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ABSTRACT. This paper deals with the development of a computational model to predict transient

elastic waves in fluid-structure multilayer systems for which the elasticity constants of the structure

are uncertain. The fluid-structure system is a three layers system make up of an elastic solid layer

sandwiched between two acoustic fluid layers and excited by an acoustic line source located in one of

the two acoustic fluid layers. The mean model of the elastic solid layer is represented by a transverse

isotropic material. The elasticity tensor of the solid layer is modeled by a random tensor for which the

probabilistic model is constructed using the information theory. A Monte Carlo stochastic numerical

solver is used in order to solve the stochastic boundary value problem. A numerical application is

presented.
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1 INTRODUCTION

The analysis of wave phenomena [1,2] in layered elastic [3,4] and acoustic media plays a fun-

damental role in the fields of non-destructive testing, geophysics and seismology [2,5-10]. This pa-

per deals with the development of a computational model to predict transient elastic waves in fluid-

structure multilayer systems for which the elasticity tensor of the structure is uncertain (e.g [9]). The

fluid-structure system is a three layers system constituted of a homogeneous elastic solid layer sand-

wiched between two acoustic fluid layers and excited by an acoustic line source located in one of the

two acoustic fluid layers. The mean model of the elastic solid layer is represented by a transverse

isotropic material. Due to uncertainties in the solid layer induced by heterogeneities in the material,

this solid layer is modeled by a stochastic homogeneous anisotropic material for which the mean

value is the mean model. A parametric probabilistic approach is used to take into account uncertain-

ties in the dynamical system. The elasticity tensor of the solid layer is modeled by a random tensor

for which the probabilistic model is constructed using the information theory. The Monte-Carlo nu-

merical method is used to solve the stochastic boundary value problem. For each realization of the

random elastic tensor, the transient elastic waves are calculated in the coupled system by using a hy-

brid method [11] based on a time-domain formulation associated with the space Fourier transform for

the infinite dimension and using a finite element approximation [12,13] for the finite dimension.

A completed numerical application concerning the cortical bone excited with a transient acoustic

line source whose central frequency is 1MHz is presented showing the propagation of uncertainties

in the fluid-structure dynamical system.

2 MEAN 3D BOUNDARY VALUE PROBLEMS IN THE 3D SPACE-DOMAIN WITH A

TIME-DOMAIN FORMULATION

We consider a three-dimensional multilayer medium composed of one solid layer sandwiched

between two fluid layers (see Figure 1). Let R = (O; e1, e2, e3) be the reference Cartesian frame



where O is the origin of the space and (e1, e2, e3) is an orthogonal basis for this space. Let (x1, x2, x3)

be the coordinates of a generic point x in R. The thicknesses of the layers are denoted as h1, h and h2.

Thus, h1 is the thickness of the first fluid layer, h is the solid layer thickness and h2 is the thickness of

the second fluid layer. The first fluid layer occupies the unbounded domain Ω1, the solid elastic layer

occupies the domain Ω and the second acoustic fluid layer occupies the domain Ω2. Let Γ1, Γ0, Γ and

Γ2 be the planes defined by

Γ1 = {x1 ∈  , x2 ∈  , x3 = z1}
Γ0 = {x1 ∈  , x2 ∈  , x3 = 0}
Γ = {x1 ∈  , x2 ∈  , x3 = z}
Γ2 = {x1 ∈  , x2 ∈  , x3 = z2}

in which z1 = h1, z = −h and z2 = −(h + h2). Then, the boundaries of domains Ω1, Ω and Ω2 are

respectively ∂Ω1 = Γ1 ∪ Γ0, ∂Ω = Γ0 ∪ Γ, ∂Ω2 = Γ ∪ Γ2. Therefore, domains Ω1, Ω and Ω2 are

unbounded along the transversal directions e1 and e2 whereas they are bounded along the direction e3.
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Fig 1. Geometric configuration

Let p1(x, t) and p2(xt) be the disturbance of the pressure of the fluid layer at time t > 0 for x

belonging to respectively Ω1 and Ω2. The mean boundary value problems for the two fluid layers are

written as

1

k1

∂2p1

∂t2
− 1

ρ1
∆p1 =

1

ρ1

∂Q

∂t
, x ∈ Ω1 (1)

p1 = 0 , x ∈ Γ1 (2)

