha

(r) is more rich in the context

of the updating in the medium-frequency range than the information contained in cost function

j
mod

(r).

4 ROBUSTUPDATINGMETHODOFTHEDYNAMICAL SYSTEMWITHRESPECT

TO MODEL UNCERTAINTIES

4.1 Description of the random matrix model

As explained in the Introduction, the objective of this paper is to include the effects of data

uncertainties and model uncertainties in the formulation of the updating problem. In this Sec-

tion, the nonparametric probabilistic approach of uncertainties [3, 4] is briefly summarized. It

is assumed that the mean computational model of the sandwich panel contains model uncer-

tainties and data uncertainties. The methodology of the nonparametric probabilistic approach

consists in replacing matrices [M], [D(r)], [K] by random matrices [M], [D(r)] and [K] such

8
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Figure 7: Graph of ν 7→  
1
(ν, rmod) (thick light gray line), ν 7→  

1
(ν, rpha) (thick dark gray line) and ν 7→

m
exp!

,1(ν) (thick black line). Horizontal axis is frequency ν in Hz.

that E{[M]} = [M], E{[D(r)]} = [D(r)] and E{[K]} = [K] in which E is the mathematical
expectation and for which the probability distribution is known. The random matrices [M],
[D(r)] and [K] are written as [M] = [LM ]T [GM ] [LM ], [D(r)] = [LD(r)]T [GD] [LD(r)] and
[K] = [LK ]T [GK ] [LK ] in which [LM ], [LD(r)] and [LK ] are N × N real diagonal matrices

such that [M] = [LM ]T [LM ], [D(r)] = [LD(r)]T [LD(r)] and [K] = [LK ]T [LK ] and where
[GM ], [GD] and [GK ] are full random matrices with value in the set of all the positive-definite

symmetricN ×N matrices. The probability model of random matrices [GM ], [GD] and [GK ] is
constructed by using the maximum entropy principle with the available information. All the de-

tails concerning the construction of this probability model can be found in [3, 4]. The dispersion

of each random matrix [GM ], [GD] and [GK ] is controlled by one real positive parameter δM , δD

and δK called the dispersion parameter. In addition, there exists an algebraic representation of

this random matrix useful to the Monte Carlo numerical simulation. Let  = (δM , δD , δK) be

the  3-vector of the dispersion parameters defined on the admissible set D = {[0 ,
√

N+1

N+5
]}3.

In coherence with the notation of Section 3.2, letW(r,  , ω) = (W1(r,  , ω), . . . , Wnobs
(r,  , ω))

be the ! nobs-valued random vector of the nobs observations. The equations of the stochastic re-

duced matrix system constructed with the nonparametric approach of uncertainties are given by

W(r,  , ω) = [T (ω)] [Φ]Q(r,  , ω), where Q(r,  , ω) is the ! N -valued random vector of the

generalized coordinates, which is solution of the random matrix equation

(

− ω2 [M] + i ω [D(r)] + [K]
)

Q(r,  , ω) = F(ω) . (10)

4.2 Formulation for the robust updating problem.

In this Section, the robust updating problem is formulated with respect to model uncer-

tainties and data uncertainties using the nonparametric probabilistic approach described above.

This robust updating problem consists in minimizing a cost function with respect to the updat-

ing parameters of the stochastic system, that is to say (1) the updating parameter r of the mean

computational model and (2) the updating parameter  which allows the amount of uncertainty

in the computational model to be controlled. Contrary to the previous Section, the cost func-

tion is constructed with an uncertain computational model and describes the performance of the

stochastic dynamical system. Concerning the formulation of the cost function, the same obser-

9
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vations related to the experiments are used. Nevertheless, the norm used in the cost function is

different. The norm used in the previous Section is constructed from a spatial average of the

observation. In the context of robust updating (using a computational model with uncertainties),

the use of a similar norm is too rough for representing with sufficient accuracy the random re-

sponses. Two formulations are proposed in order to update the stochastic computational model.

The first formulation consists in minimizing the sum of (1) the bias between the mean value of

the stochastic computational model and the mean value of the experiment and (2) the variance

of the stochastic computational model. The cost function jBV (r,  ) is then defined as

jBV (r,  ) = ||m  (r,  , ·) − mexp ||2 + |||
!

(r,  , ·) − m
 (r,  , ·)|||2 , (11)

in which m
 (r,  , ω) = E{

!
(r,  , ω)} ∈  nobs , where

!
(r,  , ω) = (

!
1(r,  , ω), . . . ,!

nobs
(r,  , ω)) with

!
j(r,  , ω) = 20 log10(|Wj(r,  , ω)|) and where ||g||2 =

∫

 ||g(ω)||2 dω
with ||g(ω)|| the Hermitian norm of g(ω). In Eq. (11), the norm |||  ||| is defined by |||  |||2 =
E{||  ||2 }, where {  (ω), ω ∈

 
} is a stochastic process indexed by

 
. The second formulation

consists in minimizing the contributions of the experiments which are outside the confidence

region constructed with the stochastic computational model. Let
!

+

j (r,  , ω) (resp.
!

