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ABSTRACT 
A general methodology is presented for the consideration of both data and model uncertainty in the 
determination of the response of geometrically nonlinear structural dynamic systems. The approach is 
rooted in the availability of reduced order models of these nonlinear systems with a deterministic basis 
extracted from a reference model (the mean model). Uncertainty, both from data and model, is 
introduced by randomizing the coefficients of the reduced order model in a manner that guarantees the 
physical appropriateness of every realization of the reduced order model, i.e. while maintaining the 
fundamental properties of symmetry and positive definiteness of every such reduced order model. This 
randomization is achieved not by postulating a specific joint statistical distribution of the reduced order 
model coefficients but rather by deriving this distribution through the principle of maximization of the 
entropy constrained to satisfy the necessary symmetry and positive definiteness properties. Several 
desirable features of this approach are that the uncertainty can be characterized by a single measure of 
dispersion, affects all coefficients of the reduced order model, and is computationally easily achieved. 
The reduced order modeling strategy and this stochastic modeling of its coefficients are presented in 
details and several applications to a beam undergoing large displacement are presented. These 
applications demonstrate the appropriateness and computational efficiency of the method to the broad 
class of uncertain geometrically nonlinear dynamic systems. 
 
INTRODUCTION 
The need to include system uncertainty in dynamic analyses has long been recognized in the context of 
some specific problems. For example, the response of turbomachinery/engine bladed disks has been 
known since the late 1960’s (e.g. [1]) to be highly sensitive to small blade-to-blade variations in their 
material/geometrical properties. This lack of robustness has thus motivated numerous stochastic 
analyses in which the uncertainty/variations in blade properties was introduced through the 
representation of certain blade characteristics as random variables. This stochastic modeling has 
however typically been ad-hoc, i.e. only some of the blade properties were considered as random, most 
notably natural frequencies, based on demonstrated/perceived sensitivity. 
 
With predictive capabilities becoming always faster and allowing always more complex models, the 
limitations associated with the uncertainty in the parameters of the systems  (data uncertainty, e.g. in the 
material properties) and in the computational modeling of the physical system (model uncertainty, e.g. 
in the finite element representation of fasteners, lap joints, etc. and the approximation of the physical 
geometry) now appear clearly in many areas of structural dynamics. Accordingly, it has become quite 



important to dispose of general methodologies for the inclusion of uncertainty in dynamic analyses, as 
opposed to the ad-hoc approaches used in the past, and a series of recent investigations have focused on 
devising such general techniques that are consistent with state-of-the-art computational tools. An 
attractive approach of this type for data uncertainty is the stochastic finite element method (see in 
particular [2]) in which the random fields characterizing both the uncertain material properties and the 
response of the system are described by polynomial chaos expansions. Then, given a complete 
characterization of the uncertain material properties, a similarly complete representation of the 
stochastic response is obtained. Note however that this probabilistic approach relies on a given 
computational model and thus does not allow the consideration of model uncertainty. 
 
A probabilistic approach that does include both data and model uncertainty has recently been devised 
(Soize, [3-5]) and applied/validated (see [6] for a review) on a variety of dynamic problems involving 
linear structures with possible additional local nonlinearities. The inclusion of data and model 
uncertainty is accomplished in reduced order models of the structure through an appropriate stochastic 
representation of the elements of its mass, damping, and stiffness matrices. The variations of these 
random matrices around a baseline model (referred to as the mean model) is characterized by a single 
measure of dispersion, as opposed to a large number of parameters from statistical distributions. 
Accordingly, this probabilistic approach has been referred to as nonparametric and thus exhibits the 
following advantageous properties: 

i) includes both model and data uncertainty, 
ii) is characterized by only a mean reduced order model and a measure of dispersion, 
and, 
 iii) is computationally expedient because it relies on reduced order models for the Monte Carlo 

simulations typically involved in the stochastic analysis of uncertain systems. 
 

These important properties motivate the extension of the nonparametric approach to dynamic systems 
with distributed, geometric nonlinearity, which is the focus of the present investigation. This extension 
will rely in particular on recent developments in the formulation of reduced order models of 
geometrically nonlinear systems (e.g. [7-10]) and will be accomplished in the general framework of 
linearly elastic geometrically nonlinear structures which encompasses as special cases beams and plates 
with the von Karman strain definition. 
 
GEOMETRIC NONLINEAR FORMULATION 
While many of the classical structural dynamic problems involving geometric nonlinearity relate to 
beam, plates, and shells in which the von Karman strain definition is used, it is of interest here to 
demonstrate the general applicability of the nonparametric stochastic modeling approach. To this end, an 
arbitrary linearly elastic (i.e. with a linear relation between the Green strain and second Piola-Kirchhoff 
stress tensors) structure undergoing large deformations will be considered in the sequel. 
The position vector of a point of the structure will be denoted by X in the reference configuration and as 
x in the deformed one so that the displacement vector is Xxu  . The deformation gradient tensor F  

is then defined by its components ijF  as 
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where ij  denotes the Kronecker symbol. Associated with the displacement field u are deformations 

which are characterized by the Green strain tensor E  of components 
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Note in the above equation and in the ensuing ones that summation is implied on all repeated indices. 
 
The equation of motion of the structure is then given by (e.g. see [11]) 
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where S  denotes the second Piola-Kirchhoff stress tensor, 0  is the density in the reference 

configuration, and 0b  is the vector of body forces, all of which are assumed to depend on the 

coordinates iX  and be expressed in the reference configuration in which the structure occupies the 

domain 0 . The boundary, 0 , of the reference configuration domain 0 , is composed of two parts,  

t
0  on which the tractions 0t  are given and u

0  on which the displacements are specified.  

Accordingly, the boundary conditions are  

       00
ikjkij tnSF       for tX 0            (4) 

and 

               0u      for uX 0 .           (5) 

Note in Eqs (3) and (4) that the vectors 0b  and 0t  correspond to the transport of the body forces and 
tractions applied on the deformed configuration, i.e. b and t, back to the reference configuration. This 
operation is accomplished through the relations 

     bJb 0        and    t
dA

da
t 






0            (6) 

where J is the Jacobian of the transformation  Xxx  , i.e.  FJ det . Further, the area ratio dAda /  

can be expressed evaluated from [12] 
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where N is the unit normal vector to 0  at the boundary point X and n is its counterpart on the 

deformed configuration. 
 
