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ABSTRACT

This paper addresses the modeling and simulation of 

random structural dynamic and aeroelastic systems, 

linear and nonlinear, using the nonparametric 

methodology. The fundamental theory underlying this 

approach is first review and its application to linear 

structural dynamic models is demonstrated. Next, the 

theory is extended in two distinct directions: i.e. 

geometrically nonlinear models and an improved 

characterization of the natural frequencies of random 

linear systems. 

INTRODUCTION

The stochastic modeling and simulation of random 

multi-degree-of-freedom systems has often in the past 

been accomplished by postulating joint probability 

density functions of the components of their mass, 

stiffness, and/or damping matrices or, equivalently, of 

their corresponding natural frequencies, damping 

ratios, and mode shapes (e.g. Ghanem and Spanos, 

1991, Kleiber et al, 1992, Rivas-Guerra and Mignolet, 

2004, Schueller, 1997). However, a different approach 

has recently been proposed (Soize, 2000, 2001) and 

validated (see Soize, 2005, for a review) in which the 

probabilistic model of the mass, stiffness, and/or 

damping matrices is not assumed but rather 

determined to maximize the entropy under the 

constraints (i) that these matrices are positive definite, 

(ii) that their mean values are prescribed, and (iii) of 

an overall measure of variation (variance of the norms 

of the matrices prescribed).  
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This approach, which has been named nonparametric 

since no parameter value is selected by the  user, is 

applicable to a broad range of applications in which 

little is known about the variability of the system. 

The basic theory underlying the nonparametric 

approach is first review and its application to two 

aeroelastic models is demonstrated. Next, two 

extensions of this formulation are accomplished. The 

first of these extension focuses on geometrically 

nonlinear models, e.g. beam and plates the response of 

which is of the order of or larger than the thickness. 

This extension requires the appropriate handling of the 

nonlinear stiffness tensors/matrices that are present in 

the model. 

Attention is next focused on applications in which 

routine testing is conducted on small samples to obtain 

a basic assessment of variability. Such testing typically 

yields measurement of the natural frequencies and 

estimates of their variances. In this light, the goal of the 

present investigation is to extend the formulation of the 

nonparametric approach to allow for additional 

constraints on the variance of some of the eigenvalues 

of the mass, damping, and/or stiffness matrices. 

ENTROPY MAXIMIZATION AND 

CONSTRAINTS

It is desired here to simulate realizations of symmetric 

positive definite random matrices, e.g. the mass and/or 

the stiffness matrix of a linear dynamic system, the 

properties of which, i.e. eigenvalues, eigenvectors, 

components, etc., are all random. This requirement 

necessitates the specification of the joint probability 

density function of all elements of the matrix. In most 

practical problems, however, this information is not 

available - only some moments and/or marginal 

probability density functions are likely to be available. 

In the absence of the exact distribution, it is then 



appropriate to ask what are the desirable features of 

this distribution. In this context, note that the design of 

structural systems is often robust, i.e. that small 

perturbations in their geometrical and material 

properties do not alter significantly the probability of 

failure/fatigue life of the system considered (see 

Rivas-Guerra and Mignolet, 2004, for a notable 

counterexample in turbomachinery). It is thus 

desirable to dispose of a probabilistic model which 

places particular emphasis on “larger” deviations from 

the design conditions. Equivalently, this model should 

have a large value of the entropy as defined by 

     ! " ! "#
$

%& xdxpxpS XX ln             (1) 

where X denotes the vector of random variables 

considered of joint probability density function 

! "xpX . Further, x denotes the realized values of X,

and'$ the domain of support of ! "xpX .

Consistently with the above discussion, a probabilistic 

model of uncertain nxn matrices A , i.e. either the 

mass, stiffness, and/or damping matrix of a linear 

system, has been formulated (Soize, 2000, 2001) to 

maximize the value of the entropy S
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%& adapapS AA ln             (2) 

given the following physical constraints: 
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where  denotes the operation of mathematical 

expectation and det(

( ).E

A ) is the determinant of A .

