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Abstract. This paper deals with a reduction method of models composed of a linear behaviour

subsystem which has a high number of eigenmodes in the range of analysis and of a nonlinear

behaviour subsystem. Each subsystem has model uncertainties and data uncertainties. Those

uncertainties are taken into account using the usual parametric probabilistic approach and

the non parametric probabilistic approach. We present a numerical example constituted of a

simple system owning all the properties of the systems we are interested in and which validates

the proposed methodology.
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1 INTRODUCTION

We are interested in predicting the nonlinear dynamical response of two subsystems cou-

pled in a fixed frequency range. The first subsystem is constituted of a structure with a linear

behavior coupled with localized nonlinearities (so, the behavior of this subsystem is globally

nonlinear). The second subsystem is constituted of a structure with a linear behavior having

several quasi-symmetries; its numerical model has a high number of degrees of freedom. A

finite element model of each subsystem is available. The FE model of the second subsystem

(about 100 000 DOF for the considered applications) has a high number of eigenmodes in the

range of analysis [0 , 1000] Hz (about 10 000 modes due to the quasi-symmetries). As a con-

sequence, those eigenmodes cannot be used in order to reduce the second subsystem and the

usual methods, that are based on mode synthesis methods (see [4] [5] [6] [7] [9]) or more gen-

erally that solve an eigenvalue problem cannot be used (see [1] [2] [8] [10]). In addition, each

subsystem has model uncertainties and data uncertainties. This kind of structure corresponds

for example to fuel assemblies of Pressurized Water Reactors. We first propose here a new

time domain dynamical condensation method of the second subsystem on its coupling interface

DOFs with the nonlinear subsystem, allowing such numerical computation to be performed in

presence of a probabilistic model allowing uncertainties to be taken into account. Concerning

the implementation of the probabilistic model of uncertainties in the mean numerical model of

each subsystem, the adopted strategy is based on : (1) the nonparametric approach [3] for the

positive linear operators (mass, damping, stiffness) of the linear part of the nonlinear subsys-

tem to take into account the model uncertainties and data uncertainties, (2) the usual parametric

probabilistic approach for the uncertain parameters of the localized nonlinearities of the non-

linear dynamical subsystem. After the presentation of the theory and the numerical aspect, we

present a numerical example constituted of a simple system owning all the properties of the

systems we are interested in and which validates the proposed methodology.

2 Equation of of the mean model for the coupled system

We consider a three dimentional damped structure. Let Ω be the bounded open domain of R
3

composed of two subdomains, ΩA which corresponds to the nonlinear behaviour first subsystem

and ΩB which corresponds to the linear behaviour second subsystem. The two subsytems are

dynamically coupled on the coupling interface ΓC . The boundary ΓB of the domain ΩB is

Figure 1: Decomposition of the domain Ω.

made of the part ΓC , the fixed part ΓB0 and of ΓBL. The finite element model of the coupled

system defined on frequency domain in the range analysis B = [−ωmax, ωmax] is written with

2



A. Batou, C. Soize, and S. Cambier

respect to the internal np DOFs uB
p (ω) and the nC coupling DOFs uB

c (ω)

[
AB

pp(ω) AB
pc(ω)

AB
cp(ω) AB

cc(ω)

] [
uB

p (ω)
uB

c (ω)

]
=

[
FB

p (ω)
FB

c (ω) + FB
coupl(ω)

]
(1)

in which
[
AB(ω)

]
is the dynamic stiffness matrix such that:

[
AB(ω)

]
= −ω2

[
MB

]
+ iω

[
DB

]
+

[
KB

]
(2)

where
[
MB

]
,
[
DB

]
and

[
KB

]
are respectively the positive definite mass, damping and stiffness

matrices. FB
c (ω) and FB

coupl(ω) represent respectively the external load applied on the coupling

interface ΓC and the coupling force vector. The dynamical condensation with respect to the

coupling DOFs leads to the equation

FB
coupl(ω) =

[
AB

cc(ω)− AB
cp(ω)(AB

pp(ω))−1AB
pc(ω)

