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ABSTRACT. This paper presents a new approach in modeling layered sound absorbing materials.

This approach builds a probabilistic model based on the fuzzy structure theory and takes into account

internal resonances of the structure. An experimental identification of the mean parameters of the

model and its experimental validation are presented.
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1 INTRODUCTION

This paper deals with the probabilistic modeling of sound-insulation layers (denoted by the trim in

this paper) in the context of computational vibroacoustics for complex systems. The trim is a complex

composite structure which can be either modeled by a full finite element model (e.g. [2]) or by acoustic

waves transfer matrices (e.g. [1]). The first method requires a large number of degrees of freedom (for

instance, several millions for a whole car vibroacoustic model which have to be added to about one

million DOF for the own vehicle). Moreover, as the trim eigenfrequencies are within the frequency

range of interest, the number of generalized coordinates may be increased by a thousand. The second

method which is proposed does not require additional DOF but in a counter part introduces model

uncertainties and data uncertainties as far as only infinite plane layers can be addressed. Usually, wall

acoustic impedance models proposed in the literature correspond to asymptotic theory and do not take

into account internal resonances such as thickness resonances. The objectives of this paper are (1) to

develop a model which takes into account internal resonances by introducing hidden dynamical DOF

using the fuzzy structure theory (e.g. [4, 5, 3]) and (2) to present an experimental identification of the

mean parameters of the model. The theory and the numerical analysis are presented.

2 VIBROACOUSTIC BOUNDARY VALUE PROBLEM WITH A SOUND-INSULATION LA-

YER

Definition of the vibroacoustic system. The physical space  3 is referred to a cartesian system.

The generic point of  3 is denoted by x = (x1, x2, x3). The Fourier transform with respect to time

t is denoted by u(ω) =
∫
 

e−iωtu(t) dt. The vibroacoustic system is analyzed in the frequency band

! = [ωmin, ωmax] with 0 < ωmin < ωmax.

The structure occupies a bounded domain Ωs ⊂  
3 and is modeled by a nonhomogeneous aniso-

tropic viscoelastic material. The boundary of Ωs is written as ∂Ωs = Γs ∪ Γ0 ∪ Γ1 ∪ Γ2 (see figure 1).

The outward unit normal to ∂Ωs is denoted ns(x). The structure is fixed on Γ0, a surface force field

gsur f (x, ω) is given on Γ1 and a body force field gvol(x, ω) is given in Ωs. The coupling interface

between the structure and the acoustic cavity is Γ2 and the coupling interface between the structure

and the trim is Γs. It should be noted that the trim only exists on Γs and not on Γ2 (see figure 1). Let

x 7→ us(x, ω) from Ωs to "3 be the structure displacement field which is equal to zero on Γ0. Let

Ωh ⊂  
3 be the bounded domain occupied by the trim with boundary ∂Ωh = Γ ∪ Γs and Γ ∩ Γs = ∅

(see figure 1). Let x 7→ uh(x, ω) from Ωh to "3 be the trim displacement field whose trace on interface

Γ is still denoted by x 7→ uh(x, ω). The bounded domain Ωa ⊂  

3 of the acoustic cavity is filled

with a dissipative acoustic fluid (air). The boundary of Ωa is written ∂Ωa = Γ ∪ Γ2 with Γ ∩ Γ2 = ∅.

Let x 7→ p(x, ω) from Ωa to " be the acoustic pressure field on the boundary Γ
⋃
Γ2, the coupling



vibroacoustic condition corresponds to the usual continuity condition of the normal velocity fluid. We

write a perfect fluid coupling condition between the fluid and the structure and between the fluid and

the trim.
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Figure 1: Structural-acoustical problem

Coupling fields on the vibroacoustic interfaces. The coupling force field on boundary Γs that the

structure exerts on the trim is denoted by x 7→ f s(x, ω) = ( f s
1
(x, ω), f s

2
(x, ω), f s

3
(x, ω)) from Γs to  3

and can be written for all x fixed in Γs as f s(x, ω) = f s(x, ω)ns(x)+ f s
tang(x, ω) with f s

tang(x, ω).ns(x) =

0 and x 7→ f s(x, ω) from Γs to  is the normal component such that

f s(x, ω) = f s(x, ω)ns(x) . (1)

Dimension of f s
i
(x, t) is [M][L]−1[T ]−2. The coupling force field on boundary ∂Ωa = Γ

⋃
Γ2 that

the acoustic fluid exerts on the structure (interface Γ2) and the trim (interface Γ) is denoted by x 7→

f p(x, ω) from ∂Ωa to  3 and is written for all x in ∂Ωa,

f p(x, ω)ds(x) = −p(x, ω)n(x)ds(x) , (2)

with ds the surface measure relative to ∂Ωa (see figure 1).