The first two of the above constraints correspond to 

the normalization of the total probability to 1 (Eq. (3)) 

and the specification of the mean matrix (Eq.  (4)). 

The third one, Eq. (5), implies the existence of the 

mean squared Frobenius norm of the inverse matrix 
1%

A (see Soize (2000, 2001) for discussion). To apply 

this approach to the simulation of random mass, 

stiffness, and damping matrices of dynamical systems, 

it is further required to ensure both the symmetry and 

positive definiteness of every realized matrix A . This 

is achieved by introducing the Cholesky 

decomposition of A , i.e.    
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where L
~

 is an lower triangular matrix with nonnegative 

diagonal elements and  denotes the operation of 

matrix transposition. The domain of support $ of the 

obtained probability density function is then such that 

the elements 

T

ijL
~

 belong to  for ! "+,+% , ji -  and 
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Not only have the theoretical aspects of this formulation 

been discussed extensively but it also been broadly 

validated and applied (see Soize (2005) for a review). 

Note in the above approach that the level of uncertainty 

is controlled by the single parameter * so that only a 

broad knowledge of the matrix uncertainty needs to be 

known.  

FUNDAMENTAL PROBABILISTIC MODEL 

Derivation

Following the discussions of the previous sections, the 

proposed probabilistic model ! "apA  maximizes the 

entropy, S of Eq. (2), under the constraints of Eqs (3)-

(5) as well as the symmetry and positive definiteness 

requirement of Eq. (6). Using Lagrange multipliers 03 ,

3~ , and 1%4  the constrained maximization of Eq. (2) 

is reduced to the unconstrained maximization of 
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Proceeding next by calculus of variations, it is shown 

that 
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where C
~

 is the appropriate normalization constant to 

satisfy the normalization condition, Eq. (3). Before 

addressing the evaluation of the Lagrange multipliers, it 

is desired to simplify Eq. (8) and to address the positive 

definiteness requirement. In regards to simplifications, 

introduce first the matrix L  such that 

      
T

LLA &                (9) 

where L  is any decomposition, e.g. Cholesky, of A .

Next, express the random matrix A  as 

T
LGLA &                          (10) 



Proceeding with this change of random variables, it is 

found that the probability density function of the 

elements of G  is 

! " ! "( ) ! "( )ggCgp
T

G 3%& %4
trexpdet
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where C  is a new normalization constant and  

LL
T
3&3 ~ .

To guarantee the symmetry and positive definiteness 

of G , and thus of A , the model of Eq. (11) is 

reformulated in terms of the elements of the lower 

triangular matrix H  such that 
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In terms of elements, the above matrix equality can be 

rewritten as 
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As demonstrated in Soize (2000), the Jacobian of the 

transformation is 
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where C is the appropriate normalization constant over 

the domain 

! "( ) ( "(. /,+012,++%0&&$ ,0,,:,...,1,, iiijij hjihnjih ) .

To evaluate the Lagrange multipliers 3 , it is 

necessary to first express the constraint of Eq. (4) in 

terms of the elements of the random matrix H .

Combining Eqs (4), (10), and (12), it is found that 

         ( )
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where 
n

I  denotes the nxn identity matrix. The 

simplicity of this condition implies an equally simple 

form of the matrix 3 . Specifically, it will be shown 

that this matrix is diagonal. Under this assumption, Eq. 

(19) reduces to 
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where , i=1,..., n, and , i=1,..., n; l=1,...,i-1, are 

appropriate normalization constants and 

iC ilC

             ! " 12 %4,%& inip .             (22) 

It is concluded from Eq.  (21) that: 

(i) the elements , i>l, are all independent of each 

other and independent of the other elements .

Further, they are normally distributed with mean 0 and 

standard deviation 

ilH

ilH

iiil 3&A 2/1 .

(ii) the elements  are all independent of each other 

and independent of the other elements . Further, 

they are distributed according to 

iiH

ilH

! " ( )2)(
exp iiii

ip
iiiiiH hhChp

ii
3%& ,    (23) 0Biih

where 

           

! "( )

! "! "2/1)(

2
2/1

,C

3
&

,

ip
C

ip
ii

i             (24) 

and ! ".C  denotes the Gamma function. 

