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Abstract 

The experimental results of isotropic compression tests performed at 20°C and 90°C on a 

class G hardened cement paste hydrated at 90°C (Ghabezloo et al., 2008, Cem. Conc. Res. 38, 

1424-1437) have been revisited considering time-dependent response. Within the frame of a 

viscoplastic model, the non-linear responses of the volumetric strains as observed in drained 

and undrained tests and of the pore pressure in undrained tests are analysed. The calibration of 

model parameters based on experimental data allows to study the effect of the test 

temperature on the viscous response of hardened cement paste showing that the creep is more 

pronounced for a higher test temperature. The effect of the hydration temperature on the time 

dependent behaviour is also studied by evaluating the model parameters for a cement paste 

hydrated at 60°C. The time-dependent deformations are more pronounced for hydration at a 

higher temperature. 
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Guédon, S. (2012) Time-dependent behaviour of hardened cement paste under isotropic 
loading, Cement and Concrete Research, doi: 10.1016/j.cemconres.2012.03.002 
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1 Introduction 

For cementing an oil well, the cement slurry is pumped into the annular space between the 

casing and the rock around the well. This cement sheath plays a very important role during 

the life of the well from the drilling phase to the production phase and finally in the abandon 

phase. It provides zonal isolation in the well, i.e. it excludes fluids from one zone to another. 

It supports also the casing and protects it against corrosion. This cement sheath is submitted to 

various thermal and mechanical solicitations during the life of the well. In due course of these 

solicitations, the cement can be damaged and its mechanical and transport properties can be 

degraded, this degradation being detrimental to its main functions. The knowledge of thermo-

poro-mechanical behaviour of these cements in oil-well conditions, i.e. under high pressure 

and temperature, is therefore essential for prediction of the well performance. In the abandon 

phase, it is also crucial to assess the sealing performance of the well when the reservoir is 

used for storage and sequestration of greenhouse gas. 

Recently Ghabezloo et al.  [1] [2] [3] [4] studied experimentally the thermo-poro-mechanical 

behaviour of a hardened oil-well cement paste. They performed classical poromechanical tests 

such as drained, undrained and unjacketed isotropic compression tests, as well as drained and 

undrained heating tests and permeability evaluation tests. As an answer to the question raised 

by Ulm et al.  [5], the results presented by Ghabezloo et al.  [1] show clearly that the behaviour 

of hardened cement paste can be described within the framework of the classical theory of 

porous media. The effects of water-to-cement ratio and chemical composition of the cement 

on the evaluated thermo-poro-elastic parameters have been studied by association of the 

experimental results with micromechanics modelling and homogenization method  [6] [7] [8]. 

Revisiting the experimental data of Ghabezloo et al.  [1], we observe a nonlinear response and 

hysteresis loops during unloading-reloading cycles of isotropic compression tests reflecting 

viscous behaviour of the material. Time dependent deformation was also observed and 

analysed while evaluating the permeability of the hardened cement paste in a transient test  [4]. 

Nevertheless, the viscous behaviour of the material was not considered in the analysis of the 

results of isotropic compression tests presented in  [1]. One purpose of the present paper is 

therefore to study the time dependent behaviour of the hardened cement paste under high 

stresses and temperature. Creep tests under isotropic stress presented in  [2] show that the 

creep is more pronounced at higher stress and higher temperature. These observations 

highlight the importance of time dependent deformations for oil cement sheath at great depth. 
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A degradation of the interface between the cement sheath and the rock can induce the 

formation of a micro-annular around the well. This micro-annular allows leakage of gas and 

fluid which can affect the performance and the safety of the well.  

The present study is a continuation of previous experimental research on the poromechanical 

behaviour of hardened class G cement paste. Emphasis is given in this paper on the effect of 

test temperature on the time-dependent behaviour considering drained and undrained isotropic 

tests on hardened cement paste hydrated at 90°C. A rheological model is proposed and 

calibrated on drained isotropic compression tests data. The validation of the model is 

performed by simulation of other tests: a drained compression test with different back 

pressure, a creep test and an undrained isotropic compression test. A discussion on the effect 

of the test temperature on the parameters of the model is presented. The mechanisms of time-

dependent behaviour of hardened cement paste are also discussed. Finally the model is 

applied to analyse experimental data from a drained isotropic compression test performed on 

a cement paste hydrated at a different temperature in order to study the effect of the hydration 

temperature on the creep of the material. 