∂p1

∂x3
= −ρ1

∂2u3

∂t2
, x ∈ Γ0 (3)

1

k2

∂2p2

∂t2
− 1

ρ2
∆p2 = 0 , x ∈ Ω2 (4)

p2 = 0 , x ∈ Γ2 (5)

∂p2

∂x3
= −ρ2

∂2u3

∂t2
, x ∈ Γ (6)

in which k1 = ρ1 c
2
1 where c1 and ρ1 are, respectively, the wave velocity and the mass density at

equilibrium of the first fluid occupying domain Ω1; k2 = ρ2 c
2
2
where c2 and ρ2 are, respectively, the

wave velocity and the mass density at equilibrium of the second fluid occupying domain Ω2; ∆ is the

Laplacian operator with respect to x and Q(x, t) is an acoustic source density at point x = (x1, x2, x3)



and at time t > 0. Acoustic source density Q(x, t) is such that

∂Q

∂t
(x, t) = ρ1 F(t) δ0(x1 − xS1 ) δ0(x3 − xS3 ) , (7)

where xS
3
is a given parameter in [0, h1] and where xS

1
is a given parameter in  . Thus, Eq. (7)

describes an impulse line source parallel to (O; x2), placed in the fluid Ω1 at a given distance from the

interface Γ0.

Let u(x, t) be the displacement of a particle located in point x of Ω at time t > 0 and verifying the

following boundary value problem,

ρ
∂2u

∂t2
− div! = 0 , x ∈ Ω (8)

! n = −p1 n , x ∈ Γ0 (9)

! n = −p2 n , x ∈ Γ (10)

in which ρ is the mass density and !(x, t) is the Cauchy stress tensor of the elastic medium at point x

and at time t > 0, n is the outward unit normal to domain Ω and div is the divergence operator with

respect to x. The constitutive equation of the solid elastic medium is written as

!(x, t) =

3∑

i, j,k,h=1

ci jkhεkh(x, t) ei ⊗ e j (11)

in which
∑3

i, j,k,h=1 ci jkhei ⊗ e j ⊗ ek ⊗ eh is the elasticity tensor of the medium and εkh =
1
2
( ∂uk
∂xh
+
∂uh
∂xk
) is

the linearized strain tensor. Finally, the system is at rest at time t = 0. Consequently, we have

p1(x, 0) = 0 , x ∈ Ω1 ∪ ∂Ω1 (12)

u(x, 0) = 0 , x ∈ Ω ∪ ∂Ω (13)

p2(x, 0) = 0 , x ∈ Ω2 ∪ ∂Ω2 (14)

3 MEAN ELASTICITY MATRIX FOR AN ISOTROPIC TRANSVERSE MATERIAL

Let [C] be the elasticity matrix whose components are the coefficients of elasticity tensor ci jkh such

that

[C] =



c1111 c1122 c1133
√
2c1123

√
2c1131

√
2c1112

c2211 c2222 c2233
√
2c2223

√
2c2231

√
2c2213

c3311 c3322 c3333
√
2c3323

√
2c3331

√
2c3312√

2c2311
√
2c2322

√
2c2333 2c2323 2c2331 2c2312√

2c3111
√
2c3122

√
2c3133 2c3123 2c3131 2c3112√

2c1211
√
2c1222

√
2c1233 2c1223 2c1231 2c1212



. (15)

Let ci j = [C]i j be the components of matrix [C]. If the elasticity tensor is modeling an isotropic

homogeneous medium, then all the components ci j are zeros except the following

c11 =
e2L(1 − νT )

(eL − eLνT − 2eTν2L)
, c22 = c33 =

eT (eL − eTν2L)
(1 + νT )(eL − eLνT − 2eTν2L)

c12 = c13 = c21 = c31 =
eTeLνL

(eL − eLνT − 2eTν2L)
, c23 = c32 =

eT (eLνT + eTν
2
L)

(1 + νT )(eL − eLνT − 2eTν2L)

c44 = gT =
eT

2(1 + νT )
, c55 = c66 = gL

in which eL and eT are the longitudinal and transversal Young moduli, gL and gT are the longitudinal

and transversal shear moduli, respectively; νL and νT are the longitudinal and transversal Poisson

coefficients, respectively.