From the first observation, (i), it is concluded that 

( ) 0&ilGE  for i-l. It then remains to satisfy the 

diagonal terms of the mean condition, Eq. (20). To this 

end, note that 
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 where ( )2
iiHE  is obtained by integration of Eq. (23) as 

! "! " iiip 3, 2/1 . Combining this result and Eqs (24) and 

(25), it is found that 
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The generation of samples of  is simplified by 

considering the variable Y . Proceeding with 

the change of variables, it is found that the probability 

density function of  is 
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Accordingly, it is found that Y  is a Gamma distributed 

random variable for which efficient simulation 

algorithms exist, e.g. see Devroye (1986). Once a 

sample of  has been simulated according to the 

Gamma distribution, the corresponding value of , i

> m, is found as  

ii

iiY

iiH

ii

ii
ii

Y
H

3
&            (28) 



where  is given by Eq. (26). ii3

Step-By-Step Approach

The simulation of random matrices A  according to the 

model derived above is achieved as follows. 

(1) The parameter 4 is selected (at least tentatively) 

(2) The mean model matrix A  is decomposed by 

Cholesky factorization, see Eq.(9), and L  is 

obtained. 

(3)  
2

12 %4,
&3

n
ii , Eq. (26), and iiil 3&A 2/1

(4) The elements , i>l, of a lower triangular 

random matrix 

ilH

H  are generated as independent 

Gaussian random variables with mean zero and 

standard deviation .ilA
(5)  For each value of i = 1, ..., n, a Gamma distributed 

random variable  of parameteriiY ! "! " 2/1,ip  = 

 is simulated. ! 2/24,% in "
(6) For each value of i = 1, ..., n, the diagonal element 

 of the lower triangular random matrix iiH H is

determined as iiiiii YH 3& / .

(7) The random matrix A  is obtained as 

TT
LHHLA & , Eq. (10) and (12). 

(8) Steps (4)-(7) are repeated as many time as 

necessary to produce the population of random 

matrices A .

(9) The parameter 4 is adjusted if necessary (for 

example if this parameter is prescribed by the 

standard deviation of an eigenvalue). 

Examples of Application

The above concepts will be validated here on an 

aeroelastic system, namely the Goland wing of Fig. 1 

(see Table 1 for natural frequencies). The effects of 

uncertainty in the structural properties (more 

specifically on the stiffness matrix) on the aeroelastic 

response, i.e. flutter boundary and forced response, 

will be assessed. 

A flutter analysis conducted with ZAERO with a 20 

mode model demonstrated that the Goland wing 

(referred later on to the mean flutter wing) flutters at 

646.24 ft/s with a frequency of 1.958Hz. 

Figure 1. The Goland wing model. 

Mode # Nat. Freq. 

(Hz) 

Mode # Nat. Freq. 

(Hz) 

1 1.690 6 16.260 

2 3.051 7 22.845 

3 9.172 8 26.318 

4 10.834 9 29.183 

5 11.258 

Table 1. Natural frequencies of the mean Goland wing 

It was desired to assess the variations of the flutter 

speed and flutter frequency that would result from a 

variation of the natural frequencies of the wing. To this 

end, the nonparametric approach was used with the 20 

mode reduced order model and the parameter 4 was 

selected so that the random Goland wings would exhibit 

a standard deviation of the first natural frequency equal 

to 1% of its value for the mean model (i.e. 1.690Hz). 

An ensemble of 300 such stiffness matrices were 

generated and for each matrix, the flutter speed and 

frequency was recomputed by ZAERO. A shotgun plot 

of the results is presented in Fig. 2. 