To complete the formulation of the elastodynamic problem, it remains to specify the constitutive 
behavior of the material. In this regard, it will be assumed here that the structure may exhibit a given 
nonzero steady temperature distribution  XT . Then, adopting a linear elastic model between the Green 
strain and second Piola-Kirchhoff stress tensors yields the linear relation 

           )(th
klklijklij EECS              (8) 

where )(thE  denotes the strain tensor arising from the potential thermal effects. This tensor can be 

expressed as 

         )()( thth CTE              (9) 

where )(thC  is the thermal expansion tensor. Finally, the fourth order elasticity tensor C  satisfies the 

symmetry conditions 
             klijijlkjiklijkl CCCC           (10) 



and the positive definiteness property 
      0klijklij ACA           (11) 

for any second order tensor A . 

 
REDUCED ORDER MODELING 
The previous section has provided the governing equations for the infinite dimensional problem of 
determining the stress and displacement fields everywhere in the structure considered. Following the 
discussion of the introduction, it is next desired to construct finite dimensional reduced order models of 
Eqs (1)-(9) that can be used for a nonparametric stochastic modeling of uncertainty. Before introducing 
the basis for the reduction, it is necessary to express the problem in its weak form. 
 
To this end, denote by  Xvv   a vector function of X that is sufficiently differentiable and such that 

0v  on u
0 . Then, the weak formulation of the geometric nonlinear elastodynamic problem of Eqs 

(3)-(5) is to find the displacement field u such that 
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is satisfied for all iv  satisfying the above conditions. 

 
A reduced order model of the nonlinear geometric problem can then be obtained by assuming the 
displacement field u in the form 
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and applying Eq. (10) with )(m
ii Uv   for m = 1, 2, ..., M where M is the order of the model, i.e. the 

number of basis functions )(m
iU  in Eq. (11). After some algebraic manipulations, this process yields 
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and, finally, 
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Following standard practice, a damping term jij qD   has been added in Eq. (14) to represent various 

dissipation mechanisms. 
 
The matrices and tensors involved in Eq. (14) have a variety of properties that arise both from their 
definitions and the characteristics of the elasticity tensor C , see Eqs (10) and (11). In particular and as 

expected, it is readily shown that M  and )1(K  are both symmetric and positive definite. Further, it is 

seen from Eqs (10) and (18) that )2()2( ˆˆ
mpnmnp KK   which, coupled with the definition of )2(

mnpK , Eq. (17), 

implies that )2(
mnpK  is invariant under any permutation of its indices. Next, it is found from Eqs (10) and 

(19) that the fourth order tensor  )3(K  exhibits the same symmetry properties, i.e. Eq. (10), as C  and 

further that it is also positive definite. 
 
In addition to the above properties, which involve each matrix separately, there is also one notable 

property that involves )1(K , 
)2(

K̂ , and )3(K  together. To demonstrate it, consider the reshaping 

operating that transforms the MxMxM third order tensor 
)2(

K̂  into a MxM2 rectangular array 
)2(~

K  and 

the MxMxMxM fourth order tensor )3(K  into a M2xM2 square matrix 
)3(~

K . These operations are 

achieved as follows: 
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and 
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msnpIJ KK        with     I=(m-1)M+s   and   J=(n-1)M+p.          (24) 

Next, denote similarly 
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and introduce the PxP symmetric matrix BK  as 
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where 2MMP  . 
 
It is next desired to demonstrate that BK is positive definite. To this end, introduce first the P-

component vector W partitioned as 

       TTT VqW            (27) 

where q and V have M and M 2 components, respectively. Next, note that 
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Renaming the dummy indices in the above equation and using the symmetries of Eq. (10), it is found 
that 
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which is positive for all vectors q and V given Eq. (11). It is then concluded that the matrix BK is indeed 

positive definite. Note that this property also implies the positive definiteness of )1(K  and )3(K  which 

was stated earlier. 
 
The availability of the displacement field in the form of Eq. (13) leads to the knowledge of all quantities 
of interest in both reference and deformed configurations. For example, combining Eqs (1), (2), (8), and 
(13) leads to the expression for any component of the second Piola-Kirchhoff stress tensor as 
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ESTIMATION OF THE REDUCED ORDER MODEL PARAMETERS 
Equations (15)-(22) provide direct expressions for all of the reduced order model parameters given the 

basis functions  XU m
i

)(  and the geometrical and material properties of the structure, e.g. 0 , ijklC , 



0 , etc., and thus, technically, complete the reduced order modeling strategy. In practice, however, it is 

likely that a finite element model of the structure is available and was relied upon to determine the basis 

functions  XU m
i

)( . Then, the integration over 0  should be split into integrals over the various 

elements forming the mesh and the appropriate interpolation functions should be used to evaluate the 

basis functions  XU m
i

)(  and their derivatives. Although fairly straightforward, this effort appears quite 

cumbersome and may require a more detailed knowledge of the inner workings of the finite element 
package used than may be available, especially for commercially available codes. Accordingly, it would 
be very desirable to dispose of an indirect approach to determine the various stiffness and mass terms 
that is compatible with standard finite element packages. One such technique, referred to as the STEP 
method (STiffness Evaluation Procedure), was initially conceived in [7] and later modified in [8, 9]. 
 

The fundamental idea behind the STEP approach is to identify the stiffness parameters )()1( th
ijij KK  , 

)2(
ijlK , and )3(

ijlpK  by successive static finite element computations in which the displacement field is 

prescribed to  Xu  and the required surface tractions 0t  are estimated under the prescribed temperature 
field. The STEP approach starts with the imposition of displacement fields that are proportional to a 
single basis function, i.e., 
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for each value of n in turn. In these conditions, )1(
nq , )2(

nq , and )3(
nq  are three constants scaling factors 

differing from each other and such that the displacements induced ( )( p
iu ) are large enough to induce 

significant geometric nonlinear effects but small enough to stay within the convergence limits of the 
finite element code. Inserting the imposed displacement fields of Eq. (34) in Eq. (14) implies that 
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where the force terms )( pn
iF , p=1, 2, or 3, are computed by Eq. (21) from the traction 0t  predicted in 

each case by the finite element code. If the thermal force )(th
iF  is known, e.g. equal to zero by 

symmetry, Eqs (35)-(37) represent for each i and n a set of three linear equations in the unknown 
)()1( th

inin KK  , )2(
innK , and )3(

innnK  which is readily solved. If the thermal force )(th
iF  is unknown, its value 

must first be estimated by imposing a zero displacement field and proceeding as above from the 

tractions 0t  required to maintain the equilibrium. Denoting the corresponding force term as )0(n
iF , it is 

found that )0()( n
i

th
i FF  . 