4 MEANWEAKFORMULATION INTHE 1D-SPECTRALDOMAINWITHATIME-DOMAIN

FORMULATION

Due to the nature of the source and to the geometrical configuration, the transverse waves polarized

in the (e1, e2) plane are not excited. Then, the present study can be conducted in the plane (O; e1, e3)

and the mean 3D boundary value problem is independent of x2 .

For all x3 fixed in ]z2, z1[, the 1D-Fourier transform of an integrable function x1 7→ f (x1, x3, t) on

 is defined by

f̂ (k1, x3, t) =

∫

 

f (x1, x3, t) e
i k1 x1dx1 .

Let p̂1, û and p̂2 be the 1D-Fourier transforms of functions p1, u and p2. Let C1 and C2 be the function
spaces constituted of all the sufficiently differentiable complex-valued functions x3 7→ δp1(x3) and
x3 7→ δp2(x3) respectively, defined on ]0, z1[ and ]z2, z[. We introduce the admissible function spaces

C1,0 ⊂ C1 and C2,0 ⊂ C2 such that

C1,0 = {δp1 ∈ C1; δp1(z1) = 0}
C2,0 = {δp2 ∈ C2; δp2(z2) = 0}

Let C be the admissible function space constituted of all the sufficiently differentiable functions x3 7→
δu(x3) from ]z, 0[ into !2 where ! is the set of all the complex numbers. The weak formulation of

the present problem is written as : for all k1 fixed in  and for all fixed t, find p̂1(k1, ·, t) ∈ C1,0,
û(k1, ·, t) ∈ C and p̂2(k1, ·, t) ∈ C2,0 such that, for all δp1 ∈ C1,0, δu ∈ C and δp2 ∈ C2,0,

a1

(
∂2 p̂1

∂t2
, δp1

)
+ k21 c

2
1 a1(p̂1, δp1) + b1(p̂1, δp1) + r1

(
∂2û

∂t2
, δp1

)
= f (δp1; t) ,

m

(
∂2û

∂t2
, δu

)
+ s1(̂u, δu) + k

2
1 s2(̂u, δu) − ik1 s3(̂u, δu) + r2(δu, p̂2) − r1(δu, p̂1) = 0 ,

a2

(
∂2 p̂2

∂t2
, δp2

)
+ k21 c

2
2 a2(p̂2, δp2) + b2(p̂2, δp2) − r2

(
∂2û

∂t2
, δp2

)
= 0 ,

in which the positive-definite and definite sesquilinear forms a1 and b1 defined on C1 × C1, the
sesquilinear form r1 defined on C × C1, the antilinear form f1 defined on C1, the sesquilinear forms
positive-definite and positive a2 and b2 defined on C2×C2, the sesquilinear form r2 defined on C×C2,
the positive-definite sesquilinear form a defined on C × C and finally, the sesquilinear form b defined

on C × C which are presented in Appendix and where

s1(̂u, δu) =

∫ 0

z

〈[D1]
∂û

∂x3
,
∂δu

∂x3
〉dx3 (16)

s2(̂u, δu) =

∫ 0

z

〈[D2] û, δu〉dx3 (17)

s3(̂u, δu) =

∫ 0

z

〈[D3] û,
∂δu

∂x3
〉 − 〈[D3] δu,

∂û

∂x3
〉
 dx3 (18)

in which 〈·, ·〉 means the usual Euclidean inner product on  2 extended to !2 and where

[D1] =

[
c55/2 c53/

√
2

c35/
√
2 c33

]
, [D2] =

[
c11 c15/

√
2

c51/
√
2 c55/2

]
, [D3] =

[
c51/
√
2 c55/2

c31 c35/
√
2

]
. (19)

It should be noted that only s1(̂u, δu), s2(̂u, δu) and s3(̂u, δu) depend on components of elasticity

matrix [C].