2 Experimental observations 

In the experimental study of Ghabezloo et al.  [1], a class G cement was used to prepare the 

cement paste with a water to cement ratio w/c=0.44. After 3 months of hydration at 90°C, 

cylindrical specimens with 38mm diameter and 76mm length were fabricated. Drained and 

undrained isotropic compression tests as well as an unjacketed compression test were 

performed at 20°C  [1] . Drained triaxial compression tests were also performed at 90°C  [2]. 

For all tests, few loading-unloading cycles were performed at different stress levels (around 

20 MPa, 40 MPa and 60 MPa). The loading rate was 0.025 MPa/min and 0.10 MPa/min for 

drained tests and undrained tests respectively. 

The stress-strain response of drained tests is presented in Erreur ! Source du renvoi 

introuvable. for samples hydrated at 90°C and tested at 20°C  [1] and 90°C  [2]. We can 

observe the non-linear response of the hardened cement paste under isotropic compression. 

The unloading-reloading cycles show a hysteresis which is more pronounced at higher 

Terzaghi effective stress level. Under higher stress, one can see that the volumetric strain 

continues to increase at the beginning of the unloading parts. This clearly reflects the viscous 

behaviour of the material under isotropic compression. The non-elastic strains at the end of 

unloading are quite small (<0.3%) when the Terzaghi effective stress level at the beginning of 



 4 

the unloading is lower than about 43 MPa and 25 MPa for the tests Tt20 and Tt90 respectively. 

The volumetric strain increases with a much higher rate and the non-elastic strains become 

much higher beyond these stress levels. This suggests that an additional mechanism, such as 

microcrack development or collapse of the Large Gel Pores (LGP), i.e. with a size between 

3nm and 12nm  [9], is activated when the stress is high enough and accelerates the 

development of volumetric strain (see section 5). This mechanism occurs at lower stress 

levels when test temperature is higher. The sample tested at 90°C exhibits a lower tangent 

elastic modulus. Moreover, the volumetric strain is larger and the viscous effects are more 

pronounced for this test temperature.  
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Figure 1 : Drained isotropic compression tests: Volumetric strain- Terzaghi effective stress   

(Tt  is the test temperature)  [1] [2] 

For the undrained test performed at 20°C, the maximal pressure reached 58.0 MPa and the 

pore pressure reached 26.5 MPa that corresponds to a Terzaghi effective stress of 31.5 MPa 

(Figure 2). The non-elastic strains remain small which is consistent with a maximal Terzaghi 

effective stress lower than the stress threshold (43 MPa). The pore pressure-confinement 

pressure curve in Figure 2 shows that the reloading phases are quite linear whereas the 

unloading phases are highly non-linear. One observes that in the beginning of the unloading 

phases, the decrease of the pore pressure is delayed. At 12 MPa, the pore pressure becomes 

equal to the confinement pressure. In triaxial cells, in this situation the pore fluid infiltrates 
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between the specimen and the jacket and in consequence the decrease of the pore pressure 

until the end of the unloading phase is pursued with a slope of 1:1. The slope of linear part of 

reloading phases, equal to 0.4, was chosen by Ghabezloo et al.  [1] as Skempton coefficient. 

However, the delayed decrease of the pore pressure at the beginning of unloading phases was 

not explained in  [1] in the framework of poro-elasticity theory.  
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Figure 2 : Undrained isotropic compression test at Tt=20°C  [1],  

(a) volumetric strain response, (b) pore pressure response 

 

3 Viscoplastic modelling 

As mentioned above, the unloading-reloading cycles under drained isotropic compression 

exhibit a degree of hysteresis which increases with the stress level. This phenomenon reflects 

the viscous behaviour of the material. Moreover, the volumetric strain and viscous effects are 

enhanced at higher stress and depend upon the test temperature. One can consider that under 

low stress level, time dependent deformation has a viscoelastic nature (primary creep) and at 

higher stresses, an additional irreversible component is triggered and viscoplastic strains 

develop beyond a stress threshold (secondary creep). In the following we postulate a 

rheological model describing the viscoplastic behaviour of the hardened cement paste under 

drained isotropic compression. After calibration of the model parameters on the drained 

compression tests, the evolutions of volumetric strain and pore pressure during an undrained 

compression test are computed and compared with the experimental data.  
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3.1 Drained isotropic compression 