Weak formulation for the mean boundary value problem of the vibroacoustic system. Let Cs
0

be the admissible space of the displacement fields of the structure, Ch be the admissible space of the

displacement fields of the trim and Ca be the admissible space of the pressure fields in the cavity. We

introduce the following bilinear form defined on Cs
0
× Ca,

ca
s(u

s, p;ω) =

∫

Γ2

us(x).ns(x) p(x) ds(x) , (3)

the bilinear form defined on Ch × Ca,

ca
h(uh, p;ω) =

∫

Γ

uh(x).n(x) p(x) ds(x) , (4)

and the linear form defined on Cs
0

or Ch,

c f s(u;ω) =

∫

Γs

f s
i (x, ω) ui(x) ds(x) . (5)



The weak formulation of the vibroacoustic boundary value problem can be written (e.g. [3]).

−ω2ms(us, δus) + iω ds(us, δus;ω) + ks(us, δus;ω) + ca
s(δu

s, p;ω) + c f s(δus;ω) = ls(δus;ω) ,(6)

−ω2mh(uh, δuh) + iω dh(uh, δuh;ω) + kh(uh, δuh;ω) − c f s(δuh;ω) + ca
h(δuh, p;ω) = 0 , (7)

−ω2ma(p, δp) + iω da(p, δp;ω) + ka(p, δp) + ω2
{
ca

s(u
s, δp;ω) + ca

h(uh, δp;ω)
}
= la(δp;ω) .(8)

3 CONSTRUCTION OF A SIMPLIFIED MEAN MODEL OF THE SOUND-INSULATION

LAYER USING FUZZY STRUCTURE THEORY

The principle of the construction consists in replacing Eq. (7) by a simplified model and then in

eliminating field uh. The construction of the simplified mean model of the trim is based on the use

of the fuzzy structure theory [4, 5, 3]. Therefore, we begin introducing the underlying deterministic

model of the trim. Then, we introduce the probabilistic model and we perform its statistical averaging.
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Figure 2: Soundproofing scheme modeling

Underlying deterministic model. We introduce the following hypothesis for the trim (see fig-

ure 2): Γ ≃ Γs and consequently, for all x in Γ ≃ Γs, n(x) = ns(x). The normal component to Γs of the

structural displacement field is

ws(x, ω) = ns(x).us(x, ω) , (9)

and the normal component to Γ of the trim displacement field is

w(x, ω) = n(x).uh(x, ω) . (10)

Using the fuzzy structure theory, the underlying deterministic model is made of a density of damped

linear oscillators acting in the normal direction to Γ. At a fixed frequency ω, the mass density

distributed on Γ, attached to one oscillator for which the displacement is w(x, ω), is denoted by

µ(x, ω) > 0, and where the displacement of its base is w(x, ω). The dimension of µ(x, ω) is then

[M][L]−2. The corresponding stiffness density (resp. damping rate density ξ(x, ω) > 0) associated

with this oscillator is k(x, ω) = µ(x, ω)Ωp
2(x, ω) where Ωp(x, ω) > 0 is the eigenfrequency (rad.s−1)

of the undamped fixed linear oscillator (i.e. for ws(x, ω) = 0). Let f p(x, ω) be the force applied to

the mass of the oscillator and corresponding to the force density induced by the acoustic pressure

p(x, ω) on the trim (see Eq. 2). Let f s(x, ω) be the force applied to the base of the oscillator and

corresponding to the force density induced by the structure on the trim (see Eq. 1). Removing x and