 



The next stage of the STEP algorithm focuses on the determination of the parameters )2(
imnK , )3(

immnK , 

and )3(
imnnK (and their permutations of indices, see discussion on properties of )2(K  and )3(K ) with 

nm  . This computation is again achieved by imposing displacement fields and determining the 

necessary tractions 0t  and associated force terms iF , Eq. (21). However, the procedure is slightly 

different from the one above in that involving the parameters )2(
imnK , )3(

immnK , and )3(
imnnK requires a 

displacement field that has components in both n
iU  and m

iU , i.e. 
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Expressing the reduced order model governing equation, Eq. (14), for these 3 displacement fields and 

the associated force terms )( pn
iF , p = 4, 5, and 6, yields a set of three equations for each i, m, and n 

which is readily solved to obtain the parameters )2(
imnK , )3(

immnK , and )3(
imnnK . The choice of scaling 

factors )6()5()4(
nnn qqq   and )6()5()4(

mmm qqq   does lead to some simplifications of the equations. 

 

The last stage of the STEP algorithm is concerned with the evaluation of the coefficients )3(
imnsK (and its 

permutations of indices) for m, n, and s all different. This effort is readily achieved from the above 
results using the final displacement field 
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and the associated force term )7(
iF . 

 
The series of finite element computations performed for the evaluation of the stiffness parameters can 

serve as well for the estimation of the coefficients  XSij ,  XS m
ij

)(ˆ , and  XS nm
ij

),(~
 of the reduced 

order model for the stress ijS  at location X provided that the values of this stress are output during each 

run. The procedure is similar to the one conducted above and will not be repeated here. 
 
It should however be noted that the stress is a second order polynomial of the generalized coordinates 

nq  as compared to the cubic nature of the nonlinear stiffness terms. Thus, many fewer computations 

would be necessary to estimate  XSij ,  XS m
ij

)(ˆ , and  XS nm
ij

),(~
  than are actually performed. The 

redundant cases can then be used to assess the accuracy of the estimates of these stress coefficients and 
thus provide a first mean to quantify the robustness of the STEP algorithm. A second perspective on this 

robustness can be obtained from a check of the symmetries of the tensors )1(K , )(thK , )2(K , and )3(K  

which were not used in the determination of their components. For example, the properties )1()1(
jiij KK   

and )()( th
ji

th
ij KK   were not relied upon in Eqs (35)-(37). Similarly, the symmetry )2()2(

kijijk KK   was not 

used in the computations while the property )2()2(
ikjijk KK   was assumed. A similar discussion also holds 



with the elements of )3(K . A final perspective on the robustness of the STEP identification can be 

derived from the expected linearity of the thermal stiffness tensor )(thK  with respect to temperature, see 

Eqs (9) and (20). A detailed discussion of these issues in connection with a flat plate (see [8]) has shown 

that there exists a fairly broad range of the scaling factors )( p
iq  over which the estimates of the stiffness 

coefficients are accurate and stable. 
 
NONPARAMETRIC STOCHASTIC MODELING OF UNCERTAINTY 
As discussed in the introduction, there are two particular types of uncertainty to be considered in 
structural dynamic models: data uncertainty and model uncertainty. The former is associated with 
variations of the material properties of the structure that arise from the manufacturing process and/or in 
service operation. At the contrary, model uncertainty recognizes that the computational model is a 
simplified representation of the physical structure. For example, components such as fasteners (rivets, 
bolts,...) and joints (lap joints, welds, ...) etc. are usually only approximately represented, i.e. modeled. A 
similar discussion holds with the geometry of the structure which differs slightly from the computational 
one, plates may be slightly warped, beams out of straight, etc. Thus, deviations in the behaviors of actual 
structures and their computational counterparts are expected and variable and form the model 
uncertainty. 
 
The consideration of data uncertainty in the infinite dimensional problem of Eqs (1)-(9) is in principle 

quite straightforward, it can be achieved by letting the material properties 0 , C , 0b , ... be random 

field. The inclusion of model uncertainty in the same framework is however very challenging. For 
example, the consideration of variations of geometry would require changing the computational model 
(i.e. the finite element mesh) for every realization of the geometry. The consideration of other model 
issues, as related to the approximate representation of joints, fasteners, etc. appears even more difficult if 
at all possible. 
 
On the contrary, the consideration of uncertainty, from data or model, appears much more 
straightforward in the reduced order model, as it is characterized by a finite number of mass and 
stiffness coefficients which can be treated as random variables and are physically expected to be 
correlated. In addition to those coefficients, the reduced order model also involves the basis functions 

)(n
iU  and it is worthwhile to ask whether that basis should be deterministic (i.e. related to the mean 

model) or random (e.g. based on the full computational model with some data uncertainty). The most 
significant advantage of using a random basis would be to obtain certain special properties of the 
random reduced order model, e.g. diagonal nature of some of the matrices involved. However, the 
inclusion of model uncertainty would likely destroy these special features. On the contrary, the use of a 
deterministic basis is computationally efficient as it needs to be determined only once and focuses the 
randomness of the reduced order model on its coefficients. On the basis of this discussion, deterministic 
basis functions will be adopted in the sequel but their choice must be such that the response of the 
random systems, not just the mean one, is well represented. Additional comments in this respect will be 
made in the Numerical Results section. 
 
Data and model uncertainty will thus be included through randomizing the various mass and stiffness 
coefficients of Eq. (14), see Eqs (15)-(20). This apparently simple statement has far ranging implications 
as a complete characterization of this ensemble of random variables requires the specification of their 
joint probability density function, an information which is unlikely to be available in any practical 



application. A first approach to resolve this difficulty is to allow only some of the coefficients to be 
random as was done in the ad-hoc strategies discussed in the Introduction. Clearly such an approach 
does not have the accuracy and generality required here. A second approach might be to specify the 
form of this distribution with unknown parameters to be estimated. Even with a single parameter per 
random coefficient to describe its variations, there would be a very large number of such parameters to 
estimate especially given the generally poor knowledge on the actual uncertainty in physical systems. 
 