The response of the material is described by the rheological model depicted in Figure 3. The 

model contains two groups of elements: a viscoelastic Kelvin element which represents the 

viscoelastic part and a Maxwell element in parallel with a sliding friction element which 

represents the irreversible part of the deformation. In the Kelvin element, the linear spring 

(bulk modulus K0) represents the time independent volumetric strain, and the Voigt element 

with a linear spring (bulk modulus K1) and a dashpot (viscosity η1) in parallel represents the 

primary creep deformation. The viscoplastic component includes a sliding frictional element 

which is activated only for stresses exceeding a given Terzaghi effective stress threshold σs 

 [10] and results in time dependent volumetric deformation which develops at constant rate 

under constant load (bulk modulus K2, and viscosity η2). The six parameters of the 

rheological model are assumed to be constant for a given test temperature. 

 

Figure 3 : Rheological model 

The overall volumetric strain under a Terzaghi effective stress dσ  is written as the sum of the 

viscoelastic part εve and the viscoplastic part εvp : 

 ve vpε ε ε= +  (1) 

where ve 0 1ε ε ε= + . The strain rate for each element can be written as: 

 0
0

ɺ
ɺ

d

K

σε =  (2) 

 ( )1 1 1
1

1
ɺ

d Kε σ ε
η

= −  (3) 

K2 η1 η2 

K0 

K1 

σs 
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 ( ) [ ]
vp vp vp vp

vp
vp

2 2 2 2

H ; Hd d d d
d d s d sK K

σ σ σ σε σ σ σ σ σ
η η

   
= + + = − −   
   

ɺ ɺ
ɺ  (4) 

where H is the Heaviside function. It is worth to note that in the beginning of the unloading 

phase, the viscoplastic strain continues to increase until ( )vp vp
2 2d dKσ σ η+ɺ  becomes 

negative. Then the rate of viscoplastic strain is nil and the sliding friction element is blocked. 

Remark: 

Note that for ft t>> , where 1 1/ft Kη=  is the creep time of the viscoelastic component, and 

for an imposed stress d sσ σ> , the rheological model is reduced to a simple Maxwell element. 

This Maxwell element has a stiffness  Keq and a viscosity eqη  given by  

 
( )

( )
2

0 1 2

1 1 1 1 /

/
;

1
s d

eq
eq s dK K K K

σ σ ηη
σ σ

−
=

−
= + +  (5) 

The equivalent stiffness decreases with increasing stress which can be interpreted as damage 

effect under elevated stress (Ghabezloo et al.  [1]). 

The viscoelastic strain can be found using Laplace transformation. For an arbitrary function  f,  

the Laplace transform L , denoted f  is defined as: 

 ( )
0

( ) ( ) ( ) stf t f s f t e dt
∞

−= = ∫L  (6) 

In the Laplace transform domain, the viscoelastic strain is written as:  

 ve
0 1 1

1 1
dK K s

ε σ
η

 
= + + 

 (7) 

The viscoplastic part of the model exhibits a different response in loading and unloading due 

to the presence of the sliding frictional element. No general closed-form solution can be 

derived and a numerical solution is required. For this purpose  a finite difference scheme is 

used.  Figure 4 presents the loading path with the unloading-reloading cycles performed at 

constant rates Vi during the isotropic drained compression tests. The corresponding evolution 

in time of the applied stress is expressed as: 

 ( ) ( ) ( ) [ ]0 1
1

( ) 1 H
n

i

d i i i i
i

t V t V V t t t tσ −
=

= + − + − −∑  (8) 
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where the parameters ti are the times at which the sign of the loading rate is changed. 

Equation (8) is written in the Laplace transform field as: 

 ( ) ( )0 12
1

1
1 i

n
i t s

d i i
i

V V V e
s

σ −
−

=

 = + − + 
 

∑  (9) 

 Figure 4 : Cycles loading-unloading 

Replacing equations (8) and (9) in equation (7) and inverting the Laplace transform, the 

analytical solution of the viscoelastic part veε  of the volumetric strain for drained isotropic 

compression is obtained as: 

 

( ) ( )

( ) ( ) [ ] ( ) ( )
( )

3

4

3

4

0
ve 3 1 2 3 1 42

3

1 3 1 2 3 1 42
13

1

1
           1 H 1

i

a
t

a

an t ti a
i i i i

i

V
t a a a a a a e

a

V V t t a a t t a a a a e
a

ε
−

− −

−
=

  
= + − −  

    

  
+ − + − − + − −  

    
∑

 (10) 

where 01 1a K K= + , 2 1a η= , 3 1 0a K K=  and 4 0 1a K η= . 