ω, the equation of the density of oscillators can then be written as

µ


−ω2
+ 2iωξΩp + Ω

2
p −2iωξΩp −Ω

2
p

−2iωξΩp −Ω
2
p 2iωξΩp + Ω

2
p




w(x, ω)

ws(x, ω)

 =

−p(x, ω)

f s(x, ω)

 . (11)



For all ω ∈  , from Eq. (11), it can be deduced that

w(x, ω) = ac(x, ω)ws(x, ω) +
1

ω2
aa(x, ω)p(x, ω) , (12)

f s(x, ω) = as(x, ω)ws(x, ω) + ac(x, ω)p(x, ω) . (13)

in which

as(x, ω) =
−ω2 µ(x, ω) (2iωξ(x, ω)Ωp(x, ω) + Ωp(x, ω)2)

−ω2 + 2iωξ(x, ω)Ωp(x, ω) + Ωp(x, ω)2
, (14)

aa(x, ω) =
−ω2

µ(x, ω)
(
−ω2 + 2iωξ(x, ω)Ωp(x, ω) + Ωp(x, ω)2

) , (15)

ac(x, ω) =
2iωξ(x, ω)Ωp(x, ω) + Ωp(x, ω)2

−ω2 + 2iωξ(x, ω)Ωp(x, ω) + Ωp(x, ω)2
. (16)

Substituting Eq. (12) into Eq. (4), using Eq. (9) and Γ ≃ Γs yield

ω2ca
h(uh, δp;ω) = ω2

∫

Γs

ac(x, ω) ns(x).us(x, ω) δp(x) ds(x)

+

∫

Γs

aa(x, ω) p(x, ω) δp(x) ds(x) . (17)

Substituting Eq. (1) and Eq. (13) into Eq. (5) for u = δus, and using Eq. (9) yield

c f s(δus;ω) =

∫

Γs

as(x, ω) (ns(x).us(x, ω)) (ns(x).δus(x)) ds(x)

+

∫

Γs

ac(x, ω)p(x, ω) (ns(x).δus(x)) ds(x) . (18)

Probabilistic model. The use of the fuzzy structure theory leads us to model Ωp(x, ω) by a random

variable. Then in this section, we introduce the statistical mean part of the previous bilinear form

ca
h
(uh, δp;ω) and the linear form c f s(δus;ω) defined in Eq. (17) and Eq. (18). For allω in  , we choose

to represent µ(x, ω) and ξ(x, ω) by their mean values µ(x, ω) = µ(ω) > 0 and ξ(x, ω) = ξ(ω) > 0

where ω 7→ µ(ω) and ω 7→ ξ(ω) are two deterministic functions independent of x. For all x fixed

in Γs and ω fixed in  , the eigenfrequency Ωp(x, ω) is modeled by a positive random variable whose

probability distribution PΩp(x;ω)(dωp, ω) is assumed to be independent of x and is defined by the

probability density function pΩp(x;ω)(ωp, ω) with respect to dωp, such that

pΩp(x;ω)(ωp, ω) = ℓ(ω)![a(ω),b(ω)](ωp) , (19)

with !B(x) = 1 if x ∈ B and = 0 if x < B and where

a(ω) = sup

{
0, ω −

1

2n(ω)

}
, (20)

b(ω) = ω +
1

2n(ω)
, (21)

ℓ(ω) =
1

b(ω) − a(ω)
, (22)

in which n(ω) is the mean modal density of the trim. It should be noted that n(ω) is the main parameter

of the trim model. This parameter controls the power flow between the internal dynamical DOF of

the trim and the structure and the acoustic cavity. Then for all x fixed in Γs and ω fixed in  , as(x, ω),

aa(x, ω) and ac(x, ω) defined by Eq. (14), Eq. (15) and Eq. (16) become random variables denoted

by As(x, ω), Aa(x, ω) et Ac(x, ω). For all us and δus in Cs
0

and for all p and δp in Ca, ca
h
(uh, δp;ω)



and c f s(δus;ω) become random variables denoted by Ca
h
(uh, δp;ω) et C f s(δus;ω) which can then be

written as

ω2Ca
h(uh, δp;ω) = ω2

∫

Γs

Ac(x, ω) ns(x).us(x, ω) δp(x) ds(x)