A third approach, which is the one adopted here, is to rely on a higher principle to derive the necessary 
joint probability density function. As discussed by Soize [3-6], the maximum entropy principle provides 
such a framework and leads to statistical distributions that place particular emphasis on “larger” 
deviations from the mean value, a desirable feature to assess the robustness of a design to uncertainty. 
The maximization of the entropy must however be achieved carefully to guarantee the physical 
meaningfulness of the ensemble of mass and stiffness coefficients simulated, especially in view of the 
emphasis on the tail of the distribution just stated. Physical meaningfulness of the mass and stiffness 
coefficients of the reduced order model of Eq. (14) implies here that these coefficients satisfy all 
properties that are expected from Eq. (14) for an arbitrary dynamic system, i.e. 

 (1) the stated symmetry properties of the tensors M
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 (2) the positive definiteness of the matrices M


 and BK


 

 (3) the nonsingularity of the matrices  M


 and BK


 (if true for the mean model). 

Note in the above conditions that M


 is the random mass matrix resulting from the consideration of 

uncertainty in contrast to the deterministic mass matrix M  of the mean model. A similar convention 

was also used above for BK
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 and will be employed in the sequel to 

distinguish all random quantities. 
 
The consideration of uncertainty in the reduced order model of Eq. (14) is then achieved by analyzing 
the response of the random system 
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       (40) 

in which a damping term, possibly stochastic, has been added. Note as well that the excitation iF  of Eq. 

(14) has been replaced by the random term iF


 in Eq. (40). This randomization of the excitation reflects 

the possible random nature of the transport of the specified traction from the (random) deformed 
configuration back to the (deterministic) reference one. 
 
In his original formulation of the nonparametric stochastic modeling approach, Soize [3,4] addressed the 
problem of determining the joint probability density function  apA

  of the elements ijA


 of a random 

symmetric positive definite nnx  matrix A


 that maximizes the entropy 

             


 adapapS AA
 ln  .         (41) 

In this equation,   denotes the domain of support of  apA
  which should be such that any matrix 

a  is symmetric and positive definite. These conditions are equivalent to stating that a  admits a 



Cholesky decomposition TLLa   so that 

         .,0,,:,...,1,,;  iiijij
T LjiLnjiLLLa .       (42) 

 
The maximization of S, Eq. (41), must be achieved under the following constraints 

         


 1adapA
           (43) 

                         


 AadapaAE A



          (44) 

and 

                      


 finite  detln adapa A
          (45) 

where  .E  denotes the operation of mathematical expectation and det(W ) is the determinant of an 

arbitrary matrix W . The first two of the above constraints correspond to the normalization of the total 

probability to 1 (Eq. (43)) and the specification of the mean matrix (Eq.  (44)). The third one, Eq. (45), 

implies the existence of the mean squared Frobenius norm of the inverse matrix 
1

A


(see [3,4] for 

discussion) and thus guarantees the nonsingularity of A


 for mean square convergence. 

 
The determination of the probability density function maximizing Eq. (41) while satisfying the 
constraints of Eqs (43)-(45) was accomplished in [3,4] by calculus of variations with Lagrange 
multipliers. The resulting stochastic description of A


 is most easily stated in terms of the random lower 

triangular matrix H


 such that 

       
TT

LHHLA


                 (46) 

where L  is any decomposition, e.g. Cholesky, of A  satisfying 
T

LLA  . Specifically, it was found 

[3,4] that 
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where iC , i=1,..., n , and ilC , i=1,..., n ; l=1,...,i-1, are appropriate normalization constants and 
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It is concluded from Eq.  (47) that: 
(i) the elements ilH


, i>l, are all independent of each other and independent of the elements iiH


. 

Further, they are normally distributed with mean 0 and standard deviation iiil  2/1 . 

(ii) the elements iiH


 are all independent of each other. Further, they are distributed according to 
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       and  .  denotes the Gamma function. 
 

The generation of samples of iiH


 is simplified by considering the variable 2
iiiiii HY


 . Proceeding 

with the change of variables, it is found that the probability density function of iiY


 is 
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Accordingly, it is found that iiY


 is a Gamma distributed random variable for which efficient simulation 

algorithms exist, e.g. see [13]. Once a sample of iiY


 has been simulated according to the Gamma 

distribution, the corresponding value of iiH


 is found as  

      
ii

ii
ii

Y
H







           (53) 

where ii  is given by Eq. (49). 

 
The parameter   which appears in Eq. (48) and (49) is in fact the Lagrange multiplier associated with 
the constraint of Eq. (45) and could be evaluated from this condition. However, since Eq. (45) was 
enforced to ensure an appropriately flat zero of  apA

  near its singular boundary (i.e. an appropriately 

flat zero of  iiH hp
ii
  at 0iih ), it is more appropriate to use the parameter   to control the variations 

of the random matrices A


 from their mean value A , as will be clarified in the Numerical Results 

section. 
 
Equations (46)-(53) form the core methodology for the simulation of the random mass, damping, and 
stiffness coefficients of Eq. (41) as follows. 
 
For the random mass matrix M


: 

A Cholesky decomposition of the mass matrix of the mean model M  is first performed as 

          
T
MM LLM  .          (54) 

Next, a value M  is specified and an ensemble of nnx lower triangular matrices MH


, with 

Mn  , are generated according to Eq. (46)-(53). For each realization of MH


, the corresponding 

sample of the mass matrix M


 is generated as 

                  
T
M

T
MMM LHHLM


 .               (55) 

 
For the random damping matrix D


: 



A Cholesky decomposition of the damping matrix of the mean model D  is first performed as 

          
T
DD LLD  .          (56) 

Next, a value D  is specified and an ensemble of nnx lower triangular matrices DH


, with Mn  , 

are generated according to Eq. (46)-(53). For each realization of DH


, the corresponding sample of the 

damping matrix D


 is generated as 

              
T
D

T
DDD LHHLD


 .                (57) 

 
 

For the random stiffness tensors 
)1(

K


, 
)2(

K


, and 
)3(

K


: 

A Cholesky decomposition of the matrix BK  of the mean model is first performed as 

          
T
KKB LLK  .          (58) 

Next, a value K  is specified and an ensemble of nnx lower triangular matrices KH


, with 

2MMn  , are generated according to Eq. (46)-(53). For each realization of KH


, the corresponding 

sample of the matrix BK


 is generated as 

           
T
K

T
KKKB LHHLK


 .                (59) 