σ3   

σ2   

V3   

V7   

V6   V5   V4   

V2   
V0   

V1   

Time (min) 

T
er

za
gh

i e
ff

ec
tiv

e 
st

re
ss

 (
M

P
a)

 

t7   t6   t5   t4   t3   t2   t1   

σ1   



 9 

3.2 Undrained isotropic compression 

The correspondence principle between poro-elasticity and poro-viscoelasticity is used here to 

calculate the poro-viscoelastic parameters. For solid materials under isotropic loading, the 

relationship between the applied confinement pressure and volumetric strain can be expressed 

by the hereditary integral  [11] [12]: 

   ( ) ( )ˆ ɺt K t t dtσ ε
+∞

−∞

′ ′= −∫  (11) 

where ( )K̂ t t′−  is the relaxation modulus at instant t′ . By using the principle of superposition 

and in the same way one can write the equivalent expressions for a poro-viscoelastic material 

under isotropic loading as  [13]: 

 ( ) ( ) ( )ˆˆ ɺɺc t t t pdt K t t dtσ α ε
+∞ +∞

−∞ −∞

′ ′ ′ ′− − = −∫ ∫  (12) 

 ( ) ( ) ( ) ( )0
ˆ ˆ ˆɺ ɺ ɺ

f sp t N t t dt K t t dt N t t dtφ ε φ ε
+∞ +∞ +∞

−∞ −∞ −∞

 
′ ′ ′ ′ ′ ′= − − − + − 

 
∫ ∫ ∫  (13) 

where N is the Biot modulus; ( )c tσ  and ( )fp t  are confinement pressure and pore pressure 

respectively; ( )ˆ t tα ′−  is a coefficient corresponding to the variation of confinement pressure 

over a unit of pore pressure change at time t′  when the volumetric strain is maintained 

constant. By writing equations (12) and (13) in the Laplace transform domain and knowing 

that  ( ) ( )f t g t dt sf g
+∞

−∞

= ×∫ ɺ , one obtains: 

 ɶɶ
c f dp Kσ α ε− =  (14) 

 ( ) ( )0 0f sp N K Nφ φ ε φ ε= − − +ɶ ɶ ɶ  (15) 

where ˆ ˆ ˆˆ      ;         ;       ; d d s ss K sK K sK N sNα α= = = =ɶ ɶ ɶɶ  (16) 

For isotropic undrained compression tests with a constant loading rate V, the confinement 

pressure is written in the Laplace transform domain as:  

 ( ) ( )0 12
1

1
1 i

n
i t s

c i i
i

V V V e
s

σ −
−

=

 = + − + 
 

∑  (17) 
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The equations of poro-viscoelasticity written in the Laplace transform domain are formally 

similar to those of poro-elasticity.  From equation (7), the expression of the drained bulk 

modulus in the Laplace transform domain is given as: 

 ( )0 1 1

1

1/ 1/dK
K K sη

=
+ +

ɶ  (18) 

By performing an unjacketed test at 20°C, Ghabezloo et al.  [1] found that the solid phase of 

hardened cement paste behaves elastically and that its compression modulus sK  is constant 

and equal to 21.0 GPa, hence s sK K=ɶ . For undrained isotropic compression tests, the 

followed expressions can be written for the pore pressure and volumetric strain responses: 

 ɶ
fp Bσ=  (19) 

 u
ve ɶ

uK

σε =  (20) 

One can evaluate the coefficients uKɶ  and Bɶ  using the following expressions  [13]: 

 ( )1 1 /
d

u

d s

K
K

B K K
=

− −

ɶ
ɶ

ɶ ɶ
 (21) 

 ( ) ( )
1/ 1/

1/ 1/ 1/ 1/
d s

d s f s

K K
B

K K K Kφ
−=

− + −

ɶ
ɶ

ɶ
 (22) 

where dKɶ  is expressed by equation (18). The coefficients uKɶ and Bɶ  are functions of 0K , 1K , 

1η , fK , sK  and φ . Replacing equations (17), (21) and  (22) in equations (19) and (20) and 

inverting the Laplace transform, the pore pressure fp  and the volumetric strain uveε  are 

calculated. The solutions are written under the following form: 