+

∫

Γs

Aa(x, ω) p(x, ω) δp(x) ds(x) , (23)

C f s(δus;ω) =

∫

Γs

As(x, ω) (ns(x).us(x, ω)) (ns(x).δus(x)) ds(x)

+

∫

Γs

Ac(x, ω)p(x, ω) (ns(x).δus(x)) ds(x) . (24)

Statistical averaging of the simplified mean model of the trim. The last step of the fuzzy struc-

ture theory consists in defining the mean model taking the statistical averaging of random variables

Ca
h
(uh, δp;ω) and C f s(δus;ω), that is to say, in defining

ca
h
(uh, δp;ω) = E

{
Ca

h(uh, δp;ω)
}
, (25)

c
f s(δu

s;ω) = E
{
C f s(δus;ω)

}
. (26)

Analyzing Eq. (23) and Eq. (24) leads us to introduce the following deterministic bilinear forms

bs(us, δus) on Cs
0
× Cs

0
, cs(p, δus) on Ca × Cs

0
and ba(p, δp) on Ca × Ca,

bs(us, δus) =

∫

Γs

(ns(x).us(x)) (ns(x).δus(x)) ds(x) , (27)

cs(p, δus) =

∫

Γs

p(x) (ns(x).δus(x)) ds(x) , (28)

ba(p, δp) =

∫

Γs

p(x) δp(x) ds(x) . (29)

From Eq. (23) and Eq. (24) and using Eq. (19) to Eq. (22), it can be deduced that

ω2ca
h
(uh, δp;ω) = ω2ac(ω) cs(δp,us) + aa(ω) ba(p, δp) , (30)

c
f s(δu

s;ω) = as(ω) bs(us, δus) + ac(ω) cs(p, δus) , (31)

in which

as(ω) = −ω2as
R
(ω) + iωas

I
(ω) , (32)

aa(ω) = aa
R
(ω) + iωaa

I
(ω) , (33)

ac(ω) = ac
R
(ω) + iac

I
(ω) , (34)

with

as
R
(ω) = µ(ω)n(ω)

[
1

n(ω)
− ωλ(ω)Θ

R

(
ã(ω), b̃(ω), ξ(ω)

)]
, (35)

as
I
(ω) = µ(ω)n(ω) ω2λ(ω) Θ

I

(
ã(ω), b̃(ω), ξ(ω)

)
, (36)

aa
R
(ω) = ω n(ω)

λ(ω)

µ(ω)
Θ

R

(
ã(ω), b̃(ω), ξ(ω)

)
, (37)

aa
I
(ω) = n(ω)

λ(ω)

µ(ω)
Θ

I

(
ã(ω), b̃(ω), ξ(ω)

)
, (38)

ac
R
(ω) = 1 − ω n(ω)λ(ω) Θ

R

(
ã(ω), b̃(ω), ξ(ω)

)
, (39)

ac
I
(ω) = −ω n(ω)λ(ω) Θ

I

(
ã(ω), b̃(ω), ξ(ω)

)
, (40)



and where functions λ, ã, b̃,Θ
R

andΘ
I
are defined in Appendix. Replacing ca

h
(uh, δp;ω) by ca

h
(uh, δp;ω)

in Eq. (8) yields an equation denoted by (8’). Replacing c f s(δus;ω) by c
f s(δu

s;ω) in Eq. (6) yields

an equation denoted by (6’). Substituting Eq. (30) into Eq. (8’) and substituting Eq. (31) into Eq. (6’)

yield the weak formulation of the vibroacoustic boundary value problem with a simplified mean

model of the trim: find us in Cs
0

and p in Ca such that, for all δus in Cs
0

and δp in Ca, we have

−ω2ms(us, δus) + iω ds(us, δus;ω) + ks(us, δus;ω) + ca
s(δu

s, p;ω)

+as(ω)bs(us, δus) + ac(ω)cs(p, δus) = ls(δus;ω) , (41)

and

−ω2ma(p, δp) + iω da(p, δp;ω) + ka(p, δp) + ω2ca
s(u

s, δp;ω)

+ω2ac(ω)cs(δp,us) + aa(ω)ba(p, δp) = la(δp;ω) , (42)

in which the bilinear forms bs(us, δus), ba(p, δp) and cs(δp,us) are defined by Eq. (27), Eq. (28) and

Eq. (29).