5 MEAN FINITE ELEMENT MODEL IN THE 1D-SPECTRAL DOMAIN WITH A TIME-

DOMAIN FORMULATION

We introduce a finite element mesh of domain [z2, z] ∪ [z, 0] ∪ [0, z1] which is constituted of

νtot nodes. The finite elements used are Lagrangian 1D-finite element with 3 nodes. Let p̂1(k1, t),

v̂(k1, t) and p̂2(k1, t) be the complex vectors of the nodal values of the functions x3 7→ p̂1(k1, x3, t),

x3 7→ û(k1, x3, t) and x3 7→ p̂2(k1, x3, t). Let f̂(k1, t) be the complex vector in  
ν1 where ν1 is the num-

ber of degree of freedom related to the mesh of domain [0, z1], corresponding to the finite element

approximation of the antilinear form f (δp1; t). For all k1 fixed in ! and for all fixed t, the finite ele-

ment approximation of the weak formulation of the 1D boundary value problem yields the following

linear system of equations

[A1]
¨̂p1 + (k

2
1 c

2
1[A1] + [B1])̂p1(k1, t) + [R1]

¨̂v(k1, t) = f̂(k1, t) (20)

[M] ¨̂v(k1, t) + ([S 1] − ik1 [S 3] + k
2
1 [S 2])̂v(k1, t) + [R2]

T p̂2(k1, t) − [R1]
T p̂1(k1, t) = 0 (21)

[A2]
¨̂p2(k1, t) + (k

2
1 c

2
2[A2] + [B2])̂p2(k1, t) − [R2]

¨̂v(k1, t) = 0 (22)

in which the double dots means the second partial derivative with respect to t. Each of Eqs. (20) ,

(21) and (22) form linear systems whose the square matrices are respectively of dimensions ν1 × ν1,
ν × ν and ν2 × ν2. The integer numbers ν and ν2 are respectively the number of degree of freedom
related to the meshes of domains [z, 0] and [z2, z]. Moreover, the components of these matrices are

complex numbers. These three equations can be rewritten as

["] ¨̂#(k1, t) + ([$1] − ik1[$2] + k
2
1[$3])̂#(k1, t) = %̂(k1, t) (23)

in which the vectors #̂(k1, t) = (̂p1(k1, t), v̂(k1, t), p̂2(k1, t)) and %̂(k1, t) = (̂f(k1, t), 0, 0) belong to  
ν1+ν+ν2

and where

["] =


[A1] [R1] 0

0 [M] 0

0 −[R2] [A2]

 ,

[$1] =


[B1] 0 0

−[R1]
T [S 1] [R2]

T

0 0 [B2]

 , [$2] =


0 0 0

0 [S 3] 0

0 0 0

 , [$3] =


c2
1
[A1] 0 0

0 [S 2] 0

0 0 c2
2
[A2]



where upper-script T denotes the transpose matrix. It should be noted that matrices [S 1], [S 2] and [S 3]

correspond to the finite element approximations of sesquilinear forms s1, s2 and s3. Consequently,

matrices [S 1], [S 2] and [S 3] depend on components of elasticity matrix [C] (see Eqs (16) to (19) )

and there exist mappings &1, &2 and &3 such that [S 1] = &1([C]), [S 2] = &2([C]) and [S 3] = &3([C]).

6 PROBABILISTIC MODEL OF STRUCTURAL UNCERTAINTIES

This section is devoted to the construction of a probabilistic model of uncertainties in the solid

layer. It is assumed that uncertainties are only related to the components of elasticity tensor c i jkh. The

stochastic finite element model is constructed by substituting matrix [C] in the mean finite element

model with a random matrix [C] whose probabilistic model is constructed using the information

theory. The available information on [C] is defined as follows: (1) the mean value of random matrix

[C] is the mean elasticity matrix [C] of the mean model; (2) random matrix [C] is a second-order

random variable with values in"+n (!) with n = 6 where"
+
n (!) is the set of all the (n×n) real symmetric

positive-definite matrices; (3) the inverse matrix of [C] which exists almost surely is assumed to be

a second-order random variable. Thus, random matrix [C] belongs to the set SE+ (see [13]) and is

written as

[C] = [L]T [G][L] , (24)



in which the (6 × 6) upper triangular matrix [L] corresponds to the Cholesky factorization of matrix
[C] and where random matrix [G] belongs to the set SG+ defined in [13]. The probability density

function p[G] of random matrix [G] is written as

p[G]([G]) =   +n (!)([G]) × cn × (det[G])
bn × exp{−antr[G]} , (25)

with n = 6 and where an = (n + 1)/(2δ2), bn = an(1 − δ2),   +n (!)([G]) is equal to 1 if [G] belongs
to !+n (") and is equal to zero if [G] does not belong to !