 

( ) ( )

( ) ( ) [ ] ( ) ( )
( )

3

4

3

4

0
3 1 2 3 1 42

3

1 3 1 2 3 1 42
13

1

1
           1 H 1

i

a
t

a

an t ti a
i i i i

i

V
t a a a a a a e

a

V V t t a a t t a a a a e
a

ω
−

− −

−
=

  
= + − −  

    

  
+ − + − − + − −  

    
∑

 (23) 

where ω  can be the volumetric strain uveε  or the pore pressure fp . The parameters 1a , 2a , 3a  

and 4a  for each case are given in Table 1. 
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Table 1 : Parameters of  equation  (23) for drained and undrained tests 

( )tω  u
veε  fp  

1a  2
20 1

1
0f

K
a KK

K

η
−+

 ( )0 0 1 1f s sK K K K K K K− +  

2a  0
1 1  s

f s
s f

K K
K K

K K
η φ φ
 

− + + −  
 

 ( )1 0f sK K Kη −  

3a  21
4 0

1
f s

K
a K K K

η
−  ( )1 0 1 s fa K K K Kφ+ −  

4a  0 1
0

1    s s
f s

f

K K
K K K

K K
η φ φ
 

+ − −  
 

 ( )2 0 1 s fa K K Kφ η+ −  

 

4 Model calibration 

The parameters 0K , 1K , 1η , 2K  and 2η  of the viscoplastic model are calibrated on the 

drained isotropic compression tests for both test temperatures. Afterwards, theses values are 

validated for others tests performed at the same temperature. The values of 0K , 1K , 1η  and 

sK corresponding to 20°C are used to analyse the viscoelastic response under undrained 

isotropic loading for the test performed at ambient temperature. 

4.1 Drained isotropic compression tests 

Calibration of the model parameters is done as follows. The stress threshold σs is first 

estimated for different temperature conditions as the stress level above which the strain rate 

evaluated from the tests data changes significantly. The parameters of the viscoelastic part 

( 0 1 1, ,K K η ) are evaluated for the part of the stress-strain curves corresponding to sσ σ≤  and 

the two parameters of the viscoplastic part (2 2,K η ) are calibrated in a second step for sσ σ> . 

The model parameters are evaluated using the least-square method by minimizing the error 

between the experimental results and the model predictions using a numerical solver. The 

computed parameters are listed in Table 2. The characteristic creep time and relaxation time 



 12 

for the viscoelastic element (i.e. under low stress) defined respectively as 1 1 1Kτ η=  and 

( )2 1 0 1K Kτ η= +  are also reported in Table 2. With these parameters the computed curves 

are presented in Figure 5 along with the experimental results. One can see a good 

compatibility between the experimental and computed results. We also note that at 20°C the 

viscosity η1 of the viscoelastic element is found equal to 46×105 MPa.mn. This value is 

comparable with the one evaluated by Ghabezloo et al.  [4], (from 26×105 to 39×105 MPa.mn) 

from back analysis of transient permeability tests.  
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Figure 5 : Computed and experimental stress-strain curves under isotropic compression 

Table 2 : Calibration of model parameters for a cement paste hydrated at 90°C (Th90) and tested at 20°C 
and 90°C (Tt20,Th90) 

Th 
(°C) 

Tt 
(°C) 

σσσσs 

(MPa) 

K0 

(MPa) 

K1 

(MPa) 

K2 

(MPa) 
ηηηη1 

(MPa.mn) 

ηηηη2 

(MPa.mn) 1ττττ  (mn) 2ττττ  (mn) 

 20  43 8000 5500 7000 46.0×105 12.0×105 836 341 
90  

90  25 5000 3000 4300 22.0×105 8.5×105 733 275 

 

Using the calibrated model parameters, an isotropic compression test which is not used for 

model calibration is simulated. This test corresponds to a sample hydrated at 90°C and tested 

at 20°C, referred as test D4 in Figure 4 of  [1]. The comparison of the simulated stress-strain 

curve and the experimental result in Figure 6 shows a good compatibility. Moreover this test 

contains a creep phase at 36 MPa. The model correctly reproduces the creep phase as shown 
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in Figure 7. A good accordance of measured and computed irreversible strains at the end of 

unloading phases of three tests presented above is also shown in Figure 8.  