While most of the random wings generated fluttered in 

conditions near those of the mean Goland wing (the 

blue dots in Fig. 2(a)), 4 of them did not. More 

specifically, these 4 outliers exhibited much higher 

flutter frequencies and flutter speeds as if the flutter in 

the low order modes (1 and 2 which are bending and 

torsion, respectively) had been prevented. Since the 

flutter mechanism of the Goland wing is based on the 

aerodynamic coupling of the first bending and torsion 

modes, it appeared that the coupling that is induced 

between these modes by the uncertainty would be a key 

parameter. Accordingly, the  300  values  of  the  flutter  
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Figure 2. Shotgun plot of the flutter frequency vs. 

flutter speed for the 300 random Goland wings (a) all 

300 results, (b) and (c) zoomed. 

speed were plotted again but vs. the random stiffness 

coefficient , see Fig. 3. This figure suggests that 

there exists a threshold value of  beyond which 

the aerodynamic will not be able to induce flutter in 

the first two modes and that the 4 outliers had values 

of exceeding this threshold. Accordingly, these 4 

wings were found to flutter through the coupling of 

modes 3 and 4, see Fig. 4. 
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Figure 5. Probability density function of the flutter 

speed. 

the remaining 296 flutter instances were analyzed and 

the probability density functions of the flutter speed and 

frequency were estimated, see Fig. 5-6. It is seen from 

these figures that the distribution of the flutter speed is 

particularly skewed with a higher emphasis on the high 

tail. Accordingly, the effects of uncertainty will often 

be positive, i.e. leading to an increase in the flutter 

speed.
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EXTENSION TO GEOMETRICALLY 

NONLINEAR STRUCTURES

The extension of the fundamental nonparametric 

model discussed above to geometrically nonlinear 

structural dynamics model requires first the 

availability of a dynamic model for the system. 

Adopting an elastic material model in which the 

second Piola-Kirchhoff stress tensor is linearly related 

to the Green strain tensor, it is found that the 

governing equations of a structures are governed by 

equations of the type (e.g. see Mignolet and Soize, 

2007) 

          ! "tFKxCxM NL &,, ˆˆˆ DDD           (29) 

where NLK̂  is the vector of nonlinear restoring forces 

the elements of which can be expressed as  
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where N is the total number of degrees-of-freedom in 

the finite element model. Further, every stress 

component S at every point of the panel can be written 

in the form 
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The nonparametric stochastic modeling approach is 

best applied to reduced order model. Then, proceeding 

with a modal representation truncated to m modes 

leads to reduced order model governing equations that 

exhibit the same cubic nonlinearity as in Eq. (30), i.e. 
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where 
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and
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The next step in the application of the nonparametric 

methodology is the statement of the constraints, e.g. 

positive definiteness, that exist between the different 

stiffness terms. In fact, this constraint is that the matrix  
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be positive definite (see Mignolet and Soize, 2007, for a 

proof). In this equation, the 4th order tensor 
)3(

iljpK  has 

been reshaped as a square matrix )3(~
IJK  where the 

indices I and J are  and mliI )1( %,&

mpjJ )1( %,& . Next, the third order tensor  is 

extracted from the equation 
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and is further reshaped as )2()2(
~
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iJilj KK & .

The above procedure was exemplified to a beam and 

the reduced order modeling described by Mignolet et al. 

(2003) and Radu et al. (2004) was applied to determine 

the various stiffness coefficients in Eq. (33) and (34). 

Specifically, a 22 mode model consisting of 12 in-plane 

modes and 10 transverse modes was selected. The 

nonparametric approach was applied to the simulation 

of random matrices 
B

K  from which random linear, 

quadratic, and cubic stiffness coefficients , ,

and  could be extracted. For each realization, the 

random equivalent of Eq. (32) and (33), i.e. 
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were solved as a function of time. Postprocessing of 

this data in the frequency domain then lead to the 

response spectra of Figs 9 and 10 for the displacement  



Figure 7. Transverse displacement of the middle of the 

random beam as a function of frequency. Mean, 5th, 

and 95th percentile of the spectrum and spectrum of 

the mean model (dashed lines). 