+
n ("), tr[G] is the trace of a matrix [G] and

where positive constant cn is such that

cn =
(2π)−n(n−1)/4a

nan
n∏n

j=1 Γ(α j)
, (26)

in which α j = (n + 1)/(2δ2) + (1 − j)/2 and Γ is the Gamma function. Parameter δ allows the

dispersion of the stochastic model to be controlled. It should be noted that such a probabilistic model

takes into account any anisotropic perturbation of the elasticity tensor with respect to a mean elasticity

tensor of a simplified elasticity model such as, for instance, an isotropic transverse solid. Note that

the components Ci j = [C]i j of random matrix [C] are statistically dependent random variables with

values in " and depends on dispersion parameter δ.

7 STOCHASTIC FINITE ELEMENT MODEL IN THE 1D-SPECTRAL DOMAINWITH A

TIME-DOMAIN FORMULATION

The stochastic finite element model of the system is constructed substituting [S 1], [S 2] and [S 3] in

Eqs. (20) to (22) with random matrices [S1], [S2] and [S3] by [S1] = #1([C]), [S2] = #2([C]) and

[S3] = #3([C]) where mappings #1, #2 and #3 are introduced in Section 5. Consequently, for all time

t fixed in " and for all k1 fixed in ", the solution of the stochastic finite element model is a random

vector $̂(k1, t) = (P̂1(k1, t), V̂(k1, t), P̂2(k1, t)) such that

[A1]
¨̂
P1 + (k

2
1 c

2
1[A1] + [B1])P̂1(k1, t) + [R1]

¨̂
V(k1, t) = f̂(k1, t) (27)

[M]
¨̂
V(k1, t) + ([S1] − ik1 [S3] + k21 [S2])V̂(k1, t) + [R2]

T P̂2(k1, t) − [R1]
T P̂1(k1, t) = 0 (28)

[A2]
¨̂
P2(k1, t) + (k

2
1 c

2
2[A2] + [B2])P̂2(k1, t) − [R2]

¨̂
V(k1, t) = 0 (29)

These three equations can be rewritten as

[!]
¨̂
$(k1, t) + ([K1] − ik1[K2] + k

2
1[K3])$̂(k1, t) = %̂(k1, t) (30)

in which, matrix [!] and vector %̂(k1, t) are defined in Section 5 and where randommatrices [K1], [K2]

and [K3] are such that

[K1] =


[B1] 0 0

−[R1]
T [S1] [R2]

T

0 0 [B2]

 , [K2] =


0 0 0

0 [S3] 0

0 0 0

 , [K3] =


c2
1
[A1] 0 0

0 [S2] 0

0 0 c22 [A2]



8 STOCHASTIC SOLVER

By construction, for all k1 fixed in " and for all fixed time t > 0, random vector P̂1(k1, t) in

Eqs. (27) to (29) is the finite element approximation of random field P̂1(k1, ·, t) indexed by [0, h1]
associated with the deterministic field p̂1(k1, ·, t). The inverse 1D-Fourier transform in k1 of P̂1 is

denoted as P1 and is a random field indexed by "× [0, h1]× [0,+∞[ modeling the random disturbance

of the pressure in the first fluid layer due to uncertainties in the solid layer (see Section 6). Then, there

exists a deterministic mapping #P1 such that P1 = #P1(P̂1). Let the random arrival time T be the first



local maximum of stochastic field {P1(x
R
1 , x

R
3 , t)}t>0 in which xR1 and xR3 are given parameters in  and

[0, h1], respectively. Let !T be the mapping defined as T = !T (P1).

The stochastic solver used in order to construct statistical estimations of T and P1 is based on

the Monte-Carlo numerical simulation. For each realization [C(θ)] of random matrix [C], realization

[S1(θ)] = !1([C(θ)]),[S2(θ)] = !2([C(θ)]) and [S3(θ)] = !3([C(θ)]) of random matrices [S1], [S2] and

[S3] are constructed. Then, for all k1 fixed in  and for all fixed time t > 0, the realization P̂1(k1, t, θ)

of random vector P̂1(k1, t) is calculated solving the deterministic equation associated with stochastic

Eq. (30) using an implicit time integration scheme. Then, the realization P1(θ) = !P1(P̂1(θ)) of

random field P1 is calculated. Finally, the realization T (θ) = !T (P1(θ)) of random arrival time T can

be calculated.