0 4000 8000 12000
Volumetric strain  (µm/m)

0

10

20

30

40

St
re

ss
 (

M
P

a)

Computed
Data

 

Figure 6 : Test D-4: Isotropic compression test at 20°C on a sample hydrated at 90°C 
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Figure 7 : Creep phase of Test D-4 (under 36 MPa) 
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Figure 8 : Comparison of plastic strains in experimental results and model predictions 

4.2 Undrained isotropic compression test 

The parameters 0K , 1K  and 1η  calibrated on drained tests for the test temperature of 20°C  

are used to validate the model by simulation of the undrained test presented above. The 

unjacketed modulus Ks is equal to 21.0GPa  [1]. In the experimental study of Ghabezloo et al. 

 [1], the total porosity was found equal to 0.35. However, more recent experimental results on 

a greater number of samples prepared in the same conditions give a value of 0.39 for a 

hardened class G cement paste hydrated at 90°C and this value is used here. At 20°C, the bulk 

modulus of water fK  is 2.2GPa. The parameters are summarized in Table 3 and the 

simulation results are presented in Figure 9 which shows a very good agreement between the 

model predictions and the measurements of volumetric strain and pore pressure as function of 

confinement pressure. Note that the part of the simulated pore pressure-confinement pressure 

curve in which the pore pressure exceeds the confinement pressure is disregarded in this 

analysis, because as mentioned in section  2, this situation cannot occur in a triaxial cell. One 

can see in Figure 9 that the non-linear response of the pore pressure during the unloading 

phase is indeed well described by the model.  

Table 3 : Model parameters for simulation of the undrained isotropic compression test at 20°C 

Th 
(°C) 

Tt 
(°C) 

0K  
(MPa) 

1K  
(MPa) 

1ηηηη   
(MPa.mn) 

fK  

(MPa) 
sK  

(MPa) 
φφφφ     

90 20 8000 5500 46×105 2200 21000 0.39 
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Figure 9 : Comparison of experimental results and model prediction for undrained isotropic compression 
test, (a) volumetric strain response, (b) pore pressure response 

 

5 Discussion 

As seen above, the proposed viscoplastic model allows to describe the time-dependent 

behaviour of hardened cement paste hydrated at 90°C under isotropic loading. It is interesting 

to try to relate this macroscopic model to the micromechanisms of creep of hardened cement 

paste. We explore also the effect of the test temperature on the parameters of the model.  

Impossible in 

triaxial cells 
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5.1 Micromechanisms of creep 

Cement paste exhibits a complex microstructure including different phases such as hydration 

products, non-hydrated clinker, capillary pores and water. The main hydration products are 

Calcium Silicate Hydrate (C-S-H), Portlandite (CH), Calcium Sulfoaluminate (Ettringite and 

Monosulfoaluminate). A set of experimental results of Velez et al.  [14] and Nemecek  [15] 

showed that unhydrated clinkers are not responsible for the time dependent behaviour of 

cement paste. The major hydration product, C-S-H is a porous phase with an amorphous and 

colloidal structure. Because of its large volume and its special microstructure, the properties 

of C-S-H have a dominant role for macroscopic properties, in particular the time-dependent 

behaviour of the cement paste. According to Jennings and Tennis  [16], C-S-H exists in two 

types called high density (HD) C-S-H and low density (LD) C-S-H. Jennings et al.  [17] and 

Jennings  [18] postulated that the LD C-S-H and the HD C-S-H have the same fundamental 

unit, the so-called “globule”. The difference between these two types of C–S–H is the 

arrangement of globules resulting in different gel porosity which is about 24% for HD C–S–H 

against 37% for LD C–S–H. Jennings  [9] proposed a conceptual model for the microstructure 

of C-S-H composed of a fundamental unit being the C-S-H globule formed by dry solid sheet 

of C-S-H, intra-globule porosity filled with interlayer water and a monolayer of adsorbed 

water on the surface of the globule. The smallest pore in this microstructure is the Intra-

Globular Pore (IGP) with the size smaller than 1nm where water can escape and re-enter. The 

structure of C–S–H in Jennings' model contains Small Gel Pores (SGP) of a size between 1nm 

and 3nm in the space between adjacent globules and Large Gel Pores (LGP) with a size 

between 3nm and 12nm between groups of several globules. Jennings et al.  [19] showed that 

the properties of LD C-S-H and HD C-S-H are not modified by hydration temperature and 

this is compatible with the hypothesis of Ulm et al.  [5] who supposed that the properties of 

LD C-S-H and HD C-S-H are their intrinsic characteristics. 