 
The partitioning of the random matrix BK


 is consistent with the one of its mean value, i.e. Eq. (26), and 

thus permits to extract the corresponding random matrices 
)1(

K


, 
)2(~

K


, and 
)3(~

K


. No further 

manipulation is needed in connection with the linear stiffness matrix 
)1(

K


 but 
)2(~

K


 and 
)3(~

K


 must next 

be reshaped into random third and fourth order tensors 
)2(

ˆ
NS

K


 and 
)3( NS

K


 as in Eq. (23) and (24) for 
)2(

K̂  and )3(K  from 
)2(~

K  and 
)3(~

K . Note that the additional superscript NS indicates that these 

matrices do not exhibit the appropriate symmetries, for example )2(ˆ NS
mnpK


 is in general not equal to 

)2(ˆ NS
mpnK


. This issue is easily resolved and tensors 
)2(

K̂


 and 
)3(

K


 with  the appropriate symmetries are 

then generated as 

     




  )2()2()2( ˆˆ

2

1ˆ NS
mpn

NS
mnpmnp KKK


         (60) 

and 

             )3()3()3()3()3(

4

1 NS
smpn

NS
mspn

NS
smnp

NS
msnpmsnp KKKKK


         (61) 

since the property )3()3( NS
npms

NS
msnp KK


  already exists as a result of the symmetry of BK


, see Eq. (59) and 

(26). 
 



It remains finally to obtain the realization of the third order tensor 
)2(

K


from 
)2(

K̂


. This is achieved as 

in Eq. (17), i.e. 

           




  )2()2()2()2( ˆˆˆ

2

1
npmpmnmnpmnp KKKK


.         (62) 

 

For the random thermal stiffness matrix 
)(th

K


: 

The STEP algorithm does not lead directly to the thermal stiffness matrix 
)(th

K


, rather it produces the 

elements of 
)1(

K


-
)(th

K


. Nevertheless, it is possible to separate the two terms by noticing that 
)(th

K


 is a 

linear function of the temperature field while 
)1(

K


is independent of it (both neglecting variations of the 

elasticity tensor C  with temperature). Thus, the application of the STEP algorithm for 2 temperatures 

fields proportional to each other permits the separate identification of 
)1(

K


and 
)(th

K


. 

 

The tensors 
)1(

K


, 
)2(

K


, and 
)3(

K


involve solely the elasticity tensor C  of components ijklC  while the 

thermal stiffness matrix 
)(th

K


 is also a function of the thermal expansion matrix )(thC . This 

observation motivates here the consideration of 
)(th

K


 as statistically independent of  
)1(

K


, 
)2(

K


, and 
)3(

K


. 

 
Note next that the thermal stiffness matrix of an arbitrary structure is not guaranteed from Eq. (20) to be 
positive definite. In some cases, such a property does hold, e.g. for an isotropic linearly elastic material 
exhibiting positive thermal expansion coefficients and with T larger than the reference temperature 0T  at 

which the structure is undeformed in the absence of external loads. Accordingly, it is desired here to 

separate the simulation of 
)(th

K


 into two separate cases, i.e. with and without the requirement that 
)(th

K


 is positive definite. 

 

When 
)(th

K


 is required to be positive definite, and thus with )(thK  satisfying this property, the 

simulation procedure closely parallel that of the mass and damping matrices. That is, a Cholesky 

decomposition of )(thK  is first performed as 

               
T
KthKth

th LLK )( .          (63) 

Next, a value Kth  is specified and an ensemble of nnx lower triangular matrices KthH


, with 

Mn  , are generated according to Eq. (46)-(53). For each realization of KthH


, the corresponding 

sample of the thermal stiffness matrix 
)(th

K


 is generated as 

               
T
Kth

T
KthKthKth

th
LHHLK


)(

.              (64) 

 



When 
)(th

K


 is not required to be positive definite, the modified approach devised in [5] for rectangular 

arrays can be employed instead. In this approach, the mean model stiffness )(thK  is first expressed in its 

right polar decomposition, i.e. 

                      )()()( ththth TUK            (65) 

where )(thT  is the symmetric positive definite matrix satisfying 

                     2)(2)( thth KT  ,          (66) 

i.e. )(thT  has the same eigenvectors as )(thK  and its eigenvalues are the absolute values of the 

corresponding eigenvalues of )(thK . Then, 

                    1)()()( 
 ththth TKU           (67) 

so that )(thU  also has the same eigenvectors as )(thK  and its eigenvalues are the signum of the 

corresponding eigenvalues of )(thK . 

 

The generation of samples of the random matrix 
)(th

T


 is next achieved as in Eq. (63) and (64) for 
)(th

K


 

when it is positive definite with the same values of n  and  . Finally, the corresponding random matrix 
)(th

K


 is obtained from the right polar decomposition as 

                     
)()()( ththth

TUK


 .          (68) 

 
In fact, the above procedure does generalize Eqs (63) and (64) as it reduces to these equations when 

)(thK  is positive definite because then )(thT = )(thK  and )(thU  is the identity matrix. 

 
NUMERICAL RESULTS 
To demonstrate the above concepts, a beam of dimensions 0.2286m long, 0.0127m wide, and 7.75 10-4m 
was discretized by finite element (with MSC NASTRAN) into 40 CBEAM elements of equal lengths 
(some punctual computations were repeated with a 160 element model which confirmed the adequacy of 
the 40 element model). The two ends of the beam were assumed to be fully clamped. This model thus 
included 234 degrees-of-freedom. The beam material was high-carbon steel with a Young’s modulus of 
205,000 MPa, a shear modulus of 80,000 MPa, and a mass density of 7,875 kg/m3. The damping in the 
mean system was assumed to be classical with a damping ratio of 2% on all modes. 
 
The beam was assumed to be excited by a single, deterministic, concentrated force acting on its middle 
in the direction perpendicular to the beam axis, see Fig. 1 for a representative time history of the force 
and Fig. 2 for its frequency content, i.e. flat in the range [-2000, +2000] Hz.  
 
The time marching of the response of the reduced order models (mean and random) was achieved with 
an unconditionally stable Newmark-  algorithm (e.g. see [14]) in which the nonlinear algebraic 
equations were solved by a fixed point algorithm. The time step for the most of the computations was set 

at t = 5 510 s and the computations were carried out for totn =15000 time steps. No convergence 



problem with the fixed point algorithm was encountered with the above time step. 
 