Figure 8. Stress at the middle of the random beam as a 

function of frequency. Mean, 5th, and 95th percentile 

of the spectrum and spectrum of the mean model 

(dashed lines). 

of the beam center and the corresponding stress, as 

determined from 
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The consideration of temperature effects is often 

carried out in connection with nonlinear geometric 

plate/beam model. To apply the nonparametric 

approach to such situations, it should be noted that 

temperature affect only the linear stiffness terms of the 

where T is the applied temperature differential, 
)1(

0
K

is the linear stiffness matrix without the temperature, 

and
! "1

T
K  is the stiffness matrix variation induced by a 

unit temperature difference. In such cases, the matrix 

0B
K  formed with 

)1(

0
K  instead of 

)1(
K  is indeed 

positive

CONSIDERATION OF INFORMATION ON 

MULTIPLE NATURAL FREQUENCIES

Formulation

As stated in the introduction, there are instances in 

which information is available to characterize the 

uncertainty in the structural model, e.g. variance on the 

lowest few natural frequencies. Then, it would be 

desirable to dispose of a nonparametric model that can 

fit the measured data. To address this extension, 

consider the generalized mean and random eigenvalue 

problems 
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where B  is a deterministic symmetric, positive definite 

matrix. In the ensuing discussions, it will be assumed 

that the eigenvectors 
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Constraining the variance of the eigenvalues i4
directly is unfortunately extremely challenging because 

of the lack of an exact expression for the natural 

frequencies of the random matrix A . Accordingly, an 

indirect approach will be selected here which relies on 

simple constraints that are akin to the second order 

moments of the eigenvalues. More specifically, it will 

be assumed that 
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where ,is ( )nI ,1Mi0 , are m known positive constants 

and
i
L  are the eigenvectors of the mean matrix A

corresponding to the m eigenvalues of which the 

variance is known. For example, if the variances of the 

three lowest eigenvalues of A  have been estimated, 

then
i
L  will similarly be the eigenvectors of the mean 

matrix A  corresponding to its three lowest eigenvalues. 

Several comments can made in regards to the 

constraints of Eq. (44). First, these conditions involve 

second order moments, not variances, but this switch is 

appropriate because the mean values of ! "
i

T

i
ALL  are 

already prescribed by Eq. (4). Next, as discussed above, 

these conditions do not generally relate exactly to the 

natural frequencies of the random matrix A , but they 

do so when its eigenvectors are the same as those of its 



mean A . Finally, it should be noted that the 

specification of the constraints of  Eq. (11) provides 

freedom in the probabilistic model of the random 

matrix A  which can be used to match the known 

variances of the natural frequencies (or any other 

pertinent information). 

The nonparametric modeling formulation for this new 

problem initially follows the derivation of section 3 

but with some modifications. For example, the 

Cholesky decomposition of Eq. (9) must be rewritten 

as
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where O  denotes the nxm matrix formed by the m

eigenvectors
i
L , , and Ii0 N

~
 is the corresponding 

diagonal matrix of eigenvalues. Note that the condition 

of Eq. (45b) is introduced to simplify the constraints 

of Eq. (44). Note further that L  can be expressed in 

the partitioned form 
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%
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where the nx(n-m) matrix D  is any decomposition, 

e.g. Cholesky, of 

AAADD
TT ONO%&

%1~
        (47) 

Pre- and postmultiplying Eq. (16) by 
TO  and O ,

respectively, it is found that 0&OT
D  as required in 

Eq. (45b). Following earlier steps, it is now found that 

the joint probability density function of the elements 

of the lower triangular matrix H  is 
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where C is the appropriate normalization constant over 

$.