Creep of cement paste is commonly attributed to two types of mechanisms: hydrodynamic 

phenomena and mechanical processes. Hydrodynamic origin of creep is linked to the 

movement of water in the small pores of C-S-H to reach pressure equilibrium  [20]  [21] 

 [22] [23] [24] [25]. This hydrodynamic relaxation is responsible for creep only at early time 

 [20]  [21] Erreur ! Source du renvoi introuvable. and is postulated to be reversible as, 

according to Jennings  [9], the water can escape and re-enter even in the smallest pores (IGP). 

This argument is coherent with the fact that the total porosity, i.e. porosity measured by oven-

drying at 105°C which includes a part of the interlayer water  [25], is used in the poro-
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viscoelastic formulation simulating the undrained isotropic compression test at 20°C 

presented above. This is consistent with the fact that the hydrodynamic phenomenon occurs 

not only within large pores but also within small pores of HD C-S-H.  

From the viscoelastic parameters presented in Table 2, it is clear that a relaxation time  2τ  of 

the order of 300min is much higher than the characteristic diffusion time of water at the scale 

of the small pores of C-S-H  [20]. Other mechanisms such as sliding of C-S-H sheets are thus 

necessarily involved  [27] [28]. One also observes that the stiffness and viscosity parameters 

are lower at 90°C than at 20°C. Thus the test temperature influences the primary creep. This 

result is in good agreement with the fact that creep is a thermally activated process  [29]. At a 

higher test temperature, the sliding of C-S-H sheets is favourable due to a decrease of the 

viscosity of fluid with temperature. As a result, the time relaxation 2τ  decreases with test 

temperature. A reduction of 19% of 2τ  is found when the temperature increases from 20°C to 

90°C. 

In general, the viscoplastic behaviour of cement paste is attributed to mechanical processes 

such as: collapse of large gel pores (LGP)  [9] and time dependent microcrack development 

 [23] [28]. They occur when the stress is high enough leading to the development of 

irreversible strains. Such mechanisms can be described by the presence of a stress threshold in 

the viscoplastic part of the presented model.  As this stress threshold is blocked when the rate 

of viscoplastic strain becomes nil, a part of strain is irreversible. From Table 2, it is observed 

that the stress threshold decreases with test temperature. This could be related to a weakening 

of the bonding forces between the globules at higher temperature which could trigger LGP 

collapse. The stiffness 2K  and viscosity 2η  also are lower at higher test temperature 

demonstrating an increase of the secondary creep with the test temperature. 

5.2 Effect of hydration temperature 

In an oil well, the temperature during hydration is the crucial factor that affects the 

microstructure and behaviour of the cement paste. It is thus important to investigate the effect 

of the hydration temperature on the time-dependent behaviour of the material. To do so, a 

drained isotropic compression test at 60°C has been performed on a sample hydrated at 60°C. 

The loading path of the test includes three cycles with two different loading rates: 0.025 

MPa/min for the first two cycles and 0.010 MPa/min for the third one. The model presented 

above is calibrated on the experimental data and the parameters are presented in   
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Table 4. Figure 10 shows a very good accordance between the simulation results and the 

experimental data. The stress threshold is found equal to 35 MPa. This value is between the 

ones obtained for the tests performed on samples hydrated at 90°C, 25 MPa and 43 MPa for 

test temperature of 20°C and 90°C respectively. It is observed that all the obtained stiffness 

and viscosity parameters are significantly larger, revealing the important role of the hydration 

temperature on time-dependent behaviour of cement paste. In particular, one can correlate the 

lower creep rate of cement paste hydrated at 60°C and the higher uniaxial strength (see 

Appendix). This trend is also in agreement with the measures of mercury porosity. A value of 

0.23 has been found for a cement paste hydrated at 60°C against a value of 0.27 for the one 

hydrated at 90°C. 

Concerning the effect of hydration temperature on microstructure and elastic properties of 

hardened cement paste, Escalante-Garcia  [30] noted that during hydration, a higher 

temperature increases the pore size of cement paste and the density of C-S-H but does not 

modify the total porosity. This is compatible with results of Jennings et al.  [19] who showed 

that the hydration temperature increases the macroporosity. Moreover, it increases the 

volumetric fraction of HD C-S-H, and decreases the one of LD C-S-H without modifying 

their intrinsic properties. Consequently, concerning the mechanical properties of hardened 

cement paste, there exists a competition between the densification of C-S-H and the increase 

of macroporosity. The lower long term mechanical properties of cement paste hydrated at 

higher temperature observed in  [31]  [32] have shown the dominant role of macroporosity. 