9 NUMERICAL APPLICATION

For the numerical application presented in this section, the fluid layerΩ1 is excited by a line source

located at xS
1
= 0 and xS

3
= 2×10−3m with a time-history defined with the function F in Eq. (7) such

that

F(t) = F1 sin(2π fct) e
−4(t fc−1)2 ,

where fc = 1 MHz is the center frequency and F1 = 100 m.s−2 is an amplitude factor. Figure 2

shows the power spectrum of F (left) and the graph of function t 7→ F(t) (right). The thicknesses

of the three layers are h1 = 2 × 10−3m, h = 4 × 10−3m and h2 = 10−2m. The mechanical param-

eters of the first fluid layer are ρ1 = 1000 kg/m3 and c1 = 1500 m/s. For the second fluid layer,

the mechanical parameters are ρ2 = 1000 kg/m3 and c2 = 1500 m/s. Finally, for the elastic solid

layer we will use the longitudinal and transversal Young moduli eL = 16.6 GPa and eT = 9.5 GPa,

respectively; the longitudinal and transversal shear moduli gL = 4.7 GPa and gT = 3.3 GPa, respec-

tively; the longitudinal and transversal Poisson coefficients νL = 0.38 and νT = 0.44, respectively.
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Fig 2. Definition of the function F. Graphs of the power spectrum of F (left) and function t 7→ F(t)

(right). Vertical axis: power spectrum (left) and F(t) (right). Horizontal axis: frequency (left) and t

(right).

Figure 3 shows the graph of the confidence region of stochastic field P1(x
R
1 , x

R
3 , ·) indexed by

[0,+∞[ for a probability level Pc = 0.95 and with a dispersion parameter δ = 0.2, xR
1
= 2 × 10−3m

and xR
3
= 2 × 10−3m. Figure 4 shows the graph of the density probability function of random arrival

time T with δ = 0.2 and xR1 = 2 × 10−3m and xR3 = 2 × 10−3m.
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Fig 3. Confidence region of the stochastic process {P1(x
R
1
, xR

3
, t)}t>0 with a probability level Pc =

0.95 δ = 0.2, xR1 = 2 × 10−3m and xR3 = 2 × 10−3m . Vertical axis: disturbance of the pressure in the

first fluid layer. Horizontal axis: time t (10−6s).
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Fig 4. Probability density function of random arrival time T with δ = 0.2, xR1 = 2 × 10−3m and

xR
3
= 2 × 10−3m. Vertical axis: probability density. Horizontal axis: arrival time (s).

10 CONCLUSION

We have presented a probabilistic model to predict the transient elastic wave propagation in a

multilayer unbounded media with uncertainties in the solid layer. Uncertainties are taken into account

with a probabilistic model. Thanks to the introduction of an efficient numerical solver, the Monte-

Carlo numerical method can be used as solver of the stochastic equations. The numerical application

devoted to the cortical bone shows the interest of such an approach.

11 APPENDIX

The different quantities introduced in Section 4 are defined below

a1(p̂1, δp1) =
1

K1

∫ z1

0

p̂1 δp1 dx3 (31)



b1(p̂1, δp1) =
1

ρ1

∫ z1

0

∂p̂1

∂x3

∂δp1

∂x3
dx3 (32)

r1(̂u, δp1) = û3(0)δp1(0) (33)

f (δp1; t) = F(t) eik1x
S
1 δp1(x

S
3
) (34)

m(̂u, δu) =

∫ 0

z

ρ〈̂u, δu〉dx3 (35)

a2(p̂2, δp2) =
1

K2

∫ z

z2

p̂2 δp2 dx3 (36)

b2(p̂2, δp2) =
1

ρ2

∫ z

z2

∂p̂2

∂x3

∂δp2

∂x3
dx3 (37)

r2(̂u, δp2) = û3(z)δp2(z) (38)
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