It is again found that the matrix 3  that satisfy the 

mean value constraint of Eq. (4) is diagonal and the 

resulting joint probability density function of the 

elements of the lower triangular matrix H  is 
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where , i=1,..., n, and , i=m+1,..., n; l=1,...,i-1, 

are appropriate normalization constants. This model is 

more complex than the original one because of the 

correlation that exists between some of the elements 

. Notwithstanding this correlation, an efficient 

simulation of these elements can be carried out (see 

details and discussion in Mignolet and Soize (2006)). 

iC ilC

ilH

Example of Application

To exemplify the above developments, a n=5 degree of 

freedom dynamic system was considered exhibiting 

variations of its stiffness matrix. The above 

methodology was then applied with A  and B  being 

the stiffness and mass matrices, respectively. Further, 

the analysis of the system was  carried out in the modal 

coordinates of the mean model with mass normalized 

modes. Thus, B  is the 5x5 unit matrix and A  is the 

diagonal matrix containing the squares of the natural 

frequencies which were first assumed to be 1, 3, 5, 7, 

and 9 rad/s (mean model 1). Finally, the damping 

matrix was constructed by assuming a damping ratio of 

1% on all modes. 

Three sets of computations were carried out, two with 

the unconstrained nonparametric approach and one with 

the present constrained formulation. The first 

unconstrained model was obtained by enforcing a 

standard deviation of the first natural frequency equal to 

0.058, i.e. 5.8% of the corresponding value for the 

mean model. The second unconstrained model was 

similarly determined but with a lower standard 

deviation, i.e. 0.033. It was observed that the ratios of 

the standard deviations of the natural frequencies of the 

random systems divided by their corresponding values 

for the mean models varied very little, from 0.00575 to 

0.00584 for the first system and from 0.00331 to 

0.00334 for the second one. 

The present, constrained approach was applied next by 

imposing ratios of standard deviations to mean model 

value of 5.8% and 3.3% for the first and second natural 

frequency, respectively. Since the first natural 

frequency exhibits the largest relative variations, the 

first row of H , i.e. the one most closely associated 

with the first frequency, was characterized by an 

unconstrained model, i.e. 01 &V . Given the lack of 

information on the third, fourth, and fifth natural 

frequencies, the parameters  and  were assumed ii3 iV



to be the same for . Accordingly, there were only 

4 model parameters to be determined: , 4,

2Bi

113 223 ,

and . They were iteratively obtained by imposing 

the prescribed standard deviations on natural 

frequencies (the exact constraints, not the approximate 

ones of Eq. (44)) and Eq. (20). A sample of 10,000 

random matrices was assumed for all computations. 
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Figure 9. Probability density functions of the squared 

natural frequencies divided by their corresponding 

value for the mean model. Mean model 1. Constrained 

Model (“2Freq”), unconstrained models with higher 

(“1FreqHi”) and lower (“1FreqLo”) level of 

variations. 

Shown in Fig. 9 are, for each of the three random 

systems, the distributions of the five natural 

frequencies divided by their corresponding value for 

the mean model. It is seen from this figure that the 

probability density function of the first natural 

frequency of the constrained system closely match the 

distributions of the natural frequencies (divided by 

their corresponding value for the mean model) of the 

unconstrained system with the largest, i.e. 5.8%, level 

of variations. Similarly, the distributions of the 2nd-5th

natural frequencies of the constrained system (divided 

by their corresponding value for the mean model) 

match the similar probability density functions of all 5 

natural frequencies of the unconstrained model with 

the lowest, i.e. 3.3%, level of variations. It is thus 

concluded that the constrained model accurately 

matches the prescribed information on the variations 

of its natural frequencies.  

SUMMARY

This paper focused on the modeling of structural 

uncertainty in dynamic systems through the 

randomization of the mass, stiffness, and/or damping 

matrices. Following a recently proposed strategy, the 

nonparametric methodology, the joint probability 

density function of the elements of the uncertain 

matrices are not specified but rather derived to achieve 

the maximum entropy which guarantees that “larger” 

deviations from the mean value will occur. The basic 

nonparametric formulation was revisited and validated 

on a new problem, i.e. the aeroelastic behavior of a 

aircraft wing. Recent extensions of the nonparametric 

methodology have also been briefly reviewed. In 

particular, it was shown that this methodology is 

applicable to geometrically nonlinear systems with 

minimal modifications from the original formulation. 

Finally, a constrained version of the nonparametric 

methodology was described that is particularly 

advantageous when accurate information regarding the 

system variability is available.  
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