This is also consistent with lower Young’s modulus and uniaxial strength of cement paste 

hydrated at 90°C as presented in Appendix.  

Concerning time-dependent behaviour of C-S-H, Jennings  [9] suggested that LD C-S-H 

exhibits more creep than HD C-S-H due to the difference of porosity level. This statement is 

in good accordance with experimental results of Vandamme and Ulm  [33] who found that 

creep is more important in LD C-S-H because of strong rearrangement of this component 

under loading. However, lower stiffnesses and viscosities obtained in our model for hardened 

cement paste hydrated at higher temperature highlight also the important role of 

macroporosity for time-dependent behaviour of the material. It is also reasonable to assume 

that a more heterogeneous microstructure of cement paste hydrated at higher temperature 

leads to higher micro-stresses. Therefore at higher hydration temperature, the sliding of C-S-

H, the collapse of LGP and the propagation of microcracks could be favoured which could 

explain the lower values of the stiffnesses and viscosities obtained.  
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Table 4 : Calibrated model parameters for a cement paste hydrated and tested at 60°C (Th60-Tt60) 

Th 
(°C) 

Tt 
(°C) 

σσσσs 

(MPa) 

K0 

(MPa) 

K1 

(MPa) 

K2 

(MPa) 
ηηηη1 

(MPa.mn) 

ηηηη2 

(MPa.mn) 1ττττ  (mn) 2ττττ  (mn) 

60  60  35 8300 7200 13000 75.0×105 30.0×105 1041 483 

 

0 5000 10000 15000 20000 25000
Volumetric strain (µm/m)

0

10

20

30

40

50

60

70
T

er
za

gh
i e

ff
ec

ti
ve

 s
tr

es
s 

(M
Pa

) Computed

Data

 

Figure 10 : Computed and experimental stress-strain curves under drained isotropic compression 

performed at 60°C on cement paste hydrated at 60°C 

6 Conclusions 

Revisiting the isotropic compression tests on a hardened class G cement paste hydrated at 

90°C in  [1] [2], we analyse in this paper the time dependent response. A viscoplastic model is 

proposed and calibrated on the experimental data. The model describes the non-linear 

response of the volumetric strain for both drained and undrained compression tests as well as 

the delayed response of the pore pressure in undrained tests. The parameters of the model 

reflect the effect of the test temperature on the viscoplastic properties of the hardened cement 

paste. It is shown that the creep of the material is more pronounced at higher test temperature. 

The effect of the hydration temperature on the creep of cement paste has also been discussed 

on the basis of the calibration of the model parameters on a drained isotropic compression test 

performed at 60°C on a sample hydrated at 60°C. The obtained parameters allow to state that 

the creep is more pronounced at higher hydration temperature. 
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Appendix: Effect of the hydration temperature on the 

response of uniaxial compression tests 

Uniaxial compression tests have been performed at room temperature on samples hydrated at 

60°C and on samples hydrated at 90°C. A jacket is placed around the sample to avoid the 

evaporation of water during installation under the loading frame. The loading rate is relatively 

high (7.5 MPa/mn) so that the tests are performed in quasi-undrained condition. The results 

show that the strength and the Young's modulus of the cement hydrated at 60°C are both 

higher than those of the cement hydrated at 90°C. To account for the natural variability of the 

mechanical properties of cement samples, the uniaxial strength and the Young's modulus are 

plotted versus the P-wave velocity of the intact sample in Figure 11 and Figure 12 

respectively. From these graphs, one can observe that the strength of hardened cement paste 

hydrated at 60°C is around 55 MPa while the values for a hydration temperature of 90°C are 

between 43 MPa and 50 MPa. The Young's moduli are around 14.0GPa and 11.5GPa for a 

hydration temperature of 60°C and 90°C respectively. The stronger mechanical properties of 

cement paste hydrated at 60°C can be attributed to its smaller mercury porosity. 
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Figure 11: Uniaxial strength versus P-wave velocity for cement pastes hydrated at 60°C and 90°C 
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Figure 12 : Young’s modulus versus P-wave velocity for cement pastes hydrated at 60°C and 90°C 
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