−

j (r,  , ω))

and
! exp,+

j (ω) (resp.
! exp,−

j (ω)) be the upper (resp. lower) envelope of the confidence region
of observation

!
j(r,  , ω) obtained with a probability level α = 0.95 [7] and the upper (resp.

lower) envelope of experiments
! exp

j (ω). The cost function jCR(r,  ) is then defined as

jCR(r,  ) = || ! +(r,  , ·)||2 + || ! −(r,  , ·)||2 , (12)

in which ! +(r,  , ω) and ! −(r,  , ω) are the  nobs-vector whose component j is defined as

∆+

j (r,  , ω) = {
!

+

j (r,  , ω) −
! exp,+

j (ω)} {1− H(
!

+

j (r,  , ω) −
! exp,+

j (ω))} , (13)

∆−

j (r,  , ω) = {
!

−

j (r,  , ω) −
! exp,−

j (ω)}{H(
!

−

j (r,  , ω) −
! exp,+

j (ω))} . (14)

In Eq. (13) and (14), x 7→ H(x) is the Heaviside function. The robust updating problem consists

in solving the optimization problem

find (rBV ,  BV ) ∈ {R ×D} such that jBV (rBV ,  BV ) ≤ jBV (r,  ) , ∀(r,  ) ∈ {R×D}.

for the first cost function or the following for the second cost function

find (rCR,  CR) ∈ {R×D} such that jCR(rCR,  CR) ≤ jCR(r,  ) , ∀(r,  ) ∈ {R×D}.

Finally, the robust updating problem is solved by using the sequential quadratic optimization

algorithm [8, 9] coupled with the Monte Carlo numerical simulation. Since the cost function

is a strong nonconvex function of updating parameter (r,  ), the robust updating problem is

solved around the solution of the deterministic updating problem describes in Section 3. Let
(ri ,  i) denote the iteration number i of the updating parameter. First, the initial value of

the updating parameter is chosen as (r0 ,  0) = (rpha, 0). The optimization process is then
splitted in two optimization steps which consist (1) in solving the optimization problem  i =
min " ∈D j(ri−1,  ) and (2) in solving the optimization problem ri = min

r∈R j(r,  i), in which
j(r,  ) denotes jBV (r,  ) or jCR(r,  ). The optimization process is then repeated until ||  i −

 i−1|| < ǫ " or ||ri − ri−1|| < ǫ
r
. It should be noted that the random germs of the random

matrices do not depend on the updating parameter r. Consequently, the gradient and the Hessian

of the cost function with respect to parameter r can be algebraically constructed, that improves

the precision of the optimization algorithm [10].

10
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4.3 Numerical results

First, a convergence analysis is performed with respect to the number N of eigenmodes

and the number ns of realizations for the Monte Carlo numerical simulation. A convergence

analysis shows that convergence is reasonably reached for ns = 750 and N = 300 [5]. We

are interested in comparing the two robust updating methods. The optimization of cost function

jBV (r,  ) with respect to vector  yields  = (0.3, 0.19, 0.09) whereas the optimization of cost
function jCR(r,  ) with respect to vector  yields  = (0.11, 0.09, 0.18). Figures 8 compare
the experiments with the confidence region of the random response ν 7→

 
1(r

pha,  BV , ν) and
the confidence region of the random response ν 7→

 
1(r

pha,  CR, ν) obtained with a probability
level α = 0.95.
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Figure 8: (a) Graph of the experiments ν 7→

 exp

1
(ν, θk) (thin black lines) and of the confi dence region of

the random response ν 7→

 
1(rpha,  BV

, ν) (light grey region). (b) Graph of the confi dence region of the

random response ν 7→

 exp

1
(ν, θk) (thin black lines) and of the confi dence region of the random response ν 7→ 

1(rpha,  CR
, ν) (light grey region). Horizontal axis is frequency ν in Hz.

In Figure 8, it can be seen that both robust updating methods yield an updated computa-

tional model for which there is a good agreement with the experiments and which stays robust

with respect to model and data uncertainties in the low-frequency band
 

= [100 , 1200] Hz.
For higher frequencies, both robust updating methods yield a confidence region which contains

relatively well the experiment. In that sense, it can be deduced that both robust methods are

valuable. Nevertheless, it can be seen in the medium-frequency range that the updated com-

putational model obtained with cost function jCR(r,  ) represents better the experiment than
the one obtained with cost function jBV (r,  ). From these observations, it is then deduced that

although both robust updating methods yield different updating parameters  , both robust up-
dating methods are efficient in the low-frequency range. Nevertheless, in the medium-frequency

range, the use of a cost function defined from the confidence region yield an updated computa-

tional model which not only agrees with the experiment but also is more robust with respect to

model and data uncertainties.

5 CONCLUSIONS

Two updating methodologies have been proposed for the robust updating problem in the con-

text of structural dynamics in the low- and medium-frequency range. These methodologies are

validated from experimental results issued from a set of 8 manufactured composite sandwich
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panels. Concerning the deterministic updating (no uncertainties in the dynamical system), it is

shown that the use of a cost function defined from the phase of experimental frequency response

function is particularly adapted for updating the computational model in the low- and medium-

frequency range. Concerning the robust updating (using a computational model with model and

data uncertainties), it is shown that the use of a cost function defined from the confidence region

of the experimental frequency response functions yields an updated computational model par-

ticularly robust with respect to model and data uncertainties in the low- and medium-frequency

range.
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