The basis for the reduced order modeling effort included the first tn  transverse linear modes and in  in-

plane linear modes exhibiting the natural frequencies shown in Table 1. The selection of the appropriate 
values of tn  and in  was performed in each case by monitoring the convergence of the total modal signal 

energy of the mean model 

             
 


totn

n

M

i
iit tnqnnE

1 1

2,          (69) 

where it nnM   is the order of the reduced order model. In general, it was found that the selection 

tn =10 and in =12 led to convergence. For the cases in which these parameters were changed, their 

values will be stated explicitly. It should be noted that the mean system is symmetric with respect to the 
location of the force and thus the second, fourth, and sixth transverse modes, which are antisymmetric, 
will not appear in the mean model response. However, the introduction of randomness in the beam 
reduced order model will in general break the symmetry and induce contributions of the response on 
these antisymmetric transverse modes. The same observation holds in regards to the in-plane modes. 
 

 1 2 3 4 5 6 7 8 
Transverse 79 218 427 706 1055 1473 1961 2518 
In-Plane 11168 22353 33573 44844 56184 67611 79143 90795 

 9 10 11 12 13 14 15 16 
Transverse 3144 3841 4606 5441 6345 7319 8363 9477 
In-Plane 102588 114537 126662 138975     

Table 1. Natural frequencies (Hz) of the first transverse (weak bending)  
and in-plane modes, mean model from NASTRAN. 

 
The direction of the force induced transverse motions in the weak bending direction (“z”) with much 
smaller motions along the beam axis (“x”) taking place by nonlinear interaction. The magnitude of these 
displacements satisfied the assumptions of the von Karman strain definition, which was adopted by 
NASTRAN,  i.e. 
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Note that the above expressions result from Eq. (2) by ignoring the second order terms in 1u  and 2u . In 

fact, the  displacement 2u  is identically zero for this problem. The use of the von Karman strain 

definition by NASTRAN led to a peculiarity of the matrix BK . Specifically, the absence of second 

order terms in 1u  in the displacement-strain relation can be shown to imply the vanishing of all terms 
)2(

mnpK  and )3(
msnpK  in which two or more indices m, n, p, and s refer to in-plane modes. This property 

leads theoretically to a matrix BK  exhibiting a significant number of zero eigenvalues and 

computationally (given the finite accuracy of the STEP algorithm) to the same number of small 
generally both positive and negative eigenvalues. Clearly, the negative eigenvalues are unphysical (see 



Eq. (29)) and must be removed before the consideration of uncertainty takes place. In doing so, it is 
necessary to demonstrate that these computationally negative values do not have an effect on the 
response. This check was accomplished on the mean model by computing the response with the 
identified BK  matrix (exhibiting small negative eigenvalues) and the singular value decomposition of 

BK  in which only the positive eigenvalues  were retained. In all cases considered, the match of the two 

transverse responses at the middle point were in a visually perfect agreement over both entire time 
history and frequency range. 
 
The elimination of the negative eigenvalues of BK by singular value decomposition led to the modified 

matrix BK   defined as 

      T
BK                  (71) 

where   denotes the matrix whose 2MMnr   columns are the eigenvectors of BK  corresponding 

to its positive eigenvectors. Further,   is the diagonal matrix containing the rn  positive eigenvalues of 

BK . Then, following Soize [5], the simulation of random matrices BK


 is achieved by first generating 

an ensemble of nnx lower triangular matrices KrH


, with rnn   and Kr  according to Eq. (46)-

(53). Finally, the corresponding random matrices BK


 are obtained as 

          TT
KrKrB HHK 2/12/1 


.            (72) 

 
To enable a physical comparison between different cases, the various parameters   should be selected 
to achieve the same physical measure of variation of the reduced order model. In the present 
investigation, the measure of variation specified related to the first natural frequency. More specifically, 
a 4% mean square variation of the first natural frequency of the random system ( 1 ) around its 

corresponding value for the mean model ( 1 ) was enforced. That is, 

            21
2

11 04.0 E .              (73) 
The evaluation of the parameter   from this condition was achieved in a trial and error strategy: for a 
value of  , an ensemble of reduced order models were generated and the corresponding population of 

the first natural frequency of the random linear system were determined. An estimate of   2
11 E  

was then obtained and the process was repeated until Eq. (73) was satisfied. 
 
Once the appropriate value of   has been determined, the generation of samples of the mass and 
stiffness coefficients of the random reduced order model can be achieved and the corresponding 
realizations of the response time histories q


 can be obtained by numerical integration of Eq. (40). But 

how many such samples should be generated? This issue was resolved here my monitoring, for each 
case separately, the convergence of the estimate of the mean modal signal energy  
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where  tnq i )(  denotes the vector of the it nn   generalized coordinates of sample i at the nth time 

step. 



 
A first goal of the present numerical efforts was to assess the effects of geometric nonlinearity on the 
response of the uncertain beams. To this end, three different cases were considered with uncertainty on 
the stiffness terms and in the absence of temperature. First, a linear computation was carried out by 
ignoring the quadratic and cubic terms in Eq. (40) and determining the response to the excitation of Figs 
1 and 2. Second, a fully nonlinear computation was carried out with the same excitation. Finally, this 
last set of computations was repeated at a higher excitation level. 
 
Shown in Figs 3 and 4 is the displacement of the mid point of the beam predicted from the linear mean 
model both in time (Fig. 3) and in frequency (Fig. 4) with 12 in-plane modes and 10 transverse. The 
sharp drop in energy right at the cut-off frequency (2000 Hz) and the sharp resonance peaks are 
distinctive of the linear system. A convergence study of the mean modal signal energy of the random 
linear system, see Fig. 5, demonstrated that 600 samples were sufficient for convergence. Then, various 
statistics of the response could be obtained. Of particular interest here was the physical deflection of the 
center of the beam, more specifically its frequency content. Shown in Fig. 6 are the mean, 5th, and 95th 
percentiles of the spectrum of the random response of the middle of the beam. These curves were 
obtained by determining at each frequency the mean, 5th, and 95th percentiles of the 600 spectrum 
values. Also presented on Fig. 6 is the response of the mean model (dashed lines). Note in this figure 
that the 5th-95th percentile band increases with increasing frequency and is broader near the resonances 
and antiresonances of the mean model. Further, the response of the mean model is significantly lower 
than the 5th percentile near/at the antiresonances but very close to the 95th percentile value in the 
neighborhood of the mean model resonant frequencies. 
 