]
uB

c (ω) (3)

+AB
cp(ω)(AB

pp(ω))−1FB
p (ω)− FB

c (ω)

The inverse Fourier transform of the equation 3 and the finite element model of the nonlin-

ear first subsystem model lead to the matricial following equation for the nonlinear dynamical

coupled system

[
MA

pp MA
pc

MB
cp MA

cc + MB
cc

] [
üB

p (t)

üB
c (t)

]
+

[
DA

pp DA
pc

DB
cp DA

cc + DB
cc

] [
u̇B

p (t)

u̇B
c (t)

]

+

[
KA

pp KA
pc

KB
cp KA

cc + KB
cc

] [
uB

p (t)
uB

c (t)

]
(4)

=

[
FNL

p (t, uA, u̇A, w) + FA
p (t)

FNL
c (t, uA, u̇A, w) + FA

c (t) + FB
c (t) + F̃(t)

]

+

[
0∫ t

0
BU(τ)uA

c (t− τ)dτ +
∫ t

0
BU̇(τ)u̇A

c (t− τ)dτ +
∫ t

0
BÜ(τ)üA

c (t− τ)dτ

]

with the initial conditions,

u(0) = u̇(0) = 0 (5)

where FNL(t, uA, u̇A, w) is the nonlinear localized forces vector in which w is an nc dimension

vector of the uncertain parameters describing thoses nonlinearities.The functions BU , BU̇ and

BÜ are with values in the set of the (nc, nc) dimension symmetric complex matrices, where nc

is the number of coupling DOFs, and are such that

B̂U(ω) =

∫
+∞

−∞

e−iωtBU(t)dt = KB
cp(A

B
pp(ω))−1KB

pc (6)

B̂U̇(ω) =

∫
+∞

−∞

e−iωtBU̇(t)dt = 2sym(DB
cp(A

B
pp(ω))−1KB

pc) (7)

B̂Ü(ω) =

∫
+∞

−∞

e−iωtBÜ(t)dt = 2sym(MB
cp(A

B
pp(ω))−1KB

pc) + ωDB
cp(A

B
pp(ω))−1DB

pc (8)

+ 2ωsym(MB
cp(A

B
pp(ω))−1DB

pc) + ω2MB
cp(A

B
pp(ω))−1MB

pc
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F̃(t) is an nc dimension vector reprensenting the condesation of the external load applied on the

internal DOFs of the linear subsystem and is such that

F̃(t) =
1

2π

∫
+∞

−∞

eiωtAB
cp(ω)(AB

pp(ω)FB
p (ω)dω (9)

The equation 4 can be reduced using the Craig Bampton method for the linear part of the first

subsystem.

3 Modelisation of the uncertainties

We suppose here that there aren’t uncertainties for the linear second subsystem condensed on

the coupling interface. To take into account model uncertainties and data uncertainties we use

a mixt parametric nonparametric probabilistic approach. The parametric probabilistic approach

is used to take into account the uncertainties on the parameters describing the models of the

localized nonlinearities. It consists in modelising w with a random variable W with values in

R
np . The nonparametric probabilistic approach is used to take into account model uncertainties

and data uncertainties in the linear part of the nonlinear first subsystem. It consist in modelising

with random matricies the mass, damping and stiffness matrices of the linear part of the first

subsytem in physical or generalised coordinates.The displacement vector uA(t) of the first sub-

system is then modelised with a second order stochastic process UA(t) whose vectorial values

are solution of the following differential nonlinear stochastic equation :

[
MA

pp MA
pc

MB
cp MA

cc + MB
cc

] [
Ü

B

p (t)

Ü
B

c (t)

]
+

[
DA

pp DA
pc

DB
cp DA

cc + DB
cc

][
U̇

B

p (t)

U̇
B

c (t)

]

+

[
KA

pp KA
pc

KB
cp KA

cc + KB
cc

] [
UB

p (t)
UB

c (t)