4 COMPUTATIONAL VIBROACOUSTIC MEAN MODEL

The finite element discretization [6] of Eq. (41) and Eq. (42) yields the following matrix equation

on  ms ×  
ma ,


[As(ω)]+as(ω)[Bs] [C] + ac(ω)[Cs]

ω2
{
[C]T
+ac(ω)[Cs]T

}
[Aa(ω)] + aa(ω)[Ba]




us(ω)

p(ω)

 =

!

s(ω)

!

a(ω)

 , (43)

where [As(ω)] is the dynamical stiffness (ms × ms) complex matrix of the structure such that

[As(ω)] = −ω2 [Ms] + iω [Ds(ω)] + [Ks(ω)] , (44)

in which [Ms], [Ds(ω)] and [Ks(ω)] are the mass, damping and stiffness matrices of the structure in

vacuo. In Eq. (43), [Aa(ω)] is the dynamical stiffness (ma × ma) complex matrix of the acoustic fluid

such that

[Aa(ω)] = −ω2 [Ma] + iω [Da(ω)] + [Ka] , (45)

in which [Ma], [Da(ω)] and [Ka] are the mass, damping and stiffness matrices of the acoustic cavity

with fixed coupling interface. Matrix [C] is the usual vibroacoustic coupling (ms × ma) real matrix

relative to boundary Γ2 (which is without trim). Matrices [Bs], [Cs] and [Ba] correspond to the finite

element approximation of the bilinear forms defined by Eq. (27), Eq. (28) and Eq. (29) respectively.

Using ns structural modes in vacuo and na acoustic modes of the cavity with fixed coupling interface,

the mean reduced matrix model of the vibroacoustic system can then be written as

us(ω) = [Φs]qs(ω) , (46)

p(ω) = [Φa]qa(ω) , (47)


[As(ω)] + as(ω)[Bs] [C] + ac(ω)[C s]

ω2
{
[C]T

+ ac(ω)[C s]T
}

[Aa(ω)] + aa(ω)[Ba]




qs(ω)

qa(ω)

 =


f s(ω)

f a(ω)

 . (48)

in which [Φs] is the (ms × ns) real matrix of the structural modes and [Φs] is the ma × na real matrix

of the acoustic modes.



5 EXPERIMENTAL IDENTIFICATION OF THE MEAN MODAL DENSITY OF THE

SOUND-INSULATION LAYER MODEL

The problem is to develop an experimental identification of the mean modal density ω 7→ n(ω)

introduced in the simplified mean model of the sound-insulation layer (see Section 3).

Experimental configuration and measurements. Experiments were made by PSA Peugeot Citroën

engineers. The experimental configuration is made up of a steel thin plate connected to a framework

(see figures 3 and 4), the trim is attached to the plate. The structure is hung with four springs (see

figure 3).

Figure 3: Experiment

The structure is excited by a point force delivered by an electrodynamic shaker (see figure 3). The

out-plane acceleration of the plate have been measured at the sixty points displayed in figure 4.

Figure 4: Sixty measurements points

The measured complex vector-valued frequency response function from the input force to the sixty

acceleration components is denoted by ω 7→ γexp(ω) = (γ
exp

1
(ω), . . . , γ

exp
nobs

(ω)) in which nobs = 60.



Identification method The computed complex vector-valued frequency response function cor-

responding to the experimental measurements is denoted by ω 7→ γ(ω; n(ω)) = (γ1(ω; n(ω)), . . . ,

γnobs
(ω; n(ω))) in which we have indicated the dependance in n(ω) of the response of the computa-

tional vibroacoustic mean model. We introduce the function ω 7→ rexp(ω) and ω 7→ r(ω) defined

by

rexp(ω) = 10 log10


nobs∑

i=1

|γ
exp

i
(ω)|2

 , r(ω; n(ω)) = 10 log10


nobs∑

i=1

|γi(ω)|2

 . (49)

We then introduce the cost function J defined by

J(n) =

∫

 

(
r(ω; n(ω)) − rexp(ω)

)2
dω . (50)

The identified mean modal density function ω 7→ n̂(ω) can be estimated in solving the following

optimization problem

n̂ = arg min
n

J(n) , (51)

in which n belongs to a class of smooth functions from  into !+ such as the space of continuously

differentiable functions on  . The following procedure has been used to identify the mean modal

density.