A similar analysis was next repeated for the nonlinear reduced order model subjected to the same 
excitation. The transverse displacement at the center of the beam obtained from the mean model is again 
shown both as function of time and frequency in Figs 7 and 8 for 12 in-plane modes and 10 transverse. 
Note the significant reduction in the peak response (by approximately 40%) as compared to the response 
of the linear system and that the peak displacement at the middle of the beam is of the order of twice the 
beam thickness. Important differences also occur in the frequency domain, more specifically broader 
and more numerous peaks as well as the disappearance of the sharp drop off at 2000Hz. A sample size 
of 600 realizations was again found well sufficient for convergence and led to the spectrum plot of Fig. 
9. The observations drawn in connection with the linear system spectrum can be repeated here, i.e. the 
5th-95th percentile band is largest at/near the peaks and valleys of the spectrum of the mean model thus 
forming complex shapes that may rapidly widen or narrow down. Since the location of the peaks of the 
response is a function of the response level of the system, it would be expected that the 5th-95th 
percentile band would shift to the right as the amplitude of the motions is increased. This expectation is 
confirmed on Fig. 10 which repeats the data of Fig. 9 as well as the 5th-95th band obtained with an 
excitation 2.25 times the one shown in Figs 1 and 2 which leads to a peak transverse displacement of 
approximately 3.5 thicknesses at the beam middle for the mean model (computations carried out with 12 
transverse modes and 12 in-plane). Note as well the distortion of the uncertainty band as it shift to 
higher frequencies. 
 

The coefficients ijS , )(ˆ m
ijS , and ),(~ nm

ijS  corresponding to the stress x  at the middle of the beam were 

also obtained by the STEP algorithm and enabled the analysis of the effects of uncertainty on this stress. 
Shown in Fig. 11 is the comparison of the 5th-95th percentile bands at the two nonlinear response levels 
of Fig. 10. The discussion carried out in comparison with this figure holds here as well, the band is 
distorted as it moves to the right due to higher response level. A comparison of the uncertainty bands of 



the displacement and stress (Figs 10 and 11) indicate that the latter one is much more complex than the 
former one due to the large number of peaks of the spectrum, which itself results from the quadratic 
transformation of Eq. (30). 
 
Uncertainty in the natural frequencies may originate from either the stiffnesses and/or the masses. In this 
light, it was desired to compare the uncertainty band associated with the 4% mean square variation of 
the natural frequencies assuming that it originates from stiffnesses alone (as done above) or masses 
alone. This comparison, shown in Fig. 12, demonstrate that the two 5th-95th percentile bands are very 
close together with the one associated with mass uncertainty typically slightly broader than its stiffness 
counterpart. This observation may be justified by considering a uniform relative change of all stiffnesses 
by a value  . Such a change may be reflected as a uniform change by 1/  of all stiffnesses, linear and 
nonlinear. With   a random variable, this observation would suggest that the randomness in mass 
would be similar to a randomness in the stiffnesses in which there exists a strong positive correlation 
between the various linear and nonlinear terms, i.e. increases/decreases in the linear stiffness terms 
being matched by increases/decreases of the nonlinear terms. Such a positive correlation does imply a 
lower 5th percentile of the response and a higher 95th percentile, i.e. a broader band, as compared to the 
case in which linear and nonlinear stiffnesses do not exhibit a significant correlation as tends to be the 
case in the uncertain stiffness computations. Similar observations can be drawn from the uncertainty 
bands in the stress spectrum (not shown here for brevity). 
 
The above computations were all carried out in the absence of any thermal effects. Temperature 
however is known to have significant effects on the dynamics of very slender beams as the one 
considered here as it may induce buckling. In fact, the buckling temperature of the beam considered here 
is only 1.56C. To assess the joint effects of uncertainty and temperature, two set of computations were 
carried out. The first reproduced the analysis of Figs 7-9 but with a uniform temperature equal to 1.25C 

or 80% of the buckling temperature and uncertainty only in the “structural” stiffness tensors )1(K , 
)2(K , and )3(K  (16 transverse modes and 12 in-plane were used). In the second set of computations, 

uncertainty was introduced only on the thermal stiffness matrix )(thK  with a value th  such that the 

mean square deviations of the first natural frequency of the heated beams from their mean model value 
would be the same in both computations. The corresponding displacement spectra mean and percentiles 
are shown in Fig. 13 for the uncertainty in structural stiffness and in Fig. 14 for the uncertainty in the 
thermal stiffness matrix. A comparison of these two figures demonstrates that the behavior of the two 
random systems near the first peak is very similar owing to the equality of the mean square variations of 
the first natural frequencies. However, completely different behaviors take place at higher frequencies. 
Specifically, the uncertainty in the structural stiffness affects the entire frequency range with increasing 
uncertainty bands as frequency increases as already observed in Figs 9-11. On the contrary, the effects 
of the uncertainty of the thermal stiffness matrix appear to be decreasing as the frequency increases. 

This observation is directly related to the relatively small value of the largest eigenvalue of )(thK . Thus, 

the application of temperature, and consequently the uncertainty on )(thK , affects strongly the response 

of the beam in the low frequency range but has very little effect on higher modes as seen in Figs 13 and 
14. 
The above discussions have all been relevant to a broad band excitation, i.e. similar to Figs 1 and 2 and 
it was wondered whether similar results would also be seen for a narrowband excitation, i.e. in the range 
[1000, 1500] Hz see Figs 15 and 16. Given the previous observations, only the effects of uncertainty on 



the stiffness tensors )1(K , )2(K , and )3(K  were considered and no thermal effect was considered. The 

computations were carried out with 16 transverse modes and 12 in plane modes at a time step of t = 

2.5 510 s and the computations were carried out for totn =30000 time steps. Shown in Figs 17 and 18 is 

the transverse displacement of the mid point of the beam in both time and frequency domains. Clearly, 
the excitation favors the fifth linear mode (symmetric mode of frequency equal to 1055 Hz) and its 
response is significantly nonlinear leading to the broad response peak seen in Fig. 18. Note as well the 
presence of sharper peaks at smaller energy levels associated with the first and third modes which are 
out of band but are excited by the nonlinear interaction of the modes. The introduction of uncertainty in 
the linear and nonlinear stiffness tensors leads to the spectrum plot of Fig. 19. Surprisingly, it is found 
that the dominant peak is quite robust but that a very large uncertainty band occurs in conjunction with 
the first mode. In fact, the 95th percentile of the spectrum at this first peak is at the same energy level 
than that of the dominant peak. Thus, uncertainty on this narrowband response manifest itself mostly by 
a potentially dramatic increase in the component of response associated with the first linear mode. 
 