]
(10)

=

[
FNL

p (t, UA, U̇
A
, W) + FA

p (t)

FNL
c (t, UA, U̇

A
, W) + FA

c (t) + FB
c (t) + F̃(t)

]

+

[
0∫ t

0
BU(τ)UA

c (t− τ)dτ +
∫ t

0
BU̇(τ)U̇

A

c (t− τ)dτ +
∫ t

0
BÜ(τ)Ü

A

c (t− τ)dτ

]

with the initial conditions,

U(0) = U̇(0) = 0 (11)

The probability density function of the variable W is constructed using the maximum entropy

principle taking into account the available information and the probablisity density functions

of each mass, damping and stiffness random matrices is constructed using [3]. The dispersion

level of those matrices is controled by a dispersion parameter δM , δD and δK respectively for

the masse, the dissipation and the stiffness.

4 Validation application

The mean model is constituted of an Euler beam fixed at its two bounds. This beam has a

constant circular section with radius=0.5 m, thickness=0.2 m, lengh=20 m, mass density=500

kg/m3, Young’s modulus=450 N/mm2 and damping rate=0.02. This system is divided into
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deux subsystems. The nonlinear first subsystem is the beam A (see figure 2) of 12 m lengh, free

on its left bound (coupling interface) and fixed on its right bound. The linear second one is the

beam B, it is condensed on the coupling interface which is free, its right bound is fixed. The

nonlinear beam A has an elastic stop localized at 8 m from the fixed bound, with gap=10−5 m
and choc stiffness=108 m. We are interested in calculating the time domaine response of the

nonlinear coupled system excited by two external loads FA(t) et FB(t) localised at 4 m from

each fixed bound and whose Fourier Transform has a constant modulus=1 N/Hz on its support

range [-150, 150] Hz.

Figure 2: Description of the two subsystems Ω.

The figure 3 validates the proposed appproach concerning the condensation method. It com-

pares for the transversal displacement at the excitation point of the first subsystem (Beam A),

in the frequency domain (modulus of the Fourier Transform of the time domain response of

the nonlinear coupled system), the reference response obtained by direct resolution without

condensation of the second subsystem (Beam B) on the coupling interface, with the response

obtained with the condensation method.

Figure 3: Comparison between the reference response at the excitation point of the beam A (dashed line) and the

response obtained by condensation(solid line).

The figures 4 and 5 concern the analysis of the nonlinear coupled system with the mixt

parametric/nonparametric probabilistic modelisation of the uncertainties. The random variable

W is scalar and represents the gap. Its dispersion is δW = 0.1. The dispersion parameters of

the mass, dissipation and stiffness random matrices of the beam A are δM = 0.1, δD = 0.1
and δK = 0.1.The figure 4 shows the graph of the convergence of the mean of the stochastic

response in function of the number of samples of the Monte Carlo numeric simulation. The

figure 5 shows the transversal displacement at the excitation point of the first subsystem (Beam

A) in the frequency domain. It shows the response of the nonlinear coupled mean model,

the stochastic mean of the stochastic nonlinear coupled system and the region of confidence

associated with a probability level=0.95.
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Figure 4: Convergence of the mean of response in function of of the number of sample.

Figure 5: Region of confidence of the response at the excitation point (solid line); mean of the stochastic response

(dashed line) and response of the mean model (mixt line).

5 CONCLUSIONS

We have proposed a reduction method for models of systems constituted of a linear sub-

system having a huge number of eigenmodes in the range analysis with a nonlinear behaviour

subsytem; indeed, usual methods don’t match for this situation. We have presented a validation

on a simple example. The objective is to use this model to identify with inverse methods and

experimental data, external loads aplied on such systems (for example, loads resulting from a

turbulent flow). The developement has been carried out in order to implement a mixt para-

metric/nonparametric model of the uncertainties so that we can carry out a robust identification

of the external loads. We have presented on the example the first step corresponding to the

stochastic response of the coupled system with uncertainties.
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