(1) First, the updating of the computational mean model of the structure without the trim has been

performed using experiments. Figure 5 displays the graphs of functions ω 7→ rexp(ω) and ω 7→ r(ω)

for the updated computational model (note that r does not depend on n because the considered system

is made up of the structure without the trim). It should be noted that the computational model of

the structure without the trim will be used in a second step as a ”measurement device” to identify

the trim model (the mean modal density). Figure 5 shows that the comparison between experiments

and computational model is good in frequency band [25, 180] Hz. Consequently, this ”measurement

device” will not introduce a bias in the identification of the trim model. It can be seen significant errors

in the frequency band [180, 300] Hz and consequently a bias will be introduced in the identification

procedure for this part of the frequency band. This is the reason why identification will only be

performed for frequency band [30, 200] Hz.

(2) Secondly, the mean modal density n of the trim model has to be identified. Such an identifi-

cation could be performed by using Eq. (51) with the solution of Eq. (46) and Eq. (48) without the

acoustic cavity (structure with trim in vacuo). Presently, we do not have solved this optimization

problem and we have estimated n̂ by successive approximations in a class of smooth functions. The

thin dashed line in figure 6 shows the graph of the modal density which has been estimated. Fig-

ure 6 also displays the comparison of the experimental measurement ω 7→ rexp(ω) and the response

ω 7→ n̂(ω), computed with the model for the estimated value of the mean modal density. It can be

seen a good correlation between experiments and computation. Clearly, there is a residual error due

to the introduction of a simplified mean model of the trim. This model error can be taken into account

introducing a probabilistic model of uncertainties. Such a development is in progress.



Figure 5: Graph of ω 7→ r(ω) for the structure without trim: measurements (thin line) ; model (thick

line)

Figure 6: Graph of ω 7→ r(ω) for the structure with trim: measurements (thin solid line) ; calculation

(thick solid line) ; modal density ×5.103 (thin dashed line)

6 CONCLUSION

We propose a simplified mean model of sound-insulation system constructed using the fuzzy struc-

ture theory in the context of vibroacoustics. A first experimental validation of the developed mean

model is presented. An identification procedure for the mean modal density is in progress. Clearly,

there is a residual error due to the introduction of a simplified mean model of the trim. The introduc-

tion of such a model error can be taken into account introducing a probabilistic model of uncertainties.

Consequently, an additional probabilistic model allowing model uncertainties to be taken into account

has to be implemented. Such an implementation and its experimental validation is in progress.



A APPENDIX

For all ω ∈  ,

Θ
R

(
ã(ω), b̃(ω), ξ(ω)

)
=

1

4
√

1−ξ(ω)2

ln


N
+

(̃b(ω), ξ(ω)) N
−

(̃a(ω), ξ(ω))

N
−
(̃b(ω), ξ(ω)) N

+

(̃a(ω), ξ(ω))


, (52)

Θ
I

(
ã(ω), b̃(ω), ξ(ω)

)
=

1

2
√

1 − ξ(ω)2

[
Λ(̃b(ω), ξ(ω)) − Λ(̃a(ω), ξ(ω))

]
. (53)

ℓ̃(ω) = ω n(ω) λ(ω) . (54)

N±(u, ξ) = u2 ± 2 u
√

1 − ξ2 + 1 , (55)

Λ(u, ξ) = arctan


u2
+ 2ξ2 − 1

2ξ
√

1 − ξ2

 , (56)

ã(ω) =
1

ω
a(ω)

= sup

{
0, 1 −

1

2ω n(ω)

}
, (57)

b̃(ω) =
1

ω
b(ω)

= 1 +
1

2ω n(ω)
. (58)

ℓ̃(ω) =
1

b̃(ω) − ã(ω)
(59)
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