SUMMARY 
The focus of this investigation has been on the formulation of a general methodology for the 
consideration of both data and model uncertainty in the modeling of geometrically nonlinear dynamic 
systems. It was argued first that the most appropriate framework for the inclusion of model uncertainty 
is in terms of reduced order models of the system, especially those which are build from a deterministic 
basis, e.g. the linear modes of the mean model. 
 
On this basis, a comprehensive analysis was undertaken to clarify the derivation of such reduced order 
models, first from the governing equations of a linearly elastic continuum. An important aspects of this 
effort was to highlight the fundamental properties of the various tensors involved in the reduced order 
model as these properties will have to be satisfied for every realization of the uncertain reduced order 
model. Symmetry properties of the mass and the three stiffness tensors were first stated. Next, the 

positive definiteness of the stiffness tensors )1(K  and )3(K  was recognized but this statement was 

shown to be resulting from a stronger positive definiteness property that involves all three stiffness 
tensors, i.e. of the matrix BK  of Eq. (26). The derivation of a reduced order model of a geometrically 

nonlinear system from a computational model (e.g. finite element model) of it was also addressed and a 
recently devised approach (the STEP algorithm) was reviewed in details. It was finally noted that a 
complete reduced order model should also include the characterization of the stress field and this task 
was also achieved.   
 
The stochastic modeling of uncertainty (data and model) within the context of the reduced order model 
was considered next. It was highlighted that such a modeling cannot be achieved in an ad-hoc manner 
but rather should be deep rooted in stochastic mechanics to achieve the generality and accuracy desired. 
To this end and following recent work in this area, a nonparametric approach was adopted in which the 
joint distribution of the coefficients of the reduced order model was not postulated but rather derived 
according to the maximum entropy principle under the constraints of symmetry and positive definiteness 
demonstrated earlier. The consideration of uncertainty in mass, damping, “structural” stiffness, and 
temperature-related stiffness terms according to this nonparametric approach was described in detail and 
was found to be computationally advantageous (owing to expedient algorithms for the simulation of 
samples of the reduced order model coefficients) and appealing in practical applications (because it 
requires only one measure of dispersion to characterize the uncertainty). Further, the nonparametric 



approach leads to reduced order models in which all coefficients are random and are generally 
dependent on each other, as might be expected from an uncertain system. 
 
A slender beam was finally considered to exemplify the methodology presented and its specific mean 
reduced order model was first derived by the STEP algorithm from a full finite element model. Next, 
uncertainty in mass, damping, “structural” stiffness, and temperature-related stiffness terms were all 
considered one at a time to demonstrate the application of the nonparametric methodology and compare 
the effects of these different types of uncertainty on both displacements and stresses inside the beam. 
These results were found to be in good agreement with physical expectations. 
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Figure 1. Time history of the force. 

 

Figure 2. Spectral content of the force. 

 
 

 
Figure 3. Transverse displacement of the 

middle of the beam (linear mean model) as a 
function of time. 

 
Figure 4. Transverse displacement of the 

middle of the beam (linear mean model) as a 
function of frequency. 
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Figure 5. Evolution of the estimate of the mean modal signal energy as a function of the number of 

samples, linear reduced  order model 



 
Figure 6. Transverse displacement of the middle of the random linear beam as a function of frequency. 
Mean (green line), 5th (light blue), and 95th (red line) percentile of the spectrum and spectrum of the 

mean model (dashed lines). Excitation of Figs 1 and 2. 
  
 
 
 
 
 

 
Figure 7. Transverse displacement of the 

middle of the beam (nonlinear mean model) as 
a function of time. 

 
Figure 8. Transverse displacement of the 

middle of the beam (nonlinear mean model) 
as a function of frequency. 

 
 



 
Figure 9. Transverse displacement of the middle of the random nonlinear beam as a function of 
frequency. Mean (green line), 5th (light blue), and 95th (red line) percentile of the spectrum and 

spectrum of the mean model (dashed lines). Uncertainty on stiffness. Excitation of Figs 1 and 2 and 
mean model response of Figs 7 and 8. 
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Figure 10. 5th -95th  percentile bands of the spectrum of the transverse beam displacement at its middle 

at two response levels. Uncertainty on stiffness.  
“Stiff, low amp”: Excitation of Figs 1 and 2 and mean model response of Figs 7 and 8. “Stiff, high 

amp”: Excitation of Figs 1 and 2 x 2.25. 
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Figure 11. 5th -95th  percentile bands of the spectrum of the stress x  at the beam middle at two 

response levels. Uncertainty on stiffness. “Stiff, low amp”: Excitation of Figs 1 and 2 and mean model 
response of Figs 7 and 8. “Stiff, high amp”: Excitation of Figs 1 and 2 x 2.25. 
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Figure 12. 5th -95th  percentile bands of the spectrum of the transverse beam displacement at its middle 

for the excitation of Figs 1 and 2 and mean model response of Figs 7 and 8. “Stiff, low amp”: 
uncertainty on stiffnesses only, “Mass, low amp”: uncertainty on masses only. 

 



 
Figure 13. Transverse displacement of the middle of the random nonlinear beam as a function of 
frequency. Mean (green line), 5th (light blue), and 95th (red line) percentile of the spectrum and 

spectrum of the mean model (dashed lines). 
Excitation of Figs 1 and 2 with T=1.25C. Uncertainty on structural stiffness tensors. 

 

 
Figure 14. Transverse displacement of the middle of the random nonlinear beam as a function of 
frequency. Mean (green line), 5th (light blue), and 95th (red line) percentile of the spectrum and 

spectrum of the mean model (dashed lines). 
Excitation of Figs 1 and 2 with T=1.25C. Uncertainty on thermal stiffness matrix. 



 
 
 
 

 
Figure 15. Time history of the narrowband 

force. 

 
Figure 16. Frequency content of the 

narrowband force. 

 
 
 
 

 
Figure 17. Transverse displacement of the 

middle of the beam subjected to the 
narrowband force, as a function of time. 

 
Figure 18. Transverse displacement of the 

middle of the beam subjected to the 
narrowband force, as a function of  

frequency. 
 



 
Figure 19. Transverse displacement of the middle of the random nonlinear beam as a function of 
frequency. Mean (green line), 5th (light blue), and 95th (red line) percentile of the spectrum and 

spectrum of the mean model (dashed lines). 
Excitation of Figs 15 and 16. Uncertainty on stiffness. 

